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Preface to the Second Edition

Since writing the first edition of Design and Analysis of Experiments, there

have been a number of additions to the research investigator’s toolbox. In

this second edition, we have incorporated a few of these modern topics.

Small screening designs are now becoming prevalent in industry for

aiding the search for a few influential factors from amongst a large pool of

factors of potential interest. In Chap. 15, we have expanded the material on

saturated designs and introduced the topic of supersaturated designs which

have fewer observations than the number of factors being investigated. We

have illustrated that useful information can be gleaned about influential

factors through the use of supersaturated designs even though their contrast

estimators are correlated. When curvature is of interest, we have described

definitive screening designs which have only recently been introduced in the

literature, and which allow second order effects to be measured while

retaining independence of linear main effects and requiring barely more than

twice as many observations as factors.

Another modern set of tools, now used widely in areas such as biomedical

and materials engineering, the physical sciences, and the life sciences, is that

of computer experiments. To give a flavor of this topic, a new Chap. 20 has

been added. Computer experiments are typically used when a mathematical

description of a physical process is available, but a physical experiment

cannot be run for ethical or cost reasons. We have discussed the major issues

in both the design and analysis of computer experiments. While the complete

treatment of the theoretical background for the analysis is beyond the scope

of this book, we have provided enough technical details of the statistical

model, as well as an intuitive explanation, to make the analysis accessible to

the intended reader. We have also provided computer code needed for both

design and analysis.

Chapter 19 has been expanded to include two new experiments involving

split-plot designs from the discipline of human factors engineering. In one

case, imbalance due to lost data, coupled with a mixed model, motivates

introduction of restricted-maximum-likelihood-based methods implemented

in the computer software sections, including a comparison of these methods

to those based on least squares estimation.

It is now the case that analysis of variance and computation of confidence

intervals is almost exclusively done by computer and rarely by hand.

However, we have retained the basic material on these topics since it is
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fundamental to the understanding of computer output. We have removed

some of the more specialized details of least squares estimates from

Chaps. 10–12 and canonical analysis details in Chap. 16, relying on the

computer software sections to illustrate these.

SAS® software is still used widely in industry, but many university

departments now teach the analysis of data using R (R Development Core

Team, 2017). This is a command line software for statistical computing and

graphics that is freely available on the web. Consequently, we have made a

major addition to the book by including sections illustrating the use of R

software for each chapter. These sections run parallel to the “Using SAS

Software” sections, retained from the first edition.

A few additions have been made to the “Using SAS Software” sections.

For example, in Chap. 11, PROC OPTEX has been included for generation of

efficient block designs. PROC MIXED is utilized in Chap. 5 to implement

Satterthwaite’s method, and also in Chaps. 17–19 to estimate standard errors

involving composite variance estimates, and in Chap. 19 to implement

restricted maximum likelihood estimation given imbalanced data and mixed

models.

We have updated the SAS output1, showing this as reproductions of PC

output windows generated by each program. The SAS programs presented

can be run on a PC or in a command line environment such as unix, although

the latter would use PROC PLOT rather than the graphics PROC SGPLOT.

Some minor modifications have been made to a few other chapters from

the first edition. For example, for assessing which contrasts are

non-negligible in single replicate or fractional factorial experiments, we have

replaced normal probability plots by half-normal probability plots (Chaps. 7,

13 and 15). The reason for this change is that contrast signs are dependent

upon which level of the factor is labeled as the high level and which is

labeled as the low level. Half-normal plots remove this potential arbitrariness

by plotting the absolute values of the contrast estimates against “half-normal

scores”.

Section 7.6 in the first edition on the control of noise variability and

Taguchi experiments has been removed, while the corresponding material in

Chap. 15 has been expanded. On teaching the material, we found it preferable

to have information on mixed arrays, product arrays, and their analysis, in

one location. The selection of multiple comparison methods in Chap. 4 has

been shortened to include only those methods that were used constantly

throughout the book. Thus, we removed the method of multiple comparisons

with the best, which was not illustrated often; however, this method remains

appropriate and valid for many situations in practice.

Some of the worked examples in Chap. 10 have been replaced with newer

experiments, and new worked examples added to Chaps. 15 and 19. Some

new exercises have been added to many chapters. These either replace

1The output in our “Using SAS Software” sections was generated using SAS software

Version 9.3 of the SAS System for PC. Copyright © SAS 2012 SAS Institute Inc. SAS and

all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc., Cary, NC, USA.
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exercises from the first edition or have been added at the end of the exercise

list. All other first edition exercises retain their same numbers in this second

edition.

A new website http://www.wright.edu/*dan.voss/

DeanVossDraguljic.html has been set up for the second edition.

This contains material similar to that on the website for the first edition,

including datasets for examples and exercises, SAS and R programs, and any

corrections.

We continue to owe a debt of gratitude to many. We extend our thanks to

all the many students at The Ohio State University and Wright State

University who provided imaginative and interesting experiments and gave

us permission to include their projects. We thank all the readers who notified

us of errors in the first edition and we hope that we have remembered to

include all the corrections. We will be equally grateful to readers of the

second edition for notifying us of any newly introduced errors. We are

indebted to Russell Lenth for updating the R package lsmeans to encompass

all the multiple comparisons procedures used in this book. We are grateful to

the editorial staff at Springer, especially Rebekah McClure and Hannah

Bracken, who were always available to give advice and answer our questions

quickly and in detail.

Finally, we extend our love and gratitude to Jeff, Nancy, Tom, Jimmy,

Linda, Luka, Nikola, Marija and Anika.

Columbus, USA Angela Dean

Dayton, USA Daniel Voss

Lancaster, USA Danel Draguljić
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Preface to the First Edition

The initial motivation for writing this book was the observation from various

students that the subject of design and analysis of experiments can seem like

“a bunch of miscellaneous topics.” We believe that the identification of the

objectives of the experiment and the practical considerations governing

the design form the heart of the subject matter and serve as the link between

the various analytical techniques. We also believe that learning about design

and analysis of experiments is best achieved by the planning, running, and

analyzing of a simple experiment.

With these considerations in mind, we have included throughout the book

the details of the planning stage of several experiments that were run in the

course of teaching our classes. The experiments were run by students in

statistics and the applied sciences and are sufficiently simple that it is possible

to discuss the planning of the entire experiment in a few pages, and the

procedures can be reproduced by readers of the book. In each of these

experiments, we had access to the investigators’ actual report, including the

difficulties they came across and how they decided on the treatment factors,

the needed number of observations, and the layout of the design. In the later

chapters, we have included details of a number of published experiments.

The outlines of many other student and published experiments appear as

exercises at the ends of the chapters.

Complementing the practical aspects of the design are the statistical

aspects of the analysis. We have developed the theory of estimable functions

and analysis of variance with some care, but at a low mathematical level.

Formulae are provided for almost all analyses so that the statistical methods

can be well understood, related design issues can be discussed, and com-

putations can be done by hand in order to check computer output.

We recommend the use of a sophisticated statistical package in con-

junction with the book. Use of software helps to focus attention on the

statistical issues rather than the calculation. Our particular preference is for

the SAS software, and we have included the elementary use of this package

at the end of most chapters. Many of the SAS program files and data sets

used in the book can be found at www.springer–ny.com. However, the book

can equally well be used with any other statistical package. Availability of

statistical software has also helped shape the book in that we can discuss

more complicated analyses—the analysis of unbalanced designs, for

example.
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The level of presentation of material is intended to make the book

accessible to a wide audience. Standard linear models under normality are

used for all analyses. We have avoided using calculus, except in a few

optional sections where least squares estimators are obtained. We have also

avoided using linear algebra, except in an optional section on the canonical

analysis of second-order response surface designs. Contrast coefficients are

listed in the form of a vector, but these are interpreted merely as a list of

coefficients.

This book reflects a number of personal preferences. First and foremost,

we have not put side conditions on the parameters in our models. The reason

for this is threefold. Firstly, when side conditions are added to the model, all

the parameters appear to be estimable. Consequently, one loses the per-

spective that in factorial experiments, main effects can be interpreted only as

averages over any interactions that happen to be present. Secondly, the side

conditions that are the most useful for hand calculation do not coincide with

those used by the SAS software. Thirdly, if one feeds a nonestimable para-

metric function into a computer program such as PROC GLM in SAS, the

program will declare the function to be “nonestimable,” and the user needs to

be able to interpret this statement. A consequence is that the traditional

solutions to the normal equations do not arise naturally. Since the traditional

solutions are for nonestimable parameters, we have tried to avoid giving

these, and instead have focused on the estimation of functions of E[Y], all of

which are estimable.

We have concentrated on the use of prespecified models and preplanned

analyses rather than exploratory data analysis. We have emphasized the

experimentwise control of error rates and confidence levels rather than

individual error rates and confidence levels.

We rely upon residual plots rather than formal tests to assess model

assumptions. This is because of the additional information provided by

residual plots when model assumption violations are indicated. For example,

plots to check homogeneity of variance also indicate when a variance-

stabilizing transformation should be effective. Likewise, nonlinear patterns in

a normal probability plot may indicate whether inferences under normality

are likely to be liberal or conservative. Except for some tests for lack of fit,

we have, in fact, omitted all details of formal testing for model assumptions,

even though they are readily available in many computer packages.

The book starts with basic principles and techniques of experimental

design and analysis of experiments. It provides a checklist for the planning of

experiments, and covers analysis of variance, inferences for treatment con-

trasts, regression, and analysis of covariance. These basics are then applied in

a wide variety of settings. Designs covered include completely randomized

designs, complete and incomplete block designs, row-column designs, single

replicate designs with confounding, fractional factorial designs, response

surface designs, and designs involving nested factors and factors with ran-

dom effects, including split-plot designs.

In the last few years, “Taguchi methods” have become very popular

for industrial experimentation, and we have incorporated some of these ideas.

Rather than separating Taguchi methods as special topics, we have interspersed
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them throughout the chapters via the notion of including “noise factors” in an

experiment and analyzing the variability of the response as the noise factors vary.

We have introduced factorial experiments as early as Chapter 3, but

analyzed them as one-way layouts (i.e., using a cell means model). The

purpose is to avoid introducing factorial experiments halfway through the

book as a totally new topic, and to emphasize that many factorial experiments

are run as completely randomized designs. We have analyzed contrasts in a

two-factor experiment both via the usual two-way analysis of variance model

(where the contrasts are in terms of the main effect and interaction parame-

ters) and also via a cell-means model (where the contrasts are in terms of the

treatment combination parameters). The purpose of this is to lay the

groundwork for Chapters 13–15, where these contrasts are used in con-

founding and fractions. It is also the traditional notation used in conjunction

with Taguchi methods.

The book is not all-inclusive. For example, we do not cover recovery of

interblock information for incomplete block designs with random block

effects. We do not provide extensive tables of incomplete block designs.

Also, careful coverage of unbalanced models involving random effects is

beyond our scope. Finally, inclusion of SAS graphics is limited to low-

resolution plots.

The book has been classroom tested successfully over the past five years

at The Ohio State University, Wright State University, and Kenyon College,

for junior and senior undergraduate students majoring in a variety of fields,

first-year graduate students in statistics, and senior graduate students in the

applied sciences. These three institutions are somewhat different. The Ohio

State University is a large land-grant university offering degrees through the

Ph.D., Wright State University is a mid-sized university with few Ph.D.

programs, and Kenyon College is a liberal arts undergraduate college. Below

we describe typical syllabi that have been used.

At OSU, classes meet for five hours per week for ten weeks. A typical

class is composed of 35 students, about a third of whom are graduate students

in the applied statistics master’s program. The remaining students are

undergraduates in the mathematical sciences or graduate students in indus-

trial engineering, biomedical engineering, and various applied sciences. The

somewhat ambitious syllabus covers Chapters 1–7 and 10, Sections

11.1–11.4, and Chapters 13, 15, and 17. Students taking these classes plan,

run, and analyze their own experiments, usually in a team of four or five

students from several different departments. This project serves the function

of giving statisticians the opportunity of working with scientists and of seeing

the experimental procedure firsthand, and gives the scientists access to col-

leagues with a broader statistical training. The experience is usually highly

rated by the student participants.

Classes at WSU meet four hours per week for ten weeks. A typical class

involves about 10 students who are either in the applied statistics master’s

degree program or who are undergraduates majoring in mathematics with a

statistics concentration. Originally, two quarters (20 weeks) of probability

and statistics formed the prerequisite, and the course covered much of

Chapters 1–4, 6, 7, 10, 11, and 13, with Chapters 3 and 4 being primarily
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review material. Currently, students enter with two additional quarters in

applied linear models, including regression, analysis of variance, and

methods of multiple comparisons, and the course covers Chapters 1 and 2,

Sections 3.2, 6.7, and 7.5, Chapters 10, 11, and 13, Sections 15.1–15.2, and

perhaps Chapter 16. As at OSU, both of these syllabi are ambitious. During

the second half of the course, the students plan, run, and analyze their own

experiments, working in groups of one to three. The students provide written

and oral reports on the projects, and the discussions during the oral reports

are of mutual enjoyment and benefit. A leisurely topics course has also been

offered as a sequel, covering the rest of Chapters 14–17.

At Kenyon College, classes meet for three hours a week for 15 weeks.

A typical class is composed of about 10 junior and senior undergraduates

majoring in various fields. The syllabus covers Chapters 1–7, 10, and 17.

For some areas of application, random effects, nested models, and

split-plot designs, which are covered in Chapters 17–19, are important topics.

It is possible to design a syllabus that reaches these chapters fairly rapidly by

covering Chapters 1–4, 6, 7, 17, 18, 10, 19.

We owe a debt of gratitude to many. For reading of, and comments on,

prior drafts, we thank Bradley Hartlaub, Jeffrey Nunemacher, Mark Irwin, an

anonymous reviewer, and the many students who suffered through the early

drafts. We thank Baoshe An, James Clark, and Dionne Pratt for checking a

large number of exercises, and Paul Burte, Kathryn Collins, Yuming Deng,

Joseph Mesaros, Dionne Pratt, Joseph Whitmore, and many others for

catching numerous typing errors. We are grateful to Peg Steigerwald, Terry

England, Dolores Wills, Jill McClane, and Brian J. Williams for supplying

hours of typing skills. We extend our thanks to all the many students in

classes at The Ohio State University, Wright State University, and the

University of Wisconsin at Madison whose imagination and diligence pro-

duced so many wonderful experiments; also to Brian H. Williams and Bob

Wardrop for supplying data sets; to Nathan Buurma, Colleen Brensinger, and

James Colton for library searches; and to the publishers and journal editors

who gave us permission to use data and descriptions of experiments. We are

especially grateful to the SAS Institute for permission to reproduce portions

of SAS programs and corresponding output, and to John Kimmel for his

enduring patience and encouragement throughout this endeavor.

This book has been ten years in the making. In the view of the authors, it

is “a work in progress temporarily cast in stone”—or in print, as it were. We

are wholly responsible for any errors and omissions, and we would be most

grateful for comments, corrections, and suggestions from readers so that we

can improve any future editions.

Finally, we extend our love and gratitude to Jeff, Nancy, Tommy, and

Jimmy, often neglected during this endeavor, for their enduring patience,

love, and support.

Columbus, Ohio Angela Dean

Dayton, Ohio Daniel Voss
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1Principles and Techniques

1.1 Design: Basic Principles and Techniques

1.1.1 The Art of Experimentation

One of the first questions facing an experimenter is, “How many observations do I need to take?” or

alternatively, “Given my limited budget, how can I gain as much information as possible?” These are

not questions that can be answered in a couple of sentences. They are, however, questions that are

central to the material in this book. As a first step towards obtaining an answer, the experimenter must

ask further questions, such as, “What is the main purpose of running this experiment?” and “What do

I hope to be able to show?”

Typically, an experiment may be run for one or more of the following reasons:

(i) to determine the principal causes of variation in a measured response,

(ii) to find the conditions that give rise to a maximum or minimum response,

(iii) to compare the responses achieved at different settings of controllable variables,

(iv) to obtain a mathematical model in order to predict future responses.

Observations can be collected from observational studies as well as from experiments, but only an

experiment allows conclusions to be drawn about cause and effect. For example, consider the following

situation:

The output from each machine on a factory floor is constantly monitored by any successful manufac-

turing company. Suppose that in a particular factory, the output from a particular machine is consistently

of low quality. What should the managers do? They could conclude that the machine needs replacing

and pay out a large sum of money for a new one. They could decide that the machine operator is at

fault and dismiss him or her. They could conclude that the humidity in that part of the factory is too

high and install a new air conditioning system. In other words, the machine output has been observed

under the current operating conditions (an observational study), and although it has been very effective

in showing the management that a problem exists, it has given them very little idea about the cause of

the poor quality.

It would actually be a simple matter to determine or rule out some of the potential causes. For

example, the question about the operator could be answered by moving all the operators from machine

to machine over several days. If the poor output follows the operator, then it is safe to conclude that

the operator is the cause. If the poor output remains with the original machine, then the operator is

© Springer International Publishing AG 2017

A. Dean et al., Design and Analysis of Experiments,

Springer Texts in Statistics, DOI 10.1007/978-3-319-52250-0_1

1



2 1 Principles and Techniques

blameless, and the machine itself or the factory humidity is the most likely cause of the poor quality.

This is an “experiment.” The experimenter has control over a possible cause in the difference in output

quality between machines. If this particular cause is ruled out, then the experimenter can begin to vary

other factors such as humidity or machine settings.

It is more efficient to examine all possible causes of variation simultaneously rather than one at a

time. Fewer observations are usually needed, and one gains more information about the system being

investigated. This simultaneous study is known as a “factorial experiment.” In the early stages of a

project, a list of all factors that conceivably could have an important effect on the response of interest

is drawn up. This may yield a large number of factors to be studied, in which case special techniques

are needed to gain as much information as possible from examining only a subset of possible factor

settings.

The art of designing an experiment and the art of analyzing an experiment are closely intertwined and

need to be studied side by side. In designing an experiment, one must take into account the analysis that

will be performed. In turn, the efficiency of the analysis will depend upon the particular experimental

design that is used to collect the data. Without these considerations, it is possible to invest much time,

effort, and expense in the collection of data which seem relevant to the purpose at hand but which, in

fact, contribute little to the research questions being asked. A guiding principle of experimental design

is to “keep it simple.” Interpretation and presentation of the results of experiments are generally clearer

for simpler experiments.

Three basic techniques fundamental to experimental design are replication, blocking, and random-

ization. The first two help to increase precision in the experiment; the last is used to decrease bias.

These techniques are discussed briefly below and in more detail throughout the book.

1.1.2 Replication

Replication is the repetition of experimental conditions so that the effects of interest can be estimated

with greater precision and the associated variability can be estimated.

There is a difference between “replication” and “repeated measurements.” For example, suppose

four subjects are each assigned to a drug and a measurement is taken on each subject. The result is four

independent observations on the drug. This is “replication.” On the other hand, if one subject is assigned

to a drug and then measured four times, the measurements are not independent. We call them “repeated

measurements.” The variation recorded in repeated measurements taken at the same time reflects the

variation in the measurement process, while the variation recorded in repeated measurements taken

over a time interval reflects the variation in the single subject’s response to the drug over time. Neither

reflects the variation in independent subjects’ responses to the drug. We need to know about the latter

variation in order to generalize any conclusion about the drug so that it is relevant to all similar subjects.

1.1.3 Blocking

A designed experiment involves the application of treatments to experimental units to assess the effects

of the treatments on some response. The “experimental units,” which may be subjects, materials,

conditions, points in time, or some combination of these, will be variable and induce variation in

the response. Such variation in experimental units may be intentional, as the experimental conditions

under which an experiment is run should be representative of those to which the conclusions of the

experiment are to be applied. For inferences to be broad in scope, the experimental conditions should
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be appropriately varied. Blocking is a technique that can often be used to control and adjust for some

of the variation in experimental units.

To block an experiment is to divide, or partition, the experimental units into groups called blocks

in such a way that the experimental units in each block are intended to be relatively similar, so that

treatments assigned to experimental units in the same block can be compared under relatively similar

experimental conditions. If blocking is done well, then comparisons of two or more treatments are

made more precisely in the experiment than similar comparisons from an unblocked design. For

example, in an experiment to compare the effects of two skin ointments for rash, the two treatments

can be compared more precisely on two arms of the same person than on the arms of two different

people. Either circumstance can be replicated, ideally using subjects randomly sampled from or at least

representative of the population of interest.

1.1.4 Randomization

The purpose of randomization is to prevent systematic and personal biases from being introduced into

the experiment by the experimenter. A random assignment of subjects or experimental material to

treatments prior to the start of the experiment ensures that observations that are favored or adversely

affected by unknown sources of variation are observations “selected in the luck of the draw” and not

systematically selected.

Lack of a random assignment of experimental material or subjects leaves the experimental procedure

open to experimenter bias. For example, a horticulturist may assign his or her favorite variety of

experimental crop to the parts of the field that look the most fertile, or a medical practitioner may

assign his or her preferred drug to the patients most likely to respond well. The preferred variety or

drug may then appear to give better results no matter how good or bad it actually is.

Lack of random assignment can also leave the procedure open to systematic bias. Consider, for

example, an experiment involving drying time of three paints applied to sections of a wooden board,

where each paint is to be observed four times. If no random assignment of order of observation is

made, many experimenters would take the four observations on paint 1, followed by those on paint

2, followed by those on paint 3. This order might be perfectly satisfactory, but it could equally well

prove to be disastrous. Observations taken over time could be affected by differences in atmospheric

conditions, fatigue of the experimenter, systematic differences in the wooden board sections, etc. These

could all conspire to ensure that any measurements taken during the last part of the experiment are,

say, underrecorded, with the result that paint 3 appears to dry faster than the other paints when, in fact,

it may be less good. The order 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3 helps to solve the problem, but it does not

remove it completely (especially if the experimenter takes a break after every three observations).

There are also analytical reasons to support the use of a random assignment. It will be seen in

Chaps. 3 and 4 that common forms of analysis of the data depend on the F and t distributions. It can

be shown that a random assignment ensures that these distributions are the correct ones to use. The

interested reader is referred to Kempthorne (1977).

To understand the meaning of randomization, consider an experiment to compare the effects on

blood pressure of three exercise programs, where each program is observed four times, giving a total

of 12 observations. Now, given 12 subjects, imagine making a list of all possible assignments of the

12 subjects to the three exercise programs so that 4 subjects are assigned to each program. (There are

12!/(4!4!4!), or 34,650 ways to do this.) If the assignment of subjects to programs is done in such

a way that every possible assignment has the same chance of occurring, then the assignment is said

to be a completely random assignment. Completely randomized designs, discussed in Chaps. 3–7 of

this book, are randomized in this way. It is, of course, possible that a random assignment itself could

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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4 1 Principles and Techniques

lead to the order 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3. If the experimenter expressly wishes to avoid certain

assignments, then a different type of design should be used. An experimenter should not look at the

resulting assignment, decide that it does not look very random, and change it.

Without the aid of an objective randomizing device, it is not possible for an experimenter to make

a random assignment. In fact, it is not even possible to select a single number at random. This is borne

out by a study run at the University of Delaware and reported by Professor Hoerl in the Royal Statistical

Society News and Notes (January 1988). The study, which was run over several years, asked students

to pick a number at random between 0 and 9. The numbers 3 and 7 were selected by about 40% of the

students. This is twice as many as would be expected if the numbers were truly selected at random.

The most frequently used objective mechanism for achieving a random assignment in experimental

design is a random number generator. A random number generator is a computer program that gives

as output a very long string of digits that are integers between 0 and 9 inclusive and that have the

following properties. All integers between 0 and 9 occur approximately the same number of times, as

do all pairs of integers, all triples, and so on. Furthermore, there is no discernible pattern in the string

of digits, and hence the name “random” numbers.

The random numbers in Appendix Table A.1 are part of a string of digits produced by a random

number generator (in SAS® version 6.09 on a DEC Model 4000 MODEL 610 computer at Wright

State University). Many experimenters and statistical consultants will have direct access to their own

random number generator on a computer or calculator and will not need to use the table. The table is

divided into six sections (pages), each section containing six groups of six rows and six groups of six

columns. The grouping is merely a device to aid in reading the table. To use the table, a random starting

place must be found. An experimenter who always starts reading the table at the same place always

has the same set of digits, and these could not be regarded as random. The grouping of the digits by

six rows and columns allows a random starting place to be obtained using five rolls of a fair die. For

example, the five rolls giving 3, 1, 3, 5, 2 tells the experimenter to find the digit that is in Sect. 3 of the

table, row group 1, column group 3, row 5, column 2. Then the digits can be read singly, or in pairs,

or triples, etc. from the starting point across the rows.

The most common random number generators on computers or calculators generate n-digit real

numbers between zero and one. Single digit random numbers can be obtained from an n-digit real

number by reading the first digit after the decimal point. Pairs of digits can be obtained by reading the

first two digits after the decimal point, and so on. The use of random numbers for randomization is

shown in Sects. 3.2, 3.8.1 and 3.9.1.

1.2 Analysis: Basic Principles and Techniques

In the analysis of data, it is desirable to provide both graphical and statistical analyses. Plots that

illustrate the relative responses of the factor settings under study allow the experimenter to gain a feel

for the practical implications of the statistical results and to communicate effectively the results of

the experiment to others. In addition, data plots allow the proposed model to be checked and aid in

the identification of unusual observations, as discussed in Chap. 5. Statistical analysis quantifies the

relative responses of the factors, thus clarifying conclusions that might be misleading or not at all

apparent in plots of the data.

The purpose of an experiment can range from exploratory (discovering new important sources of

variability) to confirmatory (confirming that previously discovered sources of variability are sufficiently

major to warrant further study), and the philosophy of the analysis depends on the purpose of the

experiment. In the early stages of experimentation the analysis may be exploratory, and one would plot

and analyze the data in any way that assists in the identification of important sources of variation. In

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_5
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later stages of experimentation, analysis is usually confirmatory in nature. A mathematical model of

the response is postulated and hypotheses are tested and confidence intervals are calculated.

In this book, we use linear models to model our response and the method of least squares for

obtaining estimates of the parameters in the model. These are described in Chap. 3. We also use

restricted maximum likelihood estimation of parameters in Chap. 19. Our models include random

“error variables” that encompass all the sources of variability not explicitly present in the model.

We operate under the assumption that the error terms are normally distributed. However, most of the

procedures in this book are generally fairly robust to nonnormality, provided that there are no extreme

observations among the data.

It is rare nowadays for experimental data to be analyzed by hand. Most experimenters and sta-

tisticians have access to a computer package that is capable of producing, at the very least, a basic

analysis of data for the simplest experiments. To the extent possible, for each design discussed, we shall

present useful plots and methods of analysis that can be obtained from most statistical software pack-

ages. We will also develop many of the mathematical formulas that lie behind the computer analysis.

This will enable the reader more easily to appreciate and interpret statistical computer package output

and the associated manuals. Computer packages vary in sophistication, flexibility, and the statistical

knowledge required of the user. The SAS software (see SAS Institute Inc., 2004) is one of the better

commercial statistical packages for analyzing experimental data. The R software (see R Core Team,

2017) is a command line software for statistical computing and graphics which is freely available on

the web. Both packages can handle every model discussed in this book, and although they require some

knowledge of experimental design on the part of the user, neither is difficult to learn. We provide some

basic SAS and R statements and resulting output at the end of most chapters to illustrate data analysis.

A reader who wishes to use a different computer package can run the equivalent analyses on his or her

own package and compare the output with those shown. It is important that every user know exactly

the capabilities of his or her own package and also the likely size of rounding errors.

It is not our intent to teach the best use of SAS and R software, and readers may find better ways of

achieving the same analyses. SAS software, being a commercial package, requires purchase of a license,

but many universities and companies already have site licenses. R is a free software environment for

statistical computing and graphics. Links for downloading and installing R are provided in Sect. 3.9.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_19
http://dx.doi.org/10.1007/978-3-319-52250-0_3


2Planning Experiments

2.1 Introduction

Although planning an experiment is an exciting process, it is extremely time-consuming. This creates

a temptation to begin collecting data without giving the experimental design sufficient thought. Rarely

will this approach yield data that have been collected in exactly the right way and in sufficient quantity

to allow a good analysis with the required precision. This chapter gives a step by step guide to the

experimental planning process. The steps are discussed in Sect. 2.2 and illustrated via real experiments

in Sects. 2.3 and 2.5. Some standard experimental designs are described briefly in Sect. 2.4.

2.2 A Checklist for Planning Experiments

The steps in the following checklist summarize a very large number of decisions that need to be made

at each stage of the experimental planning process. The steps are not independent, and at any stage, it

may be necessary to go back and revise some of the decisions made at an earlier stage.

Checklist

(a) Define the objectives of the experiment.

(b) Identify all sources of variation, including:

(i) treatment factors and their levels,

(ii) experimental units,

(iii) blocking factors, noise factors, and covariates.

(c) Choose a rule for assigning the experimental units to the treatments.

(d) Specify the measurements to be made, the experimental procedure, and the anticipated difficulties.

(e) Run a pilot experiment.

(f) Specify the model.

(g) Outline the analysis.

(h) Calculate the number of observations that need to be taken.

(i) Review the above decisions. Revise, if necessary.

© Springer International Publishing AG 2017
A. Dean et al., Design and Analysis of Experiments,
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A short description of the decisions that need to be made at each stage of the checklist is given

below. Only after all of these decisions have been made should the data be collected.

(a) Define the objectives of the experiment.

A list should be made of the precise questions that are to be addressed by the experiment. It is this

list that helps to determine the decisions required at the subsequent stages of the checklist. It is

advisable to list only the essential questions, since side issues will unnecessarily complicate the

experiment, increasing both the cost and the likelihood of mistakes. On the other hand, questions

that are inadvertently omitted may be unanswerable from the data. In compiling the list of objec-

tives, it can often be helpful to outline the conclusions expected from the analysis of the data. The

objectives may need to be refined as the remaining steps of the checklist are completed.

(b) Identify all sources of variation.

A source of variation is anything that could cause an observation to have a different numerical

value from another observation. Some sources of variation are minor, producing only small dif-

ferences in the data. Others are major and need to be planned for in the experiment. It is good

practice to make a list of every conceivable source of variation and then label each as either major

or minor. Major sources of variation can be divided into two types: those that are of particular

interest to the experimenter, called “treatment factors,” and those that are not of interest, called

“nuisance factors.”

(i) Treatment factors and their levels.

Although the term treatment factor might suggest a drug in a medical experiment, it is used

to mean any substance or item whose effect on the data is to be studied. At this stage in the

checklist, the treatment factors and their levels should be selected. The levels are the specific types

or amounts of the treatment factor that will actually be used in the experiment. For example, a

treatment factor might be a drug or a chemical additive or temperature or teaching method, etc.

The levels of such treatment factors might be the different amounts of the drug to be studied,

different types of chemical additives to be considered, selected temperature settings in the range

of interest, different teaching methods to be compared, etc. Few experiments involve more than

four levels per treatment factor.

If the levels of a treatment factor are quantitative (i.e., can be measured), then they are usually

chosen to be equally spaced. Two levels are needed to model a linear trend, three levels for

a quadratic trend, and so forth. If the response or log(response) should be well modeled by a

rather simple function of the log of the factor level, then one may choose the factor levels to be

equally spaced on a log scale. For convenience, treatment factor levels can be coded. For example,

temperature levels 60, 70, 80◦
, . . . might be coded as 1, 2, 3, . . . in the plan of the experiment,

or as 0, 1, 2,. . . . With the latter coding, level 0 does not necessarily signify the absence of the

treatment factor. It is merely a label. Provided that the experimenter keeps a clear record of the

original choice of levels, no information is lost by working with the codes.

When an experiment involves more than one treatment factor, every observation is a measurement

on some combination of levels of the various treatment factors. For example, if there are two

treatment factors, temperature and pressure, whenever an observation is taken at a certain pressure,

it must necessarily be taken at some temperature, and vice versa. Suppose there are four levels

of temperature coded 1, 2, 3, 4 and three levels of pressure coded 1, 2, 3. Then there are twelve

combinations of levels coded 11, 12, . . ., 43, where the first digit of each pair refers to the level
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of temperature and the second digit to the level of pressure. Treatment factors are often labeled

F1, F2, F3, . . . or A, B, C, . . . . The combinations of their levels are called treatment combinations

and an experiment involving two or more treatment factors is called a factorial experiment.

We will use the term treatment to mean a level of a treatment factor in a single factor experiment,

or to mean a treatment combination in a factorial experiment.

(ii) Experimental units.

Experimental units are the “material” to which the levels of the treatment factor(s) are applied. For

example, in agriculture these would be individual plots of land, in medicine they would be human

or animal subjects, in industry they might be batches of raw material, factory workers, etc. If an

experiment has to be run over a period of time, with the observations being collected sequentially,

then the times of day can also be regarded as experimental units.

Experimental units should be representative of the material and conditions to which the conclu-

sions of the experiment will be applied. For example, the conclusions of an experiment that uses

university students as experimental units may not apply to all adults in the country. The results of a

chemical experiment run in an 80◦ laboratory may not apply in a 60◦ factory. Thus it is important

to consider carefully the scope of the experiment in listing the objectives in step (a).

It is important to distinguish experimental units from observational units—namely, what is mea-

sured to obtain observations. For example, in an experiment involving the feeding of animals in

a pen to assess the effects of diet on weight gain, it may be that pens of animals fed together are

the experimental units while the individual animals are the observational units. In most experi-

ments, the experimental units and observational units are one and the same. However, when there

is a distinction, it is important that the data analysis reflect it. Otherwise, mistakenly treating the

observational units as experimental units would give the appearance that the experiment provides

more data or replication than is indeed present.

(iii) Blocking factors, noise factors, and covariates.

An important part of designing an experiment is to enable the effects of the nuisance factors to be

distinguished from those of the treatment factors. There are several ways of dealing with nuisance

factors, depending on their nature.

It may be desirable to limit the scope of the experiment and to fix the level of the nuisance factor.

This action may necessitate a revision of the objectives listed in step (a) since the conclusions

of the experiment will not be so widely applicable. Alternatively, it may be possible to hold the

level of a nuisance factor constant for one group of experimental units, change it to a different

fixed value for a second group, change it again for a third, and so on. Such a nuisance factor is

called a blocking factor, and experimental units measured under the same level of the blocking

factor are said to be in the same block (see Chap. 10). For example, suppose that temperature was

expected to have an effect on the observations in an experiment, but it was not itself a factor of

interest. The entire experiment could be run at a single temperature, thus limiting the conclusions

to that particular temperature. Alternatively, the experimental units could be divided into blocks

with each block of units being measured at a different fixed temperature.

Even when the nuisance variation is not measured, it is still often possible to divide the experimental

units into blocks of like units. For example, plots of land or times of day that are close together are

more likely to be similar than those far apart. Subjects with similar characteristics are more likely

to respond in similar ways to a drug than subjects with different characteristics. Observations made

in the same factory are more likely to be similar than observations made in different factories.

http://dx.doi.org/10.1007/978-3-319-52250-0_10
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Sometimes nuisance variation is a property of the experimental units and can be measured before

the experiment takes place, (e.g., the blood pressure of a patient in a medical experiment, the I.Q.

of a pupil in an educational experiment, the acidity of a plot of land in an agricultural experiment).

Such a measurement is called a covariate and can play a major role in the analysis (see Chap. 9).

Alternatively, the experimental units can be grouped into blocks, each block having a similar value

of the covariate. The covariate would then be regarded as a blocking factor.

If the experimenter is interested in the variability of the response as the experimental conditions

are varied, then nuisance factors are deliberately included in the experiment and not removed via

blocking. Such nuisance factors are called noise factors, and experiments involving noise factors

form the subject of robust design, discussed in Chap. 15.

(c) Choose a rule by which to assign the experimental units to the levels of the treatment factors.

The assignment rule, or the experimental design, specifies which experimental units are to be

observed under which treatments. The choice of design, which may or may not involve blocking

factors, depends upon all the decisions made so far in the checklist. There are several standard

designs that are used often in practice, and these are introduced in Sect. 2.4. Further details and

more complicated designs are discussed later in the book.

The actual assignment of experimental units to treatments should be done at random, subject to

restrictions imposed by the chosen design. The importance of a random assignment was discussed

in Sect. 1.1.4. Methods of randomization are given in Sect. 3.2.

There are some studies in which it appears to be impossible to assign the experimental units to the

treatments either at random or indeed by any method. For example, if the study is to investigate

the effects of smoking on cancer with human subjects as the experimental units, it is neither eth-

ical nor possible to assign a person to smoke a given number of cigarettes per day. Such a study

would therefore need to be done by observing people who have themselves chosen to be light,

heavy, or nonsmokers throughout their lives. This type of study is an observational study and not

an experiment. Although many of the analysis techniques discussed in this book could be used

for observational studies, cause and effect conclusions are not valid, and such studies will not be

discussed further.

(d) Specify the measurements to be made, the experimental procedure, and the anticipated dif-

ficulties.

The data (or observations) collected from an experiment are measurements of a response variable

(e.g., the yield of a crop, the time taken for the occurrence of a chemical reaction, the output of

a machine). The units in which the measurements are to be made should be specified, and these

should reflect the objectives of the experiment. For example, if the experimenter is interested in

detecting a difference of 0.5 gram in the response variable arising from two different treatments,

it would not be sensible to take measurements to the nearest gram. On the other hand, it would be

unnecessary to take measurements to the nearest 0.01 gram. Measurements to the nearest 0.1 gram

would be sufficiently sensitive to detect the required difference, if it exists.

There are usually unforeseen difficulties in collecting data, but these can often be identified by

taking a few practice measurements or by running a pilot experiment (see step (e)). Listing the

anticipated difficulties helps to identify sources of variation required by step (b) of the checklist,

and also gives the opportunity of simplifying the experimental procedure before the experiment

begins.

http://dx.doi.org/10.1007/978-3-319-52250-0_9
http://dx.doi.org/10.1007/978-3-319-52250-0_15
http://dx.doi.org/10.1007/978-3-319-52250-0_1
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Precise directions should be listed as to how the measurements are to be made. This might include

details of the measuring instruments to be used, the time at which the measurements are to be

made, the way in which the measurements are to be recorded. It is important that everyone involved

in running the experiment follow these directions exactly. It is advisable to draw up a data col-

lection sheet that shows the order in which the observations are to be made and also the units of

measurement.

(e) Run a pilot experiment.

A pilot experiment is a mini experiment involving only a few observations. No conclusions are

necessarily expected from such an experiment. It is run to aid in the completion of the checklist.

It provides an opportunity to practice the experimental technique and to identify unsuspected

problems in the data collection. If the pilot experiment is large enough, it can also help in the

selection of a suitable model for the main experiment. The observed experimental error in the

pilot experiment can help in the calculation of the number of observations required by the main

experiment (step (h)).

At this stage, steps (a)–(d) of the checklist should be reevaluated and changes made as necessary.

(f) Specify the model.

The model must indicate explicitly the relationship that is believed to exist between the response

variable and the major sources of variation that were identified at step (b). The techniques used

in the analysis of the experimental data will depend upon the form of the model. It is important,

therefore, that the model represent the true relationship reasonably accurately.

The most common type of model is the linear model, which shows the response variable set equal

to a linear combination of terms representing the major sources of variation plus an error term

representing all the minor sources of variation taken together. A pilot experiment (step (e)) can

help to show whether or not the data are reasonably well described by the model.

There are two different types of treatment or block factors that need to be distinguished, since they

lead to somewhat different analyses. The effect of a factor is said to be a fixed effect if the factor

levels have been specifically selected by the experimenter and if the experimenter is interested in

comparing the effects on the response variable of these specific levels. This is the most common

type of factor and is the type considered in the early chapters. A model containing only fixed-effect

factors (apart from the response and error random variables) is called a fixed-effects model.

Occasionally, however, a factor has an extremely large number of possible levels, and the levels

included in the experiment are a random sample from the population of all possible levels. The

effect of such a factor is said to be a random effect. Since the levels are not specifically chosen,

the experimenter has little interest in comparing the effects on the response variable of the par-

ticular levels used in the experiment. Instead, it is the variability of the response due to the entire

population of levels that is of interest. Models for which all factors are random effects are called

random-effects models. Models for which some factors are random effects and others are fixed

effects are called mixed models. Experiments involving random effects will be considered in

Chaps. 17 and 18.

(g) Outline the analysis.

The type of analysis that will be performed on the experimental data depends on the objectives

determined in step (a), the design selected in step (c), and its associated model specified in step (f).

http://dx.doi.org/10.1007/978-3-319-52250-0_17
http://dx.doi.org/10.1007/978-3-319-52250-0_18
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The entire analysis should be outlined (including hypotheses to be tested and confidence intervals

to be calculated). The analysis not only determines the calculations at step (h), but also verifies

that the design is suitable for achieving the objectives of the experiment.

(h) Calculate the number of observations needed.

At this stage in the checklist, a calculation should be done for the number of observations that

are needed in order to achieve the objectives of the experiment. If too few observations are taken,

then the experiment may be inconclusive. If too many are taken, then time, energy, and money are

needlessly expended.

Formulae for calculating the number of observations are discussed in Sects. 3.6 and 4.5 for the

completely randomized design, and in later chapters for more complex designs. The formulae

require a knowledge of the size of the experimental variability. This is the amount of variability

in the data caused by the sources of variation designated as minor in step (b) (plus those sources

that were forgotten!). Estimating the size of the experimental error prior to the experiment is not

easy, and it is advisable to err on the large side. Methods of estimation include the calculation of

the experimental error in a pilot experiment (step (e)) and previous experience of working with

similar experiments.

(i) Review the above decisions. Revise if necessary.

Revision is necessary when the number of observations calculated at step (h) exceeds the number

that can reasonably be taken within the time or budget available. Revision must begin at step (a),

since the scope of the experiment usually has to be narrowed. If revisions are not necessary, then

the data collection may commence.

It should now be obvious that a considerable amount of thought needs to precede the running of

an experiment. The data collection is usually the most costly and the most time-consuming part of the

experimental procedure. Spending a little extra time in planning helps to ensure that the data can be

used to maximum advantage. No method of analysis can save a badly designed experiment.

Although an experimental scientist well trained in the principles of design and analysis of experi-

ments may not need to consult a statistician, it usually helps to talk over the checklist with someone

not connected with the experiment. Step (a) in the checklist is often the most difficult to complete. A

consulting statistician’s first question to a client is usually, “Tell me exactly why you are running the

experiment. Exactly what do you want to show?” If these questions cannot be answered, it is not sensi-

ble for the experimenter to go away, collect some data, and worry about it later. Similarly, it is essential

that a consulting statistician understand reasonably well not only the purpose of the experiment but

also the experimental technique. It is not helpful to tell an experimenter to run a pilot experiment that

eats up most of the budget.

The experimenter needs to give clear directions concerning the experimental procedure to all persons

involved in running the experiment and in collecting the data. It is also necessary to check that these

directions are being followed exactly as prescribed. An amusing anecdote told by Salvadori (1980)

in his book Why Buildings Stand Up illustrates this point. The story concerns a quality control study

of concrete. Concrete consists of cement, sand, pebbles, and water and is mixed in strictly controlled

proportions in a concrete plant. It is then carried to a building site in a revolving drum on a large truck.

A sample of concrete is taken from each truckload and, after seven days, is tested for compressive

strength. Its strength depends partly upon the ratio of water to cement, and decreases as the proportion

of water increases. The anecdote concerns a problem that occurred during construction of an airport

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
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terminal in New York. Although the concrete reaching the site before noon showed good strength,

some of the concrete arriving shortly after noon did not. The supervisor investigated the most plausible

causes until he decided to follow the trucks as they went from the plant to the site. He spotted a truck

driver regularly stopping for beer and a sandwich at noon, and to prevent the concrete hardening, he

added extra water into the drums. Thus, Salvadori concludes “the prudent engineer must not only be

cautious about material properties, but be aware, most of all, of human behavior.”

This applies to prudent experimenters, too! In the chapters that follow, most of the emphasis falls on

the statistical analysis of well-designed experiments. It is crucial to keep in mind the ideas in these first

sections while reading the rest of the book. Unfortunately, there are no nice formulae to summarize

everything. Both the experimenter and the statistical consultant should use the checklist and lots of

common sense!

2.3 A Real Experiment—Cotton-Spinning Experiment

The experiment to be described was reported in the November 1953 issue of the journal Applied

Statistics by Robert Peake, of the British Cotton Industry Research Association. Although the experi-

ment was run many years ago, the types of decisions involved in planning experiments have changed

very little. The original report was not written in checklist form, but all of the relevant details were

provided by the author in the article.

Checklist

(a) Define the objectives of the experiment.

At an intermediate stage of the cotton-spinning process, a strand of cotton (known as “roving”)

thicker than the final thread is produced. Roving is twisted just before it is wound onto a bobbin.

As the degree of twist increases, so does the strength of the cotton, but unfortunately, so does the

production time and hence, the cost. The twist is introduced by means of a rotary guide called a

“flyer.” The purpose of the experiment was twofold; first, to investigate the way in which different

degrees of twist (measured in turns per inch) affected the breakage rate of the roving, and secondly,

to compare the ordinary flyer with the newly devised special flyer.

(b) Identify all sources of variation.

(i) Treatment factors and their levels.

There are two treatment factors, namely “type of flyer” and “degree of twist.” The first treatment

factor, flyer, has two levels, “ordinary” and “special.” We code these as 1 and 2, respectively.

The levels of the second treatment factor, twist, had to be chosen within a feasible range. A pilot

experiment was run to determine this range, and four non equally spaced levels were selected,

1.63, 1.69, 1.78, and 1.90 turns per inch. Coding these levels as 1, 2, 3, and 4, there are eight

possible treatment combinations, as shown in Table 2.1.

The two treatment combinations 11 and 24 were omitted from the experiment, since the pilot

experiment showed that these did not produce satisfactory roving. The experiment was run with

the six treatment combinations 12, 13, 14, 21, 22, 23.
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Table 2.1 Treatment
combinations for the
cotton-spinning experiment

Twist

Flyer 1.63 1.69 1.78 1.90

Ordinary (11) 12 13 14

Special 21 22 23 (24)

(ii) Experimental units.

An experimental unit consisted of the thread on the set of full bobbins in a machine on a given day.

It was not possible to assign different bobbins in a machine to different treatment combinations.

The bobbins needed to be fully wound, since the tension, and therefore the breakage rate, changed

as the bobbin filled. It took nearly one day to wind each set of bobbins completely.

(iii) Blocking factors, noise factors, and covariates.

Apart from the treatment factors, the following sources of variation were identified: the differ-

ent machines, the different operators, the experimental material (cotton), and the atmospheric

conditions.

There was some discussion among the experimenters over the designation of the blocking factors.

Although similar material was fed to the machines and the humidity in the factory was controlled

as far as possible, it was still thought that the experimental conditions might change over time. A

blocking factor representing the day of the experiment was contemplated. However, the experi-

menters finally decided to ignore the day-to-day variability and to include just one blocking factor,

each of whose levels represented a machine with a single operator. The number of experimental

units per block was limited to six to keep the experimental conditions fairly similar within a block.

(c) Choose a rule by which to assign the experimental units to the treatments.

A randomized complete block design, which is discussed in detail in Chap. 10, was selected. The

six experimental units in each block were randomly assigned to the six treatment combinations.

The design of the final experiment was similar to that shown in Table 2.2.

(d) Specify the measurements to be made, the experimental procedure, and the anticipated

difficulties.

It was decided that a suitable measurement for comparing the effects of the treatment combinations

was the number of breaks per hundred pounds of material. Since the job of machine operator

included mending every break in the roving, it was easy for the operator to keep a record of every

break that occurred.

The experiment was to take place in the factory during the normal routine. The major difficulties

were the length of time involved for each observation, the loss of production time caused by

changing the flyers, and the fact that it was not known in advance how many machines would be

available for the experiment.

http://dx.doi.org/10.1007/978-3-319-52250-0_10
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Table 2.2 Part of the
design for the
cotton-spinning experiment

Time order

Block 1 2 3 4 5 6

I 22 12 14 21 13 23

II 21 14 12 13 22 23

III 23 21 14 12 13 22

IV 23 21 12 · · · · · · · · ·
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(e) Run a pilot experiment.

The experimental procedure was already well known. However, a pilot experiment was run in order

to identify suitable levels of the treatment factor “degree of twist” for each of the flyers; see step (b).

(f) Specify the model.

The model was of the form

Breakage rate = constant + effect of treatment combination

+ effect of block + error .

Models of this form and the associated analyses are discussed in Chap. 10.

(g) Outline the analysis.

The analysis was planned to compare differences in the breakage rates caused by the six flyer/twist

combinations. Further, the trend in breakage rates as the degree of twist was increased was of inter-

est for each flyer separately.

(h) Calculate the number of observations that need to be taken.

The experimental variability was estimated from a previous experiment of a somewhat different

nature. This allowed a calculation of the required number of blocks to be done (see Sect. 10.5.2).

The calculation was based on the fact that the experimenters wished to detect a true difference in

breakage rates of at least 2 breaks per 100 pounds with high probability. The calculation suggested

that 56 blocks should be observed (a total of 336 observations!).

(i) Review the above decisions. Revise, if necessary.

Since each block would take about a week to observe, it was decided that 56 blocks would not

be possible. The experimenters decided to analyze the data after the first 13 blocks had been

run. The effect of decreasing the number of observations from the number calculated is that the

requirements stated in step (h) would not be met. The probability of detecting differences of 2

breaks per 100 lbs was substantially reduced.

http://dx.doi.org/10.1007/978-3-319-52250-0_10
http://dx.doi.org/10.1007/978-3-319-52250-0_10
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Table 2.3 Data from the cotton-spinning experiment

Treatment combination Block number

1 2 3 4 5 6

12 6.0 9.7 7.4 11.5 17.9 11.9

13 6.4 8.3 7.9 8.8 10.1 11.5

14 2.3 3.3 7.3 10.6 7.9 5.5

21 3.3 6.4 4.1 6.9 6.0 7.4

22 3.7 6.4 8.3 3.3 7.8 5.9

23 4.2 4.6 5.0 4.1 5.5 3.2

Treatment combination Block number

7 8 9 10 11 12 13

12 10.2 7.8 10.6 17.5 10.6 10.6 8.7

13 8.7 9.7 8.3 9.2 9.2 10.1 12.4

14 7.8 5.0 7.8 6.4 8.3 9.2 12.0

21 6.0 7.3 7.8 7.4 7.3 10.1 7.8

22 8.3 5.1 6.0 3.7 11.5 13.8 8.3

23 10.1 4.2 5.1 4.6 11.5 5.0 6.4

Source Peake (1953). Copyright © 1953 Royal Statistical Society. Reprinted with permission

Fig. 2.1 A subset of the
data for the cotton-spinning
experiment
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The results from the 13 blocks are shown in Table 2.3, and the data from five of these are plotted in

Fig. 2.1. The data show that there are certainly differences in blocks. For example, results in block 5 are

consistently above those for block 1. The breakage rate appears to be somewhat higher for treatment

combinations 12 and 13 than for 23. However, the observed differences may not be any larger than the

inherent variability in the data. Therefore, it is important to subject these data to a careful statistical

analysis. This will be done in Sect. 10.5.

2.4 Some Standard Experimental Designs

An experimental design is a rule that determines the assignment of the experimental units to the

treatments. Although experiments differ from each other greatly in most respects, there are some

standard designs that are used frequently. These are described briefly in this section.

http://dx.doi.org/10.1007/978-3-319-52250-0_10
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2.4.1 Completely Randomized Designs

A completely randomized design is the name given to a design in which the experimenter assigns the

experimental units to the treatments completely at random, subject only to the number of observations

to be taken on each treatment. Completely randomized designs are used for experiments that involve

no blocking factors. They are discussed in depth in Chaps. 3–9 and again in some of the later chapters.

The mechanics of the randomization procedure are illustrated in Sect. 3.2. The statistical properties of

the design are completely determined by specification of r1, r2, . . . , rv , where ri denotes the number

of observations on the i th treatment, i = 1, . . . , v.

The model is of the form

Response = constant + effect of treatment + error .

Factorial experiments often have a large number of treatments. This number can even exceed the

number of available experimental units, so that only a subset of the treatment combinations can be

observed. Special methods of design and analysis are needed for such experiments, and these are

discussed in Chap. 15.

2.4.2 Block Designs

A block design is a design in which the experimenter partitions the experimental units into blocks,

determines the allocation of treatments to blocks, and assigns the experimental units within each block

to the treatments completely at random. Block designs are discussed in depth in Chaps. 10–14.

In the analysis of a block design, the blocks are treated as the levels of a single blocking factor

even though they may be defined by a combination of levels of more than one nuisance factor. For

example, the cotton-spinning experiment of Sect. 2.3 is a block design with each block corresponding

to a combination of a machine and an operator. The model is of the form

Response = constant + effect of block

+ effect of treatment + error .

The simplest block design is the complete block design, in which each treatment is observed the

same number of times in each block. Complete block designs are easy to analyze. A complete block

design whose blocks contain a single observation on each treatment is called a randomized complete

block design or, simply, a randomized block design.

When the block size is smaller than the number of treatments, so that it is not possible to observe

every treatment in every block, a block design is called an incomplete block design. The precision with

which treatment effects can be compared and the methods of analysis that are applicable depend on

the choice of the design. Some standard design choices, and appropriate methods of randomization,

are covered in Chap. 11. Incomplete block designs for factorial experiments are discussed in Chap. 13.

2.4.3 Designs with Two or More Blocking Factors

When an experiment involves two major sources of variation that have each been designated as blocking

factors, these blocking factors are said to be either crossed or nested. The difference between these is

illustrated in Table 2.4. Each experimental unit occurs at some combination of levels of the two blocking

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_9
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_15
http://dx.doi.org/10.1007/978-3-319-52250-0_10
http://dx.doi.org/10.1007/978-3-319-52250-0_14
http://dx.doi.org/10.1007/978-3-319-52250-0_11
http://dx.doi.org/10.1007/978-3-319-52250-0_13
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Table 2.4 Schematic plans of experiments with two blocking factors

(i) Crossed blocking factors (ii) Nested blocking factors

Block Block

Factor 1 Factor 1

1 2 3 1 2 3

Block 1 * * * 1 *

Factor 2 * * * 2 *

2 3 * * * 3 *

Block 4 *

Factor 5 *

2 6 *

7 *

8 *

9 *

factors, and an asterisk denotes experimental units that are to be assigned to treatment factors. It can be

seen that when the block factors are crossed, experimental units are used from all possible combinations

of levels of the blocking factors. When the block factors are nested, a particular level of one of the

blocking factors occurs at only one level of the other blocking factor.

Crossed Blocking Factors

A design involving two crossed blocking factors is sometimes called a “row–column” design. This

is due to the pictorial representation of the design, in which the levels of one blocking factor are

represented by rows and the levels of the second are represented by columns as in Table 2.4(i). An

intersection of a row and a column is called a “cell.” Experimental units in the same cell should be

similar. The model is of the form

Response = constant + effect of row block + effect of column block

+ effect of treatment + error .

Some standard choices of row–column designs with one experimental unit per cell are discussed in

Chap. 12, and an example is given in Sect. 2.5.3 (p. 26) of a row–column design with six experimental

units per cell.

The example shown in Table 2.5 is a basic design (prior to randomization) that was considered for the

cotton-spinning experiment. The two blocking factors were “machine with operator” and “day.” Notice

that if the column headings are ignored, the design looks like a randomized complete block design.

Similarly, if the row headings are ignored, the design with columns as blocks looks like a randomized

complete block design. Such designs are called Latin squares and are discussed in Chap. 12. For the

cotton-spinning experiment, which was run in the factory itself, the experimenters could not guarantee

that the same six machines would be available for the same six days, and this led them to select

a randomized complete block design. Had the experiment been run in a laboratory, so that every

machine was available on every day, the Latin square design would have been used, and the day-to-day

variability could have been removed from the analysis of treatments.

Nested (or Hierarchical) Blocking Factors.

Two blocking factors are said to be nested when observations taken at two different levels of one

blocking factor are automatically at two different levels of the second blocking factor as in Table 2.4(ii).

http://dx.doi.org/10.1007/978-3-319-52250-0_12
http://dx.doi.org/10.1007/978-3-319-52250-0_12


2.4 Some Standard Experimental Designs 19

Table 2.5 A Latin square for the cotton-spinning experiment

Machine with operator Days

1 2 3 4 5 6

1 12 13 14 21 22 23

2 13 14 21 22 23 12

3 14 21 22 23 12 13

4 22 23 12 13 14 21

5 23 12 13 14 21 22

6 21 22 23 12 13 14

As an example, consider an experiment to compare the effects of a number of diets (the treatments) on

the weight (the response variable) of piglets (the experimental units). Piglets vary in their metabolism,

as do human beings. Therefore, the experimental units are extremely variable. However, some of this

variability can be controlled by noting that piglets from the same litter are more likely to be similar than

piglets from different litters. Also, litters from the same sow are more likely to be similar than litters

from different sows. The different sows can be regarded as blocks, the litters regarded as subblocks, and

the piglets as the experimental units within the subblocks. A piglet belongs only to one litter (piglets

are nested within litters), and a litter belongs only to one sow (litters are nested within sows). The

random assignment of piglets to diets would be done separately litter by litter in exactly the same way

as for any block design.

In the industrial setting, the experimental units may be samples of some experimental material (e.g.,

cotton) taken from several different batches that have been obtained from several different suppliers.

The samples, which are to be assigned to the treatments, are “nested within batches,” and the batches

are “nested within suppliers.” The random assignment of samples to treatment factor levels is done

separately batch by batch.

In an ordinary block design, the experimental units can be thought of as being nested within blocks.

In the above two examples, an extra “layer” of nesting is apparent. Experimental units are nested within

subblocks, subblocks are nested within blocks. The subblocks can be assigned at random to the levels

of a further treatment factor. When this is done, the design is often known as a split-plot design (see

Sect. 2.4.4).

2.4.4 Split-Plot Designs

A split-plot design is a design with at least one blocking factor where the experimental units within

each block are assigned to the treatment factor levels as usual, and in addition, the blocks are assigned

at random to the levels of a further treatment factor. This type of design is used when the levels of

one (or more) treatment factors are easy to change, while the alteration of levels of other treatment

factors are costly, or time-consuming. For example, this type of situation occurred in the cotton-spinning

experiment of Sect. 2.3. Setting the degree of twist involved little more than a turn of a dial, but changing

the flyers involved stripping down the machines. The experiment was, in fact, run as a randomized

complete block design, as shown in Table 2.2. However, it could have been run as a split-plot design,

as shown in Table 2.6. The time slots have been grouped into blocks, which have been assigned at

random to the two flyers. The three experimental units within each cell have been assigned at random

to degrees of twist.
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Table 2.6 A split-plot design for the cotton-spinning experiment

Time order

1 2 3 4 5 6

Block I Block II

Flyer 2 Flyer 1

Machine I Twist 2 Twist 1 Twist 3 Twist 2 Twist 4 Twist 3

Flyer 2 Flyer 1

Machine II Twist 1 Twist 2 Twist 3 Twist 4 Twist 2 Twist 3

Flyer 1 Flyer 2

Machine III Twist 4 Twist 2 Twist 3 Twist 3 Twist 1 Twist 2
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Split-plot designs also occur in medical and psychological experiments. For example, suppose that

several subjects are assigned at random to the levels of a drug. In each time-slot each subject is asked

to perform one of a number of tasks, and some response variable is measured. The subjects can be

regarded as blocks, and the time-slots for each subject can be regarded as experimental units within

the blocks. The blocks and the experimental units are each assigned to the levels of the treatment

factors—the subject to drugs and the time-slots to tasks. Split-plot designs are discussed in detail in

Chap. 19.

In a split-plot design, the effect of a treatment factor whose levels are assigned to the experimental

units is generally estimated more precisely than a treatment factor whose levels are assigned to the

blocks. It was this reason that led the experimenters of the cotton-spinning experiment to select the

randomized complete block design in Table 2.2 rather than the split-plot design of Table 2.6. They

preferred to take the extra time in running the experiment rather than risk losing precision in the

comparison of the flyers.

2.5 More Real Experiments

Three experiments are described in this section. The first, called the “soap experiment,” was run as a

class project by Suyapa Silvia in 1985. The second, called the “battery experiment,” was run by one of

the authors. Both of these experiments are designed as completely randomized designs. The first has

one treatment factor at three levels while the second has two treatment factors, each at two levels. The

soap and battery experiments are included here to illustrate the large number of decisions that need

to be made in running even the simplest investigations. Their data are used in Chaps. 3–5 to illustrate

methods of analysis. The third experiment, called the “cake-baking experiment,” includes some of the

more complicated features of the designs discussed in Sect. 2.4.

2.5.1 Soap Experiment

The checklist for this experiment has been obtained from the experimenter’s report. Our comments are

in parentheses. The reader is invited to critically appraise the decisions made by this experimenter and

to devise alternative ways of running her experiment.

http://dx.doi.org/10.1007/978-3-319-52250-0_19
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Checklist (Suyapa Silvia, 1985)

(a) Define the objectives of the experiment.

The purpose of this experiment is to compare the extent to which three particular types of soap

dissolve in water. It is expected that the experiment will answer the following questions: Are there

any differences in weight loss due to dissolution among the three soaps when allowed to soak in

water for the same length of time? What are these differences?

Generalizations to other soaps advertised to be of the same type as the three used for this experiment

cannot be made, as each soap differs in terms of composition, i.e., has different mixtures of

ingredients. Also, because of limited laboratory equipment, the experimental conditions imposed

upon these soaps cannot be expected to mimic the usual treatment of soaps, i.e., use of friction,

running water, etc. Conclusions drawn can only be discussed in terms of the conditions posed in

this experiment, although they could give indications of what the results might be under more

normal conditions.

(We have deleted the details of the actual soaps used).

(b) Identify all sources of variation.

(i) Treatment factors and their levels

The treatment factor, soap, has been chosen to have three levels: regular, deodorant, and moistur-

izing brands, all from the same manufacturer. The particular brands used in the experiment are of

special interest to this experimenter.

The soap will be purchased at local stores and cut into cubes of similar weight and size—about 1′′

cubes. The cubes will be cut out of each bar of soap using a sharp hacksaw so that all sides of the

cube will be smooth. They will then be weighed on a digital laboratory scale showing a precision

of 10 mg. The weight of each cube will be made approximately equal to the weight of the smallest

cube by carefully shaving thin slices from it. A record of the preexperimental weight of each cube

will be made.

(Note that the experimenter has no control over the age of the soap used in the experiment. She is

assuming that the bars of soap purchased will be typical of the population of soap bars available in

the stores. If this assumption is not true, then the results of the experiment will not be applicable in

general. Each cube should be cut from a different bar of soap purchased from a random sample of

stores in order for the experiment to be as representative as possible of the populations of soap bars.)

(ii) Experimental units

The experiment will be carried out using identical metal muffin pans. Water will be heated to

100◦F (approximate hot bath temperature), and each section will be quickly filled with 1/4 cup of

water. A pilot study indicated that this amount of water is enough to cover the tops of the soaps.

The water-filled sections of the muffin pans are the experimental units, and these will be assigned

to the different soaps as described in step (c).

(iii) Blocking factors, noise factors, and covariates

(Apart from the differences in the composition of the soaps themselves, the initial sizes of the

cubes were not identical, and the sections of the muffin pan were not necessarily all exposed to the
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same amount of heat. The initial sizes of the cubes were measured by weight. These could have

been used as covariates, but the experimenter chose instead to measure the weight changes, that is,

“final weight minus initial weight.” The sections of the muffin pan could have been grouped into

blocks with levels such as “outside sections,” “inside sections,” or such as “center of heating vent”

and “off-center of heating vent.” However, the experimenter did not feel that the experimental units

would be sufficiently variable to warrant blocking. Other sources of variation include inaccuracies

of measuring initial weights, final weights, amounts and temperature of water. All of these were

designated as minor. No noise factors were incorporated into the experiment.)

(c) Choose a rule by which to assign the experimental units to the levels of the treatment factors.

An equal number of observations will be made on each of the three treatment factor levels.

Therefore, r cubes of each type of soap will be prepared. These cubes will be randomly matched

to the experimental units (muffin pan sections) using a random-number table.

(This assignment rule defines a completely randomized design with r observations on each treat-

ment factor level, see Chap. 3).

(d) Specify the measurements to be made, the experimental procedure, and the anticipated

difficulties.

The cubes will be carefully placed in the water according to the assignment rule described in

paragraph (c). The pans will be immediately sealed with aluminum foil in order to prevent excessive

moisture loss. The pans will be positioned over a heating vent to keep the water at room temperature.

Since the sections will be assigned randomly to the cubes, it is hoped that if water temperature

differences do exist, these will be randomly distributed among the three treatment factor levels.

After 24 hours, the contents of the pans will be inverted onto a screen and left to drain and dry

for a period of 4 days in order to ensure that the water that was absorbed by each cube has been

removed thoroughly. The screen will be labeled with the appropriate soap numbers to keep track

of the individual soap cubes.

After the cubes have dried, each will be carefully weighed. These weights will be recorded next to

the corresponding preexperimental weights to study the changes, if any, that may have occurred.

The analysis will be carried out on the differences between the post- and preexperimental weights.

Expected Difficulties

(i) The length of time required for a cube of soap to dissolve noticeably may be longer than is practical

or assumed. Therefore, the data may not show any differences in weights.

(ii) Measuring the partially dissolved cubes may be difficult with the softer soaps (e.g., moisturizing

soap), since they are likely to lose their shape.

(iii) The drying time required may be longer than assumed and may vary with the soaps, making it

difficult to know when they are completely dry.

(iv) The heating vent may cause the pan sections to dry out prematurely.

(After the experiment was run, Suyapa made a list of the actual difficulties encountered. They are

reproduced below. Although she had run a pilot experiment, it failed to alert her to these difficulties

ahead of time, since not all levels of the treatment factor had been observed.)

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Difficulties Encountered

(i) When the cubes were placed in the warm water, it became apparent that some soaps absorbed water

very quickly compared to others, causing the tops of these cubes to become exposed eventually.

Since this had not been anticipated, no additional water was added to these chambers in order to

keep the experiment as designed. This created a problem, since the cubes of soap were not all

completely covered with water for the 24-hour period.

(ii) The drying time required was also different for the regular soap compared with the other two. The

regular soap was still moist, and even looked bigger, when the other two were beginning to crack

and separate. This posed a real dilemma, since the loss of weight due to dissolution could not be

judged unless all the water was removed from the cubes. The soaps were observed for two more

days after the data was collected and the regular soap did lose part of the water it had retained.

(iii) When the contents of the pans were deposited on the screen, it became apparent that the dissolved

portion of the soap had become a semisolid gel, and a decision had to be made to regard this as

“nonusable” and not allow it to solidify along with the cubes (which did not lose their shape).

(The remainder of the checklist together with the analysis is given in Sect. 3.7. The calculations at

step (h) showed that four observations should be taken on each soap type. The data were collected and

are shown in Table 2.7. A plot of the data is shown in Fig. 2.2.)

The weightloss for each cube of soap measured in grams to the nearest 0.01 gm is the difference

between the initial weight of the cube (pre-weight) and the weight of the same cube at the end of

the experiment (post-weight). Negative values indicate a weight gain, while positive values indicate a

weight loss (a large value being a greater loss). As can be seen, the regular soap cubes experienced the

smallest changes in weight, and in fact, appear to have retained some of the water. Possible reasons for

this will be examined in the discussion section (see Sect. 3.7.3). The data show a clear difference in the

weight loss of the different soap types. This will be verified by a statistical hypothesis test (Sect. 3.7.2).

Table 2.7 Weight loss for soaps in the soap experiment

Soap (Level) Cube Pre-weight (grams) Post-weight (grams) Weightloss (grams)

Regular (1) 1 13.14 13.44 −0.30

2 13.17 13.27 −0.10

3 13.17 13.31 −0.14

4 13.17 12.77 0.40

Deodorant (2) 5 13.03 10.40 2.63

6 13.18 10.57 2.61

7 13.12 10.71 2.41

8 13.19 10.04 3.15

Moisturizing (3) 9 13.14 11.28 1.86

10 13.19 11.16 2.03

11 13.06 10.80 2.26

12 13.00 11.18 1.82

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Fig. 2.2 Weight loss for
the soap experiment
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2.5.2 Battery Experiment

Checklist

(a) Define the objectives of the experiment.

Due to the frequency with which his family needed to purchase flashlight batteries, one of the

authors (Dan Voss) was interested in finding out which type of nonrechargeable battery was the

most economical. In particular, Dan was interested in comparing the lifetime per unit cost of the

particular name brand that he most often purchased with the store brand where he usually shopped.

He also wanted to know whether it was worthwhile paying the extra money for alkaline batteries

over heavy duty batteries.

A further objective was to compare the lifetimes of the different types of battery regardless of

cost. This was due to the fact that whenever there was a power cut, all the available flashlights

appeared to have dead batteries! (Only the first objective will be discussed in Chaps. 3 and 4. The

second objective will be addressed in Chap. 5.)

(b) Identify all sources of variation.

There are several sources of variation that are easy to identify in this experiment. Clearly, different

duty batteries such as alkaline and heavy duty could well be an important factor in the lifetime

per unit cost, as could the brand of the battery. These two sources of variation are the ones of most

interest in the experiment and form the levels of the two treatment factors “duty” and “brand.”

Dan decided not to include regular duty batteries in the experiment.

Other possible sources of variation include the date of manufacture of the purchased battery, and

whether the lifetime was monitored under continuous running conditions or under the more usual

setting with the flashlight being turned on and off, the temperature of the environment, the age

and variability of the flashlight bulbs.

The first of these could not be controlled in the experiment. The batteries used in the experiment

were purchased at different times and in different locations in order to give a wide representation

of dates of manufacture. The variability caused by this factor would be measured as part of the

natural variability (error variability) in the experiment along with measurement error. Had the

dates been marked on the packets, they could have been included in the analysis of the experiment

as covariates. However, the dates were not available.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_5
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The second of these possible sources of variation (running conditions) was fixed. All the measure-

ments were to be made under constant running conditions. Although this did not mimic the usual

operating conditions of flashlight batteries, Dan thought that the relative ordering of the different

battery types in terms of life per unit cost would be the same. The continuous running setting was

much easier to handle in an experiment since each observation was expected to take several hours

and no sophisticated equipment was available.

The third source of variation (temperature) was also fixed. Since the family living quarters are

kept at a temperature of about 68◦ in the winter, Dan decided to run his experiment at this usual

temperature. Small fluctuations in temperature were not expected to be important.

The variability due to the age of the flashlight bulb was more difficult to handle. A decision had

to be made whether to use a new bulb for each observation and risk muddling the effect of the

battery with that of the bulb, or whether to use the same bulb throughout the experiment and risk

an effect of the bulb age from biasing the data. A third possibility was to divide the observations

into blocks and to use a single bulb throughout a block, but to change bulbs between blocks. Since

the lifetime of a bulb is considerably longer than that of a battery, Dan decided to use the same

bulb throughout the experiment.

(i) Treatment factors and their levels

There are two treatment factors each having two levels. These are battery “duty” (level 1=alkaline,

level 2=heavy duty) and “brand” (level 1=name brand, level 2= store brand). This gives four

treatment combinations coded 11, 12, 21, 22. In Chaps. 3–5, we will recode these treatment

combinations as 1, 2, 3, 4, and we will often refer to them as the four different treatments or the

four different levels of the factor “battery type.” Thus, the levels of battery type are:

Level Treatment Combination

1 alkaline, name brand (11)
2 alkaline, store brand (12)
3 heavy duty, name brand (21)
4 heavy duty, store brand (22)

(ii) Experimental units

The experimental units in this experiment are the time slots. These were assigned at random to

the battery types so as to determine the order in which the batteries were to be observed. Any

fluctuations in temperature during the experiment form part of the variability between the time

slots and are included in the error variability.

(iii) Blocking factors, noise factors, and covariates

As mentioned above, it was decided not to include a blocking factor representing different flash-

light bulbs. Also, the date of manufacture of each battery was not available, and small fluctuations

in room temperature were not thought to be important. Consequently, there were no covariates in

the experiment, and no noise factors were incorporated.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_5
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(c) Choose a rule by which to assign the experimental units to the levels of the treatment factor.

Since there were to be no blocking factors, a completely randomized design was selected, and the

time slots were assigned at random to the four different battery types.

(d) Specify the measurements to be made, the experimental procedure, and the anticipated dif-

ficulties.

The first difficulty was in deciding exactly how to measure lifetime of a flashlight battery. First, a

flashlight requires two batteries. In order to keep the cost of the experiment low, Dan decided to

wire a circuit linking just one battery to a flashlight bulb. Although this does not mimic the actual

use of a flashlight, Dan thought that as with the constant running conditions, the relative lifetimes

per unit cost of the four battery types would be preserved. Secondly, there was the difficulty in

determining when the battery had run down. Each observation took several hours, and it was not

possible to monitor the experiment constantly. Also, a bulb dims slowly as the battery runs down,

and it is a judgment call as to when the battery is flat. Dan decided to deal with both of these prob-

lems by including a small clock in the circuit. The clock stopped before the bulb had completely

dimmed, and the elapsed time on the clock was taken as a measurement of the battery life. The

cost of a battery was computed as half of the cost of a two-pack, and the lifetime per unit cost was

measured in minutes per dollar (min/$).

(e) Run a pilot experiment.

A few observations were run as a pilot experiment. This ensured that the circuit did indeed work

properly. It was discovered that the clock and the bulb had to be wired in parallel and not in

series, as Dan had first thought! The pilot experiment also gave a rough idea of the length of

time each observation would take (at least four hours), and provided a very rough estimate of the

error variability that was used at step (h) to calculate that four observations were needed on each

treatment combination.

Difficulties Encountered

The only difficulty encountered in running the main experiment was that during the fourth obser-

vation, it was discovered that the clock was running but the bulb was out. This was due to a loose

connection. The connection was repaired, a new battery inserted into the circuit, and the clock reset.

Data

The data collected in the main experiment are shown in Table 2.8 and plotted in Fig. 2.3. The experiment

was run in 1993.
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Table 2.8 Data for the battery experiment

Battery type Life (min) Unit cost ($) Life per unit cost Time order

1 602 0.985 611 1

2 863 0.935 923 2

1 529 0.985 537 3

4 235 0.495 476 4

1 534 0.985 542 5

1 585 0.985 593 6

2 743 0.935 794 7

3 232 0.520 445 8

4 282 0.495 569 9

2 773 0.935 827 10

2 840 0.935 898 11

3 255 0.520 490 12

4 238 0.495 480 13

3 200 0.520 384 14

4 228 0.495 460 15

3 215 0.520 413 16

Fig. 2.3 Battery life per
unit cost versus battery
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2.5.3 Cake-Baking Experiment

The following factorial experiment was run in 1979 by the baking company Spillers Ltd. (in the U.K.)

and was reported in the Bulletin in Applied Statistics in 1980 by S.M. Lewis and A.M. Dean.
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Checklist

(a) Define the objectives of the experiment.

The experimenters at Spillers, Ltd. wanted to know how “cake quality” was affected by adding

different amounts of glycerine and tartaric acid to the cake mix.

(b) Identify all sources of variation.

(i) Treatment factors and their levels

The two treatment factors of interest were glycerine and tartaric acid. Glycerine was called the

“first treatment factor” and labeled F1, while tartaric acid was called the “second treatment factor”

and labeled F2. The experimenters were very familiar with the problems of cake baking and deter-

minations of cake quality. They knew exactly which amounts of the two treatment factors they

wanted to compare. They selected four equally spaced amounts of glycerine and three equally

spaced amounts of tartaric acid. These were coded as 1, 2, 3, 4 for glycerine and 1, 2, 3 for tartaric

acid. Therefore, the twelve coded treatment combinations were 11, 12, 13, 21, 22, 23, 31, 32, 33,

41, 42, 43.

(ii) Identify the experimental units

Before the experimental units can be identified, it is necessary to think about the experimental

procedure. One batch of cake-mix was divided into portions. One of the twelve treatment com-

binations (i.e., a certain amount of glycerine and a certain amount of tartaric acid) was added to

each portion. Each portion was then thoroughly mixed and put into a container for baking. The

containers were placed on a tray in an oven at a given temperature for the required length of time.

The experimenters required an entire tray of cakes to make one measurement of cake quality. Only

one tray would fit on any one shelf of an oven. An experimental unit was, therefore, “an oven shelf

with a tray of containers of cake-mix,” and these were assigned at random to the twelve treatment

combinations.

(iii) Blocking factors, noise factors, and covariates

There were two crossed blocking factors. The first was time of day with two levels (morning and

afternoon). The second was oven, which had three levels, one level for each of the three ovens

that were available on the day of the experiment. Each cell (defined by oven and time of day)

contained six experimental units, since an oven contained six shelves (see Table 2.9). Each set of

six experimental units was assigned at random to six of the twelve treatment combinations, and it

Table 2.9 Basic design for the baking experiment

Oven codes Time of day codes

1 2

1 11 13 22 24 32 34 12 14 21 23 31 33

2 12 14 21 23 32 34 11 13 22 24 31 33

3 12 14 22 24 31 33 11 13 21 23 32 34
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was decided in advance which six treatment combinations should be observed together in a cell

(see step (c) of the checklist).

Although the experimenters expected differences in the ovens and in different runs of the same

oven, their experience showed that differences between the shelves of their industrial ovens were

very minor. Otherwise, a third blocking factor representing oven shelf would have been needed.

It was possible to control carefully the amount of cake mix put into each container, and the

experimenters did not think it was necessary to monitor the precooked weight of each cake. Small

differences in these weights would not affect the measurement of the quality. Therefore, no covari-

ates were used in the analysis.

(c) Choose a rule by which to assign the experimental units to the levels of the treatment factors.

Since there were two crossed blocking factors, a row–column design with six experimental units

per cell was required. It was not possible to observe every treatment combination in every cell.

However, it was thought advisable to observe all twelve treatment combinations in each oven,

either in the morning or the afternoon. This precaution was taken so that if one of the ovens failed

on the day of the experiment, the treatment combinations could still all be observed twice each.

The basic design (before randomization) that was used by Spillers is shown in Table 2.9. The

experimental units (the trays of containers on the six oven shelves) need to be assigned at random

to the 6 treatment combinations cell by cell. The oven codes need to be assigned to the actual

ovens at random, and the time of day codes 1 and 2 to morning and afternoon.

Exercises

Exercises 1–7 refer to the list of experiments in Table 2.10.

1. Table 2.10 gives a list of experiments that can be run as class projects. Select a simple experiment

of interest to you, but preferably not on the list. Complete steps (a)–(c) of the checklist with the

intention of actually running the experiment when the checklist is complete.

2. For experiments 1 and 7 in Table 2.10, complete steps (a) and (b) of the checklist. There may be

more than one treatment factor. Give precise definitions of their levels.

3. For experiment 2, complete steps (a)–(c) of the checklist.

4. For experiment 3, complete steps (a)–(c) of the checklist.

5. For experiment 4, list sources of variation. Decide which sources can be controlled by limiting the

scope of the experiment or by specifying the exact experimental procedure to be followed. Of the

Table 2.10 Some simple experiments

1. Compare the growth rate of bean seeds under different watering and lighting schedules.

2. Does the boiling point of water differ with different concentrations of salt?

3. Compare the strengths of different brands of paper towel.

4. Do different makes of popcorn give different proportions of unpopped kernels? What about cooking meth-
ods?

5. Compare the effects of different locations of an observer on the speed at which subjects locate the
occurrences of the letter “e” in a written passage.

6. Do different colored candles burn at different speeds?

7. Compare the proportions of words remembered from lists of related or unrelated words, and under various
conditions such as silence and distraction.

8. Compare the effects of different colors of exam paper on students’ performance in an examination.
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remaining sources of variation, decide which are minor and which are major. Are there any blocking

factors in this experiment?

6. For experiment 6, specify what measurements should be made, how they should be made, and list

any difficulties that might be expected.

7. For experiment 8, write down all the possible sources of variation. In your opinion, should this

experiment be run as a completely randomized design, a block design, or a design with more than

one blocking factor? Justify your answer.

8. Read critically through the checklists in Sect. 2.5. Would you suggest any changes? Would you

have done anything differently? If you had to criticize these experiments, which points would you

address?

9. The following description was given by Clifford Pugh in the 1953 volume of Applied Statistics.

“The widespread use of detergents for domestic dish washing makes it desirable for manufacturers

to carry out tests to evaluate the performance of their products. . . . Since foaming is regarded as

the main criterion of performance, the measure adopted is the number of plates washed before

the foam is reduced to a thin surface layer. The five main factors which may affect the number

of plates washed by a given product are (i) the concentration of detergent, (ii) the temperature of

the water, (iii) the hardness of the water, (iv) the type of “soil” on the plates, and (v) the method

of washing used by the operator. . . . The difficulty of standardizing the soil is overcome by using

the plates from a works canteen (cafeteria) for the test and adopting a randomized complete block

technique in which plates from any one course form a block . . . . One practical limitation is the num-

ber of plates available in any one block. This permits only four . . . tests to be completed (in a block).”

Draw up steps (a)–(d) of a checklist for an experiment of the above type and give an example of a

design that fits the requirements of your checklist.
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3.1 Introduction

In working through the checklist in Chap. 2, the experimenter must choose an experimental design at

step (c). A design is the rule that determines the assignment of the experimental units to treatments.

The simplest possible design is the completely randomized design, where the experimental units are

assigned to the treatments completely at random, subject to the number of observations to be taken on

each treatment. Completely randomized designs involve no blocking factors.

Two ways of calculating the required number of observations (sample sizes) on each treatment

are presented in Sects. 3.6 and 4.5. The first method chooses sample sizes to obtain desired powers of

hypothesis tests, and the second chooses sample sizes to achieve desired lengths of confidence intervals.

We sometimes refer to the list of treatments and the corresponding sample sizes as the design, with

the understanding that the assignment of experimental units to treatments is to be done completely at

random.

In this chapter, we discuss the random assignment procedure for the completely randomized design,

we introduce the method of least squares for estimating model parameters, and we develop a procedure

for testing equality of the treatment parameters. Analyses by the SAS and R software are described at

the end of the chapter.

3.2 Randomization

In this section we provide a procedure for randomization that is very easily applied using a computer,

but can equally well be done by hand. On a computer, the procedure requires the availability of software

that stores data in rows and columns (like spreadsheet software, a SAS data set, or a data.frame or

matrix in R), that includes a function that randomly generates real numbers between zero and one, and

that includes the capacity to sort rows by the values in one column.

We use ri to denote the number of observations to be taken on the i th treatment, and n = �ri to

denote the total number of observations (and hence the required number of experimental units). We

code the treatments from 1 to v and label the experimental units 1 to n.

Step 1: Enter into one column r1 1’s, then r2 2’s, …, and finally rv v’s, giving a total of n = �ri

entries. These represent the treatment labels.

Step 2: Enter into another column n = �ri random numbers, including enough digits to avoid ties.

(The random numbers can be generated by a computer program or read from Table A.1).
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Table 3.1 Randomization Unsorted

treatments

Unsorted

random

numbers

Sorted

treatments

Sorted

random

numbers

Experimental unit

1 0.533 3 0.139 1

1 0.683 2 0.379 2

2 0.702 3 0.411 3

2 0.379 1 0.533 4

3 0.411 1 0.683 5

3 0.962 2 0.702 6

3 0.139 3 0.962 7

Step 3: Reorder both columns so that the random numbers are put in ascending order. This arranges

the treatment labels into a random order.

Step 4: Assign experimental unit t to the treatment whose label is in row t .

If the number n of experimental units is a k-digit integer, then the list in step 2 should be a list of

k-digit random numbers. To obtain k-digit random numbers from Table A.1, a random starting place is

found as described in Sect. 1.1.4, p. 3. The digits are then read across the rows in groups of k (ignoring

spaces).

We illustrate the randomization procedure using the SAS software in Sect. 3.8.1, p. 52, and using

the R software in Sect. 3.9.1, p. 59. The procedure can equally well be done using the random digits in

Table A.1 and sorting by hand.

Example 3.2.1 Randomization

Consider a completely randomized design for three treatments and sample sizes r1 = r2 = 2, r3 = 3.

The unrandomized design (step 1 of the randomization procedure) is 1 1 2 2 3 3 3, and is listed in

column 1 of Table 3.1. Suppose step 2 generates the random numbers in column 2 of Table 3.1. In step

3, columns 1 and 2 are sorted so that the entries in column 2 are in ascending order. This gives columns

3 and 4. In step 4, the entries in column 3 are matched with experimental units 1–7 in order, so that

column 3 contains the design after randomization. Treatment 1 is in rows 4 and 5, so experimental

units 4 and 5 are assigned to treatment 1. Likewise, units 2 and 6 are assigned to treatment 2, and units

1, 3 and 7 are assigned to treatment 3. The randomly ordered treatments are then 3 2 3 1 1 2 3, and the

experimental units 1–7 are assigned to the treatments in this order. �

3.3 Model for a Completely Randomized Design

A model is an equation that shows the dependence of the response variable upon the levels of the

treatment factors. (Models involving block effects or covariates are considered in later chapters.)

Let Yi t be a random variable that represents the response obtained on the t th observation of the i th

treatment. Let the parameter μi denote the “true response” of the i th treatment, that is, the response that

would always be obtained from the i th treatment if it could be observed under identical experimental

conditions and measured without error. Of course, this ideal situation can never happen—there is always

some variability in the experimental procedure even if only caused by inaccuracies in reading measuring

instruments. Sources of variation that are deemed to be minor and ignored during the planning of the

experiment also contribute to variation in the response variable. These sources of nuisance variation

are usually represented by a single variable ǫi t , called an error variable, which is a random variable

with zero mean. The model is then

http://dx.doi.org/10.1007/978-3-319-52250-0_1
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Yi t = μi + ǫi t , t = 1, . . . , ri , i = 1, . . . , v,

where v is the number of treatments and ri is the number of observations to be taken on the i th treatment.

An alternative way of writing this model is to replace the parameter μi by μ + τi , so that the model

becomes

Yi t = μ + τi + ǫi t , t = 1, . . . , ri , i = 1, . . . , v.

In this model, μ + τi denotes the true mean response for the i th treatment, and examination of

differences between the parameters μi in the first model is equivalent to examination of differences

between the parameters τi in the second model.

It will be seen in Sect. 3.4 that unique estimates of the parameters in the second formulation of the

model cannot be obtained. Nevertheless, many experimenters prefer this model. The parameter μ is a

constant, and the parameter τi represents the positive or negative deviation of the response from this

constant when the i th treatment is observed. This deviation is called the “effect” on the response of

the i th treatment.

The above models are linear models, that is, the response variable is written as a linear function of

the parameters. Any model that is not, or cannot, be transformed into a linear model cannot be treated

by the methods in this book. Linear models often provide reasonably good approximations to more

complicated models, and they are used extensively in practice.

The specific forms of the distributions of the random variables in a model need to be identified before

any statistical analyses can be done. The error variables represent all the minor sources of variation

taken together, including all the measurement errors. In many experiments, it is reasonable to assume

that the error variables are independent and that they have a normal distribution with zero mean and

unknown variance σ2, which must be estimated. We call these assumptions the error assumptions. It

will be shown in Chap. 5 that plots of the experimental data give good indications of whether or not

the error assumptions are likely to be true. Proceeding with the analysis when the constant variance,

normality, or independence assumptions are violated can result in a totally incorrect analysis.

A complete statement of the model for any experiment should include the list of error assumptions.

Thus, for a completely randomized design with v specifically selected treatments (fixed effects), the

model is
Yi t = μ + τi + ǫi t ,

ǫi t ∼ N (0,σ2) ,

ǫi t
′s are mutually independent,

t = 1, . . . , ri , i = 1, . . . , v,

(3.3.1)

where “∼ N (0,σ2)” denotes “has a normal distribution with mean 0 and variance σ2.” This is some-

times called a one-way analysis of variance model, since the model includes only one major source

of variation, namely the treatment effect, and because the standard analysis of data using this model

involves a comparison of measures of variation.

Notice that it is unnecessary to specify the distribution of Yi t in the model, as it is possible to deduce

this from the stated information. Since Yi t is modeled as the sum of a treatment mean μ + τi and a

normally distributed random variable ǫi t , it follows that

Yi t ∼ N (μ + τi ,σ
2).

Also, since the ǫi t ’s are mutually independent, the Yi t ’s must also be mutually independent. Therefore,

if the model is a true representation of the behavior of the response variable, then the data values yi t

for the i th treatment form a random sample from a N (μ + τi ,σ
2) distribution.

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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3.4 Estimation of Parameters

3.4.1 Estimable Functions of Parameters

A function of the parameters of any linear model is said to be estimable if and only if it can be written

as the expected value of a linear combination of the response variables. Only estimable functions of the

parameters have unique linear unbiased estimates. Since it makes no sense to work with functions that

have an infinite possible number of values, it is important that the analysis of the experiment involve

only the estimable functions. For the one-way analysis of variance model (3.3.1), every estimable

function is of the form

E

[

∑

i

∑

t

ai t Yi t

]

=
∑

i

∑

t

ai t E[Yi t ]

=
∑

i

∑

t

ai t (μ + τi ) =
∑

i

bi (μ + τi ) ,

where bi = �t ai t and the ai t ’s are real numbers. Any function not of this form is nonestimable.

Clearly, μ + τ1 is estimable, since it can be obtained by setting b1 = 1 and b2 = b3 = · · · = bv = 0.

Similarly, each μ + τi is estimable. If we choose bi = ci where
∑

ci = 0, we see that
∑

ciτi

is estimable. Any such function
∑

ciτi for which
∑

i ci = 0 is called a contrast, so all contrasts

are estimable in the one-way analysis of variance model. For example, setting b1 = 1, b2 = −1,

b3 = · · · = bv = 0 shows that τ1 − τ2 is estimable. Similarly, each τi − τs , i �= s, is estimable. Notice

that there are no values of bi that give μ, τ1, τ2, . . ., or τv separately as the expected value. Therefore,

these parameters are not individually estimable.

3.4.2 Notation

We write the i th treatment sample mean as

Y i. = 1

ri

(

ri
∑

t=1

Yi t

)

and the corresponding observed sample mean as yi.. The “dot” notation means “add over all values

of the subscript replaced with a dot,” and the “bar” means “divide by the number of terms that have

been added up.” This notation will be extremely useful throughout this book. For example, in the next

subsection we write

1

n

v
∑

i=1

ri
∑

t=1

yi t = 1

n

v
∑

i=1

yi. = 1

n
y.. = y.., where n =

v
∑

i=1

ri = r. ,

so that y.. is the average of all of the observations. Note that if the summation applies to a subscript

on two variables, the dot notation cannot be used. For example,
∑

ri τ̂i cannot be written as r.τ̂., since

r.τ̂. denotes (
∑

ri )(
∑

τ̂i ). Also note that when notation involves both a sum and a square, such as y2
..

or ȳ2
i., the sum is taken first and then the sum is squared.
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3.4.3 Obtaining Least Squares Estimates

The method of least squares is used to obtain estimates and estimators for estimable functions of

parameters in linear models. We shall show that the i th treatment sample mean Y i. and its observed

value yi. are the “least squares estimator” and “least squares estimate,” respectively, of μ + τi . Least

squares solutions for the parameters μ, τ1, . . . , τv are any set of corresponding values μ̂, τ̂1, . . . , τ̂v

that minimize the sum of squared errors

v
∑

i=1

ri
∑

t=1

e2
i t =

v
∑

i=1

ri
∑

t=1

(yi t − μ − τi )
2. (3.4.2)

The estimated model ŷi t = μ̂+ τ̂i is the model that best fits the data in the sense of minimizing (3.4.2).

Finding least squares solutions is a standard problem in calculus.1 The sum of squared errors (3.4.2)

is differentiated with respect to each of the parameters μ, τ1, . . . , τv in turn. Then each of the v + 1

resulting derivatives is set equal to zero, yielding a set of v + 1 equations. These v + 1 equations are

called the normal equations. Any solution to the normal equations gives a minimum value of the sum

of squared errors (3.4.2) and provides a set of least squares solutions for the parameters.

The reader is asked to verify in Exercise 6 that the normal equations for the one-way analysis of

variance model (3.3.1) are those shown in (3.4.3). The first equation in (3.4.3) is obtained by setting

the derivative of the sum of squared errors of (3.4.2) with respect to μ equal to zero, and the other v

equations are obtained by setting the derivatives with respect to each τi in turn equal to zero. We put

“hats” on the parameters at this stage to denote solutions. The v + 1 normal equations are

y.. − nμ̂ −
∑

i

ri τ̂i = 0, (3.4.3)

yi. − ri μ̂ − ri τ̂i = 0, i = 1, . . . , v,

and include v + 1 unknown parameters. From the last v equations, we obtain

μ̂ + τ̂i = yi., i = 1, . . . , v,

so the least squares solution for the ith treatment mean μ + τi is the corresponding sample mean yi..

There is a problem in solving the normal equations to obtain least squares solutions for each

parameter μ, τ1, . . . , τv individually. If the last v normal equations (3.4.3) are added together, the first

equation results. This means that the v+1 equations are not distinct (not linearly independent). The last

v normal equations are distinct, since they each contain a different τi . Thus, there are exactly v distinct

normal equations in v + 1 unknown parameters, and there is no unique solution for the parameters.

This is not surprising, in view of the fact that we have already seen in Sect. 3.4.1 that these parameters

are not individually estimable. For practical purposes, any one of the infinite number of solutions will

be satisfactory, since they lead to identical solutions for the estimable parameters. To obtain any one

of these solutions, it is necessary to add a further equation to the set of normal equations. Any extra

equation can be added, provided that it is not a linear combination of the equations already present.

The trick is to add whichever equation will aid most in solving the entire set of equations.

1Readers without a background in calculus may note that the least squares solutions for the parameters, individually, are

not unique and then may skip forward to Sect. 3.4.4.
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One obvious possibility is to add the equation μ̂ = 0, in which case the normal equations become

μ̂ = 0 ,

y.. −
∑

i

ri τ̂i = 0 ,

yi. − ri τ̂i = 0, i = 1, . . . , v.

It is then a simple matter to solve the last v equations for the τ̂i ’s, yielding τ̂i = yi./ri = yi.. Thus,

one solution to the normal equations is

μ̂ = 0 ,

τ̂i = yi., i = 1, . . . , v.

A more common solution is obtained by adding the extra equation
∑

i ri τ̂i = 0 to (3.4.3). In this case,

the normal equations become

∑

i

ri τ̂i = 0 ,

y.. − nμ̂ = 0 ,

yi. − ri μ̂ − ri τ̂i = 0, i = 1, . . . , v,

from which we obtain the least squares solutions

μ̂ = y.. ,

τ̂i = yi. − y.., i = 1, . . . , v.

Still another solution, used, for example, by the SAS software, is obtained by adding the equation

τ̂v = 0. Then the solutions to the normal equations are

μ̂ = yv. ,

τ̂i = yi. − yv., i = 1, . . . , v.

The default solution for the R software is similar and obtained by adding the equation τ̂1 = 0. In each

of the sets of solutions just obtained, it is always true that

μ̂ + τ̂i = yi..

No matter which extra equation is added to the normal equations, yi. will always be the least squares

solution for μ + τi . Thus, although it is not possible to obtain unique least squares solutions for μ and

τi separately, the least squares solution for the estimable true treatment mean μ+ τi is unique. We call

yi. the least squares estimate and Y i. the least squares estimator of μ + τi . The notation μ̂ + τ̂i is used

somewhat ambiguously to mean both the least squares estimator and estimate. It should be clear from

the context which of these is meant.
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3.4.4 Properties of Least Squares Estimators

An important property of a least squares estimator is that

the least squares estimator of any estimable function of the parameters is the unique best linear unbiased estimator.

This statement, called the Gauss–Markov Theorem, is true for all linear models whose error variables

are independent and have common variance σ2. The theorem tells us that for the one-way analysis of

variance model (3.3.1), the least squares estimator
∑

bi Y i. of the estimable function
∑

bi (μ + τi ) is

unique, is unbiased and has smallest variance. The theorem also tells us that τi cannot be estimable,

since we have three different solutions for τi and none of the corresponding estimators has expected

value equal to τi .

For the one-way analysis of variance model, Yi t has a normal distribution with mean μ + τi and

variance σ2 (see Sect. 3.3), so E[Y i.] = μ + τi and Var(Y i.) = σ2/ri . Therefore, the distribution of

the least squares estimator Y i. of μ + τi is

Y i. ∼ N (μ + τi , σ2/ri ) .

The Y i.’s are independent, since they are based on different Yi t ’s. Consequently, the distribution of the

least squares estimator
∑

ci Y i. of the contrast
∑

ciτi , with
∑

ci = 0, is

∑

ci Y i. ∼ N (�ciτi , �
c2

i

ri

σ2).

Example 3.4.1 Heart–lung pump experiment

The following experiment was run by Richard Davis at The Ohio State University in 1987 to determine

the effect of the number of revolutions per minute (rpm) of the rotary pump head of an Olson heart–lung

pump on the fluid flow rate. The rpm was set directly on the tachometer of the pump console and PVC

tubing of size 3/8” by 3/32” was used. The flow rate was measured in liters per minute. Five equally

spaced levels of the treatment factor “rpm” were selected, namely, 50, 75, 100, 125, and 150 rpm, and

these were coded as 1, 2, 3, 4, 5, respectively. The experimental design was a completely randomized

design with r1 = r3 = r5 = 5, r2 = 3, and r4 = 2. The data, in the order collected, are given in

Table 3.2, and the summary information is

y1. = 5.676, r1 = 5, y1. = 1.1352,

y2. = 5.166, r2 = 3, y2. = 1.7220,

y3. = 11.634, r3 = 5, y3. = 2.3268,

y4. = 5.850, r4 = 2, y4. = 2.9250,

y5. = 17.646, r5 = 5, y5. = 3.5292.

The least squares estimate of the mean fluid flow rate when the pump is operating at 150 rpm is

(μ̂ + τ̂5) = y5. = 3.5292

liters per minute. The other mean fluid flow rates are estimated in a similar way. The experimenter

expected the flow rate to increase as the rpm of the pump head was increased. Figure 3.1 supports this

expectation.
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Table 3.2 Fluid flow

obtained from the rotary

pump head of an Olson

heart–lung pump

Observation rpm Level Liters/minute

1 150 5 3.540

2 50 1 1.158

3 50 1 1.128

4 75 2 1.686

5 150 5 3.480

6 150 5 3.510

7 100 3 2.328

8 100 3 2.340

9 100 3 2.298

10 125 4 2.982

11 100 3 2.328

12 50 1 1.140

13 125 4 2.868

14 150 5 3.504

15 100 3 2.340

16 75 2 1.740

17 50 1 1.122

18 50 1 1.128

19 150 5 3.612

20 75 2 1.740

Fig. 3.1 Plot of data for

the heart–lung pump

experiment
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Since the variance of the least squares estimator Y i. of μ + τi is σ2/ri , the first, third, and fifth

treatment means are more precisely measured than the second and fourth.

The least squares estimate of the difference in fluid flow rate between 50 and 150 rpm is

(τ̂5 − τ̂1) = (μ̂ + τ̂5) − (μ̂ + τ̂1) = y5. − y1. = 2.394

liters per minute. The associated variance is

5
∑

i=1

c2
i

ri

σ2 =
(

1

5
+ 1

5

)

σ2 = 0.4 σ2.
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3.4.5 Estimation of σ
2

The least squares estimates μ̂ + τ̂i = yi. of μ + τi (i = 1, . . . , v) minimize the sum of squared errors.

Therefore, for the one-way analysis of variance model (3.3.1), the minimum possible value of the sum

of squared errors (3.4.2), which we write as ssE, is equal to

ssE =
∑

i

∑

t

ê2
i t =

∑

i

∑

t

(yi t − μ̂ − τ̂i )
2.

Here, êi t = (yi t − μ̂ − τ̂i ) is the deviation of the t th observation on the i th treatment from the

estimated i th treatment mean. This is called the (i t)th residual. Substituting the least squares estimates

μ̂ + τ̂i = yi. into the formula for ssE, we have

ssE =
∑

i

∑

t

(yi t − yi.)
2. (3.4.4)

The minimum sum of squared errors, ssE, is called the sum of squares for error or the error sum of

squares, and is used below to find an unbiased estimate of the error variance σ2. A useful computational

formula for ssE is obtained by multiplying out the quantity in parentheses in (3.4.4); that is,

ssE =
∑

i

∑

t

y2
i t −

∑

i

ri y2
i. (3.4.5)

Now, the random variable SSE corresponding to the minimum sum of squared errors ssE in (3.4.4) is

SSE =
∑

i

∑

t

(Yi t − Y i.)
2 =

∑

i

(ri − 1)S2
i , (3.4.6)

where S2
i =

∑ri

t=1(Yi t − Y i.)
2/(ri − 1)) is the sample variance for the i th treatment. In Exercise 3.11,

the reader is asked to verify that S2
i is an unbiased estimator of the error variance σ2. Then, the expected

value of SSE is

E(SSE) =
∑

i

(ri − 1)E(S2
i ) = (n − v)σ2 ,

giving an unbiased estimator of σ2 as

σ̂2 = SSE/(n − v) = MSE. (3.4.7)

The corresponding unbiased estimate of σ2 is the observed value of MSE, namely msE = ssE/(n −v).

Both MSE and msE are called the mean square for error or error mean square. The estimate msE is

sometimes called the “within groups (or within treatments) variation.”

3.4.6 Confidence Bound for σ
2

If an experiment were to be repeated in the future, the estimated value of σ2 obtained from the current

experiment could be used at step (h) of the checklist to help calculate the number of observations that

should be taken in the new experiment (see Sects. 3.6.2 and 4.5). However, the error variance in the

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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new experiment is unlikely to be exactly the same as that in the current experiment, and in order not

to underestimate the number of observations needed, it is advisable to use a larger value of σ2 in the

sample size calculation. One possibility is to use the upper limit of a one-sided confidence interval for

σ2.

It can be shown that the distribution of SSE/σ2 is chi-squared with n − v degrees of freedom,

denoted by χ2
n−v . Consequently,

P

(

SSE

σ2
≥ χ2

n−v,1−α

)

= 1 − α , (3.4.8)

where χ2
n−v,1−α is the percentile of the chi-squared distribution with n − v degrees of freedom and

with probability of 1 − α in the right-hand tail.

Manipulating the inequalities in (3.4.8), and replacing SSE by its observed value ssE, gives a one-

sided 100(1 − α)% confidence bound for σ2 as

σ2 ≤ ssE

χ2
n−v,1−α

. (3.4.9)

This upper bound is called a 100(1 − α)% upper confidence limit for σ2.

Example 3.4.2 Battery experiment, continued

The data of the battery experiment (Sect. 2.5.2, p. 24) are summarized in Table 3.3. The sum of squares

for error is obtained from (3.4.5); that is,

ssE =
∑

i

∑

t

y2
i t −

∑

i

ri y2
i.

= 6,028,288 − 4(570.752 + 860.502 + 433.002 + 496.252)

= 28,412.5.

An unbiased estimate of the error variance is then obtained as

msE = ssE/(n − v) = 28,412.5/(16 − 4) = 2367.71 .

A 95% upper confidence limit for σ2 is given by

σ2 ≤ ssE

χ2
12,0.95

= 28,412.5

5.23
= 5432.60 ,

and taking the square root of the confidence limit, a 95% upper confidence limit for σ is 73.71 minutes

per dollar. If the experiment were to be repeated in the future, the calculation for the number of observa-

tions at step (h) of the checklist might take the largest likely value for σ to be around 70–75 minutes per

dollar. �

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 3.3 Data for the battery experiment

Battery type Life per unit cost (minutes per dollar) yi.

1 611 537 542 593 570.75

2 923 794 827 898 860.50

3 445 490 384 413 433.00

4 476 569 480 460 496.25

3.5 One-Way Analysis of Variance

3.5.1 Testing Equality of Treatment Effects

In an experiment involving v treatments, an obvious question is whether or not the treatments differ at

all in terms of their effects on the response variable. Thus one may wish to test the null hypothesis

H0 : {τ1 = τ2 = · · · = τv}

that the treatment effects are all equal against the alternative hypothesis

HA : {at least two of the τi ’s differ}.

At first glance, the null hypothesis appears to involve nonestimable parameters. However, we can easily

rewrite it in terms of v − 1 estimable contrasts, as follows:

H0 : {τ1 − τ2 = 0 and τ1 − τ3 = 0 and · · · and τ1 − τv = 0}.

This is not the only way to rewrite H0 in terms of estimable contrasts. For example, we could use the

contrasts τi − τ . (where τ . =
∑

τi/v) and write the null hypothesis as follows:

H0 : {τ1 − τ . = 0 and τ2 − τ . = 0 and · · · and τv − τ . = 0} .

Now τ . is the average of the τi ’s, so the τi − τ .’s add to zero. Consequently, if τi − τ . = 0 for

i = 1, . . . , v−1, then τv −τ . must also be zero. Thus, this form of the null hypothesis could be written

in terms of just the first v − 1 estimable functions τ1 − τ ., . . . , τv−1 − τ ..

Any way that we rewrite H0 in terms of estimable functions of the parameters, it will always depend

on v − 1 distinct contrasts. The number v − 1 is called the treatment degrees of freedom.

The basic idea behind an analysis of variance test is that the sum of squares for error measures how

well the model fits the data. Consequently, a way of testing H0 is to compare the sum of squares for

error under the original one-way analysis of variance model (3.3.1), known as the full model, with

that obtained from the modified model, which assumes that the null hypothesis is true. This modified

model is called the reduced model.

Under H0, the τi ’s are equal, and we can write the common value of τ1, . . . , τv as τ . If we incorporate

this into the one-way analysis of variance model, we obtain the reduced model
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Fig. 3.2 Residuals under

the full and reduced models

when H0 is false

1 2 i

yit

y1.

y2.

e13
e11
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Residuals; full model

1 2 i

yit

y..

e13 e11

e23

e24

Residuals; reduced model

Yi t = μ + τ + ǫ0
i t ,

ǫ0
i t ∼ N (0,σ2) ,

ǫ0
i t

′s are mutually independent ,

t = 1, . . . , ri , i = 1, . . . , v,

where we write ǫ0
i t for the (i t)th error variable in the reduced model. To calculate the sum of squares

for error, ssE0, we need to determine the value of μ + τ that minimizes the sum of squared errors

∑

i

∑

t

(yi t − μ − τ )2 .

Using calculus, the reader is asked to show in Exercise 7 that the unique least squares estimate of μ+ τ

is the sample mean of all the observations; that is, μ̂ + τ̂ = y... Therefore, the error sum of squares for

the reduced model is

ssE0 =
∑

i

∑

t

(yi t − y..)
2

=
∑

i

∑

t

y2
i t − ny2

.. . (3.5.10)

If the null hypothesis H0 : {τ1 = τi = · · · = τv} is false, and the treatment effects differ, the sum of

squares for error ssE under the full model (3.3.1) is considerably smaller than the sum of squares for

error ssE0 for the reduced model. This is depicted in Fig. 3.2. On the other hand, if the null hypothesis

is true, then ssE0 and ssE will be very similar. The analysis of variance test is based on the difference

ss E0 − ssE, relative to the size of ssE; that is, the test is based on (ssE0 − ssE)/ssE. We would want

to reject H0 if this quantity is large.

We call ssT = ssE0 − ssE the sum of squares for treatments or the treatment sum of squares, since

its value depends on the differences between the treatment effects. Using formulas (3.5.10) and (3.4.5)

for ss E0 and ssE, the treatment sum of squares is
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ssT = ssE0 − ssE (3.5.11)

=
(

∑

i

∑

t

y2
i t − ny 2

..

)

−
(

∑

i

∑

t

y2
i t −

∑

i

ri y 2
i.

)

=
∑

i

ri y2
i. − ny 2

.. . (3.5.12)

An equivalent formulation is

ssT =
∑

i

ri (yi. − y..)
2 . (3.5.13)

The reader is invited to multiply out the parentheses in (3.5.13) and verify that (3.5.12) is obtained.

There is a shortcut method of expanding (3.5.13) to obtain (3.5.12). First write down each term in y and

square it. Then associate with each squared term the signs in (3.5.13). Finally, precede each term with

the summations and constant outside the parentheses in (3.5.13). This quick expansion will work for

all terms like (3.5.13) in this book. Formula (3.5.13) is probably the easier form of ssT to remember,

while (3.5.12) is easier to manipulate for theoretical work and use for computations.

Since we will reject H0 if ssT/ssE is large, we need to know what “large” means. This in turn means

that we need to know the distribution of the corresponding random variable SST/SSE when H0 is true,

where

SST =
∑

i

ri (Y i. − Y ..)
2 and SSE =

∑

i

∑

t

(Yi t − Y i.)
2 . (3.5.14)

Now, as mentioned in Sect. 3.4.6, it can be shown that SSE/σ2 has a chi-squared distribution with

n−v degrees of freedom, denoted by χ2
n−v . Similarly, it can be shown that when H0 is true, SST/σ2 has

a χ2
v−1 distribution, and that SST and SSE are independent. The ratio of two independent chi-squared

random variables, each divided by their degrees of freedom, has an F distribution. Therefore, if H0 is

true, we have

SST/σ2(v − 1)

SSE/σ2(n − v)
∼ Fv−1,n−v .

We now know the distribution of SST/SSE multiplied by the constant (n −v)/(v −1), and we want

to reject the null hypothesis H0 : {τ1 = · · · = τv} in favor of the alternative hypothesis HA : {at least

two of the treatment effects differ} if this ratio is large. Thus, if we write msT = ssT/(v − 1), msE =
ssE/(n − v), where ssT and ssE are the observed values of the treatment sum of squares and error sum

of squares, respectively, our decision rule is to

reject H0 if
msT

msE
> Fv−1,n−v,α , (3.5.15)

where Fv−1,n−v,α is the critical value from the F distribution with v − 1 and n − v degrees of freedom

with α in the right-hand tail. The probability α is often called the significance level of the test and is

the probability of rejecting H0 when in fact it is true (a Type I error). Thus, α should be selected to be

small if it is important not to make a Type I error (α = 0.01 and 0.001 are typical choices); otherwise,

α can be chosen to be a little larger (α = 0.10 and 0.05 are typical choices). Critical values Fv−1,n−v,α

for the F distribution are given in Table A.6. Due to lack of space, only a few typical values of α have

been tabulated.
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Table 3.4 One-way analysis of variance table

Source of variation Degrees of freedom Sum of squares Mean square Ratio Expected mean square

Treatments v-1 ssT ssT
v−1

msT
ms E

σ2 + Q(τi )

Error n-v ssE ss E
n−v

σ2

Total n-1 sstot

Computational formulae

ssT =
∑

i ri y2
i. − ny2

.. ssE =
∑

i

∑

t y2
i t −

∑

i ri y2
i.

sstot =
∑

i

∑

t y2
i t − ny2

..

Q(τi ) =
∑

i ri (τi −
∑

h rhτh/n)2/(v − 1)

The calculations involved in the test of the hypothesis H0 against HA are usually written as an

analysis of variance table as shown in Table 3.4. The last line shows the total sum of squares and total

degrees of freedom. The total sum of squares, sstot, is (n − 1) times the sample variance of all of the

data values. Thus,

sstot =
∑

i

∑

t

(yi t − y..)
2 =

∑

i

∑

t

y2
i t − ny 2

.. . (3.5.16)

From (3.5.10), we see that sstot happens to be equal to ss E0 for the one-way analysis of variance

model, and from (3.5.11) we see that

sstot = ssT + ssE.

Thus, the total sum of squares consists of a part ssT that is explained by differences between the

treatment effects and a part ssE that is not explained by any of the parameters in the model.

Example 3.5.1 Battery experiment, continued

Consider the battery experiment introduced in Sect. 2.5.2, p. 24. The sum of squares for error was

calculated in Example 3.4.2, p. 40, to be ssE = 28,412.5. The life per unit cost responses and treatment

averages are given in Table 3.3, p. 41. From these, we have ��y2
i t = 6,028,288, y.. = 590.125, and

ri = 4. Hence, the sums of squares ssT (3.5.12) and sstot (3.5.16) are

ssT =
∑

ri y2
i. − ny 2

..

= 4(570.752 + 860.502 + 433.002 + 496.252) − 16(590.125)2

= 427,915.25,

sstot = ssE0 =
∑ ∑

y2
i t − ny 2

..

= 6,028,288 − 16(590.125)2 = 456,327.75,

and we can verify that sstot = ssT + ssE.

The decision rule for testing the null hypothesis H0 : {τ1 = τ2 = τ3 = τ4} that the four battery

types have the same average life per unit cost against the alternative hypothesis that at least two of the

battery types differ, at significance level α, is

reject H0 if msT/msE = 60.24 > F3,12,α.

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 3.5 One-way analysis of variance table for the battery experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Type 3 427,915.25 142,638.42 60.24 0.0001

Error 12 28,412.50 2,367.71

Total 15 456,327.75

From Table A.6, it can be seen that 60.24 > F3,12,α for any of the tabulated values of α. For example, if

α is chosen to be 0.01, then F3,12,0.01 = 5.95. Thus, for any tabulated choice of α, the null hypothesis

is rejected, and it is concluded that at least two of the battery types differ in mean life per unit cost. In

order to investigate which particular pairs of battery types differ, we would need to calculate confidence

intervals. This will be done in Chap. 4. �

3.5.2 Use of p-Values

The p-value of a test is the smallest choice of α that would allow the null hypothesis to be rejected.

For convenience, computer packages usually print the p-value as well as the ratio msT/msE. Having

information about the p-value saves looking up Fv−1,n−v,α in Table A.6. All we need to do is to compare

the p-value with our selected value of α. Therefore, the decision rule for testing H0 : {τ1 = · · · τv}
against HA : {not all of τi ’s are equal} can be written as

reject H0 if p < α.

Example 3.5.2 Battery experiment, continued

In the battery experiment of Example 3.5.1, the null hypothesis H0 : {τ1 = τ2 = τ3 = τ4} that the four

battery types have the same average life per unit cost was tested against the alternative hypothesis that

they do not. The p-value generated by SAS software for the test is shown in Table 3.5 as p = 0.0001.

A value of 0.0001 in the SAS computer output indicates that the p-value is less than or equal to 0.0001.

Smaller values are not printed explicitly. If α were chosen to be 0.01, then the null hypothesis would

be rejected, since p < α. �

3.6 Sample Sizes

Before an experiment can be run, it is necessary to determine the number of observations that should

be taken on each treatment. This forms step (h) of the checklist in Sect. 2.2. In order to make this

determination, the experimenter must first ascertain the approximate cost, in both time and money,

of taking each observation and whether the cost differs for different levels of the treatment factor(s).

There will probably be a fixed budget for the entire experiment. Therefore, remembering to set aside

sufficient resources for the analysis of the experimental data, a rough calculation can be made of the

maximum number, N , of observations that can be afforded. After having worked through steps (a)–(g)

of the checklist, the experimenter will have identified the objectives of the experiment and the type of

analysis required. It must now be ascertained whether or not the objectives of the experiment can be

achieved within the budget. The calculations at step (h) may show that it is unnecessary to take as many

as N observations, in which case valuable resources can be saved. Alternatively, and unfortunately

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_2
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the more likely, it may be found that more than N observations are needed in order to fulfill all the

experimenter’s requirements of the experiment. In this case, the experimenter needs to go back and

review the decisions made so far in order to try to relax some of the requirements. Otherwise, an

increase in budget needs to be obtained. There is little point in running the experiment with smaller

sample sizes than those required without finding out what effect this will have on the analysis. The

following quotation from J. N. R. Jeffers in his article “Acid rain and tree roots: an analysis” in The

Statistical Consultant in Action (1987) is worth careful consideration:

There is a quite strongly held view among experimenters that statisticians always ask for more replication than

can be provided, and hence jeopardize the research by suggesting that it is not worth doing unless sufficient

replication can be provided. There is, of course, some truth in this allegation, and equally, some truth in the view

that, unless an experiment can be done with adequate replication, and with due regard to the size of the difference

which it is important to be able to detect, the research may indeed not be worth doing.

We will consider two methods of determining the number of observations on each treatment (the

sample sizes). One method, which involves specifying the desired length of confidence intervals, will be

presented in Sect. 4.5. The other method, which involves specifying the power required of the analysis

of variance, is the topic of this section. Since the method uses the expected value of the mean square

for treatments, we calculate this first.

3.6.1 Expected Mean Squares for Treatments

The formula for SST, the treatment sum of squares, was given in (3.5.14) on p. 43. Its expected value

is

E[SST ] = E[
∑

ri (Y i. − Y ..)
2]

= E[�ri Y
2

i. − nY
2

.. ]
=

∑

ri E[Y 2

i. ] − nE[Y 2

.. ] .

From the definition of the variance of a random variable, we know that Var(X) = E[X2] − (E[X ])2,

so we can write E[SST ] as

E[SST ] = �ri [Var(Y i.) + (E[Y i.])2] − n[Var(Y ..) + (E[Y ..])2] .

For the one-way analysis of variance model (3.3.1), the response variables Yi t are independent, and

each has a normal distribution with mean μ + τi and variance σ2. So,

E[SST ] =
∑

ri

(

σ2/ri + (μ + τi )
2
)

−n

(

σ2/n +
(

μ +
∑

riτi/n
)2

)

= vσ2 + nμ2 + 2μ
∑

riτi +
∑

riτ
2
i

−σ2 − nμ2 − 2μ
∑

riτi − (
∑

riτi )
2/n

= (v − 1)[σ2 + Q(τi )] ,

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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where

Q(τi ) = �iri (τi − �hrhτh/n)2 /(v − 1) , (3.6.17)

which reduces to Q(τi ) = r
∑

i (τi − τ .)
2/(v − 1) when r1 = r2 = . . . rv = r . The expected value of

the mean square for treatments MST = SST/(v − 1) is

E[MST ] = σ2 + Q(τi ) ,

which is the quantity we listed in the analysis of variance table, Table 3.4. We note that when the

treatment effects are all equal, Q(τi ) = 0, and E[MST ] = σ2.

3.6.2 Sample Sizes Using Power of a Test

Suppose that one of the major objectives of an experiment is to examine whether or not the treatments

all have a similar effect on the response. The null hypothesis is actually somewhat unrealistic. The

effects of the treatments are almost certainly not exactly equal, and even if they were, the nuisance

variability in the experimental data would mask this fact. In any case, if the different levels produce only

a very small difference in the response variable, the experimenter may not be interested in discovering

this fact. For example, a difference of 5 minutes in life per dollar in two different batteries would

probably not be noticed by most users. However, a larger difference such as 60 minutes may well be

noticed. Thus the experimenter might require H0 to be rejected with high probability if τi − τs > 60

minutes per dollar for some i �= s but may not be concerned about rejecting the null hypothesis if

τi − τs ≤ 5 minutes per dollar for all i �= s. In most experiments, there is some value � such that if

the difference in the effects of any two of the treatments exceeds �, the experimenter would like to

reject the null hypothesis in favor of the alternative hypothesis with high probability.

The power of the test at �, denoted by π(�), is the probability of rejecting H0 when the effects

of at least two of the treatments differ by �. The power of the test π(�) is a function of � and also

of the sample sizes, the number of treatments, the significance level α, and the error variance σ2.

Consequently, the sample sizes can be determined if π(�), v, α, and σ2 are known. The values of �,

π(�), v, and α are chosen by the experimenter, but the error variance has to be guessed using data

from a pilot study or another similar experiment. In general, the largest likely value of σ2 should be

used. If the guess for σ2 is too small, then the power of the test will be lower than the specified π(�).

If the guess for σ2 is too high, then the power will be higher than needed, and differences in the τi ’s

smaller than � will cause H0 to be rejected with high probability.

The rule for testing the null hypothesis H0 : {τ1 = · · · = τv} against HA: {at least two of the τi ’s

differ}, given in (3.5.15), on p. 43, is

reject H0 if
msT

msE
> Fv−1,n−v,α .

As stated in Sect. 3.5.1, the test statistic MST/MSE has an F distribution if the null hypothesis is

correct. But if the null hypothesis is false, then MST/MSE has a related distribution called a noncen-

tral F distribution. The noncentral F distribution is denoted by Fv−1,n−v,δ2 , where δ2 is called the

noncentrality parameter and is defined to be

δ2 = (v − 1)Q(τi )/σ
2 , (3.6.18)
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where Q(τi ) was calculated in (3.6.17). When Q(τi ) = 0, then δ2 = 0, and the distribution of

MST/MSE becomes the usual F-distribution. Otherwise, δ2 is greater than zero, and the mean and

spread of the distribution of MST/MSE are larger than those of the usual F-distribution. For equal

sample sizes r1 = r2 = · · · = rv = r , we see that δ2 is

δ2 = r
∑

i

(τi − τ .)
2/σ2.

The calculation of the sample size r required to achieve a power π(�) at � for given v, α, and σ2

rests on the fact that the hardest situation to detect is that in which the effects of two of the factor levels

(say, the first and last) differ by �, and the others are all equal and midway between; that is,

μ + τ2 = μ + τ3 = · · · = μ + τv−1 = c ,

μ + τ1 = c + �/2 , and μ + τv = c − �/2 ,

for some constant c. In this case,

δ2 = r
∑

i

(τi − τ .)
2

σ2
= r�2

2σ2
. (3.6.19)

The power of the test depends on the sample size r through the distribution of MST/MSE, which

depends on δ2. Since the power of the test is the probability of rejecting H0, we have

π(�) = P

(

M ST

M SE
> Fv−1,n−v,α

)

.

The noncentral F distribution is tabulated in Table A.7, with power π given as a function of φ = δ/
√

v

for various values of ν1 = v − 1, ν2 = n − v, and α. Using (3.6.19),

φ2 = δ2

v
= r�2

2vσ2
,

so

r = 2vσ2φ2

�2
. (3.6.20)

Hence, given α, �, v, and σ2, the value of r can be determined from Table A.7 to achieve a specified

power π(�). The determination has to be done iteratively, since the denominator degrees of freedom,

ν2 = n − v = v(r − 1), depend on the unknown r . The procedure is as follows:

(a) Find the section of Table A.7 for the numerator degrees of freedom ν1 = v − 1 and the specified

α (only α = 0.05 is shown).

(b) Calculate the denominator degrees of freedom using ν2 = 1000 in the first iteration and ν2 =
n − v = v(r − 1) in the following iterations, and locate the appropriate row of the table, taking

the smaller listed value of ν2 if necessary.

(c) For the required power π(�), use interpolation to determine the corresponding value of φ, or take

the larger listed value if necessary.
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(d) Calculate r = 2vσ2φ2/�2, rounding up to the nearest integer. (The first iteration gives a lower

bound for r .)

(e) Repeat steps (b)–(d) until the value of r is unchanged or alternates between two values. Select the

larger of alternating values.

Example 3.6.1 Soap experiment, continued

The first part of the checklist for the soap experiment is given in Sect. 2.5.1, p. 20, and is continued in

Sect. 3.7, below. At step (h), the experimenter calculated the number of observations needed on each

type of soap as follows.

The error variance was estimated to be about 0.007 grams squared from the pilot experiment. In

testing the hypothesis H0 : {τ1 = τ2 = τ3}, the experimenter deemed it important to be able to detect

a difference in weight loss of at least � = 0.25 g between any two soap types, with a probability 0.90

of correctly doing so, and a probability 0.05 of a Type I error. This difference was considered to be the

smallest discrepancy in the weight loss of soaps that would be noticeable.

Using a one-way analysis of variance model, for v = 3 treatments, with � = 0.25, r =
2vσ2φ2/�2 = 0.672φ2, and ν2 = v(r − 1) = 3(r − 1), r was calculated as follows. Using Table A.7

for ν1 = v − 1 = 2, α = 0.05, and π(�) = 0.90:

r ν2 = 3(r − 1) φ r = 0.672φ2 Action

1000 2.25 3.40 Round up to r = 4

4 9 2.50 4.20 Round up to r = 5

5 12 2.50 4.20 Stop, and use r = 4 or 5.

The experimenter decided to take r = 4 observations on each soap type. Sections 3.8.3 and 3.9.4 show

how to make these calculations using the SAS and R software, respectively. �

3.7 A Real Experiment—Soap Experiment, Continued

The objective of the soap experiment described in Sect. 2.5.1, p. xx, was to compare the extent to

which three different types of soap dissolve in water. The three soaps selected for the experiment were

a regular soap, a deodorant soap, and a moisturizing soap from a single manufacturer, and the weight-

loss after 24 h of soaking and 4 days drying is reproduced in Table 3.6. Steps (a)–(d) of the checklist

were given in Sect. 2.5.1. The remaining steps and part of the analysis of the experimental data are

described below. The first part of the description is based on the written report of the experimenter,

Suyapa Silvia.

Table 3.6 Data for the soap experiment

Soap Weight-loss (grams) yi.

1 −0.30 −0.10 −0.14 0.40 −0.0350

2 2.63 2.61 2.41 3.15 2.7000

3 1.86 2.03 2.26 1.82 1.9925

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_2
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3.7.1 Checklist, Continued

(e) Run a pilot experiment.

A pilot experiment was run and used for two purposes. First, it helped to identify the difficulties

listed at step (d) of the checklist. Secondly, it provided an estimate of σ2 for step (h). The error

variance was estimated to be about 0.007 g2. The value 0.007 gm2 was the value of msE in the

pilot experiment. In fact, this is an underestimate, and it would have been better to have used the

one-sided confidence bound (3.4.9) for σ2.

(f) Specify the model.

Since care will be taken to control all extraneous sources of variation, it is assumed that the

following model will be a reasonable approximation to the true model.

Yi t = μ + τi + ǫi t ,

ǫi t ∼ N (0,σ2) ,

ǫi t
′s are mutually independent

i = 1, 2, 3; t = 1, . . . ri ;

where τi is the (fixed) effect on the response of the i th soap, μ is a constant, Yi t is the weight loss

of the t th cube of the i th soap, and ǫi t is a random error.

Before analyzing the experimental data, the assumptions concerning the distribution of the error

variables will be checked using graphical methods. (Assumption checking will be discussed in

Chap. 5).

(g) Outline the analysis.

In order to address the question of differences in weights, a one-way analysis of variance will be

computed at α = 0.05 to test

versus
H0 : {τ1 = τ2 = τ3}
HA : { the effects of at least two pairs of soap types differ}.

To find out more about the differences among pairs of treatments, 95% confidence intervals for

the pairwise differences of the τi will be calculated using Tukey’s method (Tukey’s method will

be discussed in Sect. 4.4.4).

(h) Calculate the number of observations that need to be taken.

Four observations will be taken on each soap type. (See Example 3.6.1, p. 49, for the calculation.)

(i) Review the above decisions. Revise if necessary.

It is not difficult to obtain 4 observations on each of 3 soaps, and therefore the checklist does not

need revising. Small adjustments to the experimental procedure that were found necessary during

the pilot experiment have already been incorporated into the checklist.

3.7.2 Data Collection and Analysis

The data collected by the experimenter are plotted in Fig. 2.2, p. 24, and reproduced in Table 3.6.

The assumptions that the error variables are independent and have a normal distribution with constant

http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 3.7 One-way analysis of variance table for the soap experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Soap 2 16.1220 8.0610 104.45 0.0001

Error 9 0.6946 0.0772

Total 11 16.8166

variance were checked (using methods to be described in Chap. 5) and appear to be satisfied. The least

squares estimates, μ̂ + τ̂i = yi., of the average weight loss values (in grams) are

y1. = −0.0350 , y2. = 2.7000 , y3. = 1.9925.

The hypothesis of no differences in weight loss due to the different soap types is tested below using

an analysis of variance test.

Using the values yi. given above, together with
∑ ∑

y2
i t = 45.7397 and r1 = r2 = r3 = 4, the

sums of squares for Soap and Total are calculated using (3.5.12) and (3.5.16), pp. 43 and 44, as

ssT =
∑

ri y2
i. − ny 2

..

=
[

4(−0.0350)2 + 4(2.7000)2 + 4(1.9925)2
]

−
[

12(1.5525)2
]

= 16.1220 ,

sstot = ssE0 =
∑ ∑

y2
i t − ny 2

..

= 45.7397 − 12(1.5525)2 = 16.8166.

The sum of squares for error can be calculated by subtraction, giving ssE = sstot − ssT = 0.6946, or

directly from (3.4.5), p. 39, as

ssE =
∑ ∑

y2
i t −

∑

ri y2
i.

= 45.7397 −
[

4(−0.0350)2 + 4(2.7000)2 + 4(1.9925)2
]

= 0.6946 .

The estimate of error variability is then

σ̂2 = msE = ssE/(n − v) = 0.6945/(12 − 3) = 0.0772 .

The sums of squares and mean squares are shown in the analysis of variance table, Table 3.7. Notice

that the estimate of σ2 is ten times larger than the estimate of 0.007 g2 provided by the pilot experiment.

This suggests that the pilot experiment was not sufficiently representative of the main experiment. As

a consequence, the actual power of detecting a difference of � = 0.25 g between the weight losses of

the soaps is, in fact, somewhat below the desired probability of 0.90.

The decision rule for testing H0 : {τ1 = τ2 = τ3} against the alternative hypothesis, that at least

two of the soap types differ in weight loss, using a significance level of α = 0.05, is to reject H0 if

msT/msE = 104.45 > F2,9,0.05. From Table A.6, F2,9,0.05 = 4.26. Consequently, the null hypothesis

is rejected, and it is concluded that at least two of the soap types do differ in their weight loss after 24 h

in water (and 4 days drying time). This null hypothesis would have been rejected for most practical

choices of α. If α had been chosen to be as small as 0.005, F2,9,α is still only 10.1. Alternatively, if the

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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analysis is done by computer, the p-value would be printed in the computer output. Here the p-value

is less than 0.0001, and H0 would be rejected for any choice of α above this value.

The experimenter was interested in estimating the contrasts τi − τu for all i �= u, that is, she was

interested in comparing the effects on weight loss of the different types of soaps. For the one-way

analysis of variance model (3.3.1) and a completely randomized design, all contrasts are estimable,

and the least squares estimate of τi − τu is

τ̂i − τ̂u = (μ̂ + τ̂i ) − (μ̂ + τ̂u) = yi. − yu. .

Hence, the least square estimates of the differences in the treatment effects are

τ̂2 − τ̂3 = 0.7075 , τ̂2 − τ̂1 = 2.7350 , τ̂3 − τ̂1 = 2.0275 .

Confidence intervals for the differences will be evaluated in Example 4.4.5.

3.7.3 Discussion by the Experimenter

The results of this experiment were unexpected in that the soaps reacted with the water in very different ways,

each according to its ingredients. An examination of the soap packages showed that for the deodorant soap and

the moisturizing soap, water is listed as the third ingredient, whereas the regular soap claims to be 99.44% pure

soap. Information on the chemical composition of soaps revealed that soaps are sodium and/or potassium salts of

oleic, palmitic, and coconut oils and therefore in their pure form (without water) should float as the regular soap

bars do. The other two soaps under discussion contain water and therefore are more dense and do not float.

One possible reason for the regular soap’s actual increase in weight is that this “dry” soap absorbed and retained

the water and dissolved to a lesser extent during the soaking period. The deodorant soap and the moisturizing

soap, on the other hand, already contained water and did not absorb as much as the regular soap. They dissolved

more easily during the soaking phase as a consequence. This is somewhat supported by the observation that the

dissolved soap gel that formed extensively around the deodorant soap and the moisturizing soap did not form as

much around the regular soap. Furthermore, the regular soap appeared to increase in size and remain larger, even

at the end of the drying period.

3.7.4 Further Observations by the Experimenter

The soaps were weighed every day for one week after the experimental data had been collected in order to see

what changes continued to occur. The regular soap eventually lost most of the water it retained, and the average

loss of weight (due to dissolution) was less than that for the other two soaps.

If this study were repeated, with a drying period of at least one week, I believe that the results would indicate that

regular soap loses less weight due to dissolution than either of the deodorant soap or the moisturizing soap

3.8 Using SAS Software

3.8.1 Randomization

A simple procedure for randomizing a completely randomized design was given in Sect. 3.2, p. 31. This

procedure is easily implemented using the SAS software, as we now illustrate. Consider a completely

randomized design for two treatments and r = 3 observations on each, giving a total of n = 6 obser-

vations. The following SAS statements create and print a data set named DESIGN, which includes the

lists of values of the two variables TRTMT and RANNO as required by steps 1 and 2 of the randomization

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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procedure in Sect. 3.2. The statements INPUT and LINES are instructions to SAS that the values of

TRTMT are being input on the lines that follow rather than from an external data file. Inclusion of

“@@” in the INPUT statement allows the levels of TRTMT to be entered on one line as opposed to one

per line. For each treatment label entered for the variable TRTMT, a corresponding value of RANNO

is generated using the SAS random number generating function RANUNI which generates uniform

random numbers between 0 and 1.

DATA DESIGN;

INPUT TRTMT @@;

RANNO=RANUNI(0);

LINES;

1 1 1 2 2 2

;

PROC PRINT; RUN;

The statement PROC PRINT then prints the following output. The column labeled OBS (observation

number) is generated by the SAS software for reference.

The SAS System

Obs TRTMT RANNO

1 1 0.74865

2 1 0.62288

3 1 0.87913

4 2 0.32869

5 2 0.47360

6 2 0.72967

The following additional statements sort the data set by the values of RANNO, as required by step 3

of the randomization procedure, and print the randomized design along with the ordered experimental

unit labels 1–6 under the heading OBS.

PROC SORT; BY RANNO;

PROC PRINT; RUN;

The resulting output is as follows.

The SAS System

Obs TRTMT RANNO

1 2 0.32869

2 2 0.47360

3 1 0.62288

4 2 0.72967

5 1 0.74865

6 1 0.87913

Experimental units 3, 5, and 6 are assigned to treatment 1, and experimental units 1, 2, and 4 are

assigned to treatment 2.
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Table 3.8 SAS program for the soap experiment

Line SAS Program

1 OPTIONS LINESIZE = 72;

2 DATA SOAP;

3 INPUT WTLOSS SOAP;

4 LINES;

5 -0.30 1

6 -0.10 1

7 -0.14 1

8 : :

9 1.82 3

10 ;

11 PROC PRINT;

12 PROC SGPLOT;

13 SCATTER X = SOAP Y = WTLOSS;

14 XAXIS TYPE = DISCRETE LABEL = ’Soap’;

15 YAXIS LABEL = ’Weight Loss (grams)’;

16 PROC GLM;

17 CLASS SOAP;

18 MODEL WTLOSS = SOAP;

19 LSMEANS SOAP;

20 RUN; QUIT;

3.8.2 Analysis of Variance

In this section we illustrate how SAS software can be used to conduct a one-way analysis of variance

test for equality of the treatment effects, assuming that model (3.3.1) is appropriate. We use the data

in Table 2.7, p. 23, from the soap experiment.

A sample SAS program to analyze the data is given in Table 3.8. Line numbers have been included

for reference, but the line numbers are not part of the SAS program and if included would cause SAS

software to generate error messages. SAS programs and data files for this edition are available at the

following website.

http://www.wright.edu/~dan.voss/DeanVossDraguljic.html

The option LINESIZE = 72 in the OPTIONS statement in line 1 of the program causes all list

output generated by the program to be restricted to 72 characters per line, which is convenient for

printing list output on 8.5 by 11 inch paper in the portrait orientation. This option has no effect on the

standard html output, however, so can be ignored by readers running the SAS software in a windows

environment, which is most likely to be the norm. Some of our SAS programs, including those using

PROC SGPLOT for example, assume the user is running SAS in a windows environment, whereas

PROC PLOT might be used instead if running SAS in a command line mode. All SAS statements are

ended by a semicolon.

Lines 2–10 of the program create a SAS data set named SOAP that includes as variables the response

variable WTLOSS and the corresponding level of the treatment factor SOAP. The LINES statement

indicates that subsequent lines contain data to be read directly from the program, until data entry is

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://www.wright.edu/~dan.voss/DeanVossDraguljic.html


3.8 Using SAS Software 55

Fig. 3.3 Data plot from

the SAS software for the

soap experiment
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stopped by the next semicolon (line 10). Line 8 must be replaced by the additional data not shown

here.

Alternatively, the same data could be read from a file, soap.txt say, by replacing lines 2–10 with

the following code, including a correct file path.

INFILE ’c:\path\soap.txt’ FIRSTOBS = 2; INPUT WTLOSS SOAP;

Include the option FIRSTOBS = 2 if the data file contains headers on line one then data starting on

line two, but delete it if the data starts on line one with no headers.

The PRINT procedure (line 11) prints the data. While this is good practice to verify that the data

were read correctly, the PRINT procedure will not routinely be shown in subsequent programs.

The SGPLOT procedure (lines 12–15) generates a scatterplot of WTLOSS versus SOAP like that

shown in Fig. 3.3. The x-axis option TYPE = DISCRETE instructs the SAS software to use integer

values for x-axis tick marks. The LABEL option sets the desired label for each axis.

The resulting scatterplot is displayed in a SAS output window, by default (on a PC). Alternatively,

one could redirect the scatterplot to be saved in the file ch3soap.pdf in pdf format, for example, as

illustrated by the following code.

ODS GRAPHICS / RESET IMAGENAME =’ch3soap’ IMAGEFMT = PDF

HEIGHT = 1.5in WIDTH = 2in;

ODS LISTING GPATH =’c:\path\figs’;

* insert PROC SGPLOT and its subcommands here;

RUN; * Run PROC SGPLOT before closing output to pdf file;

ODS GRAPHICS / RESET;

The statements beginning “*” and ending “;” are comments which are not executed by the SAS software.

The first ODS GRAPHICS command redirects graphics output to the file ch3soap.pdf using pdf as

the image format, and specifies the dimension of the graphic image to be saved. The ODS LISTING

command then specifies the directory where the SAS software is to store the file, so the user must replace

“c : \path\figs” with an existing path and directory on the user’s computer. Following PROC

SGPLOT and its statements, the second ODS GRAPHICS command resets the graphics defaults, so

graphics output reverts again to the SAS output window. However, before doing so, the RUN command

causes SGPLOT to execute while output is still directed to the file ch3soap.pdf.

The General Linear Models procedure PROC GLM (lines 16–19) generates an analysis of variance

table. The CLASS statement identifies SOAP as a major source of variation to be modeled as a clas-

sification variable, so a parameter is associated with each of its levels. The MODEL statement defines

the response variable as WTLOSS, and the only source of variation included in the model is SOAP. The
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Fig. 3.4 Sample SAS

output from PROC GLM

for the soap experiment

Fig. 3.5 Output from the

LSMEANS statement for

the soap experiment

parameter μ and the error variables are automatically included in the model. The MODEL statement

causes the analysis of variance table shown in Fig. 3.4 to be calculated. The F Value is the value

of the ratio msT/msE for testing the null hypothesis that the three treatment effects are all equal. The

value Pr > F is the p-value of the test to be compared with the chosen significance level. When the

p-value is listed as <.0001, the null hypothesis would be rejected for any chosen significance level

larger than 0.0001.

The LSMEANS statement (line 19 of Table 3.8), which is part of the GLM procedure, causes the least

squares means, μ̂ + τ̂i = yi., to be printed. The output from this statement is shown in Fig. 3.5.

The RUN statement in line 20 is needed to cause the last procedure to be executed when the program

is run in an interactive line mode, typical of a PC Windows environment for example, and the QUIT

statement ends the procedure. Though necessary for interactive program processing, theRUN andQUIT

statements will not be shown from now on in any programs.

3.8.3 Calculating Sample Size Using Power of a Test

In Table 3.9, we show a sample SAS program which calculates the power of the test of the null hypothesis

H0 : {τ1 = · · · = τv}against HA: {at least two of the τi ’s differ}. The program uses a DO statement,

which allows the calculation to be done for a selected range of sample sizes r , using the formulae in

Sect. 3.6.2. The line DO R = 3 TO 6 BY 1; asks the SAS software to do the calculations for each

value of r between 3 and 6, increasing r by 1 each time.

The code shown is for the soap experiment in Example 3.6.1, but is easily modified for other

experiments by changing the values of the number of levels of the treatment factor (V), the difference
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Table 3.9 Calculating sample sizes using power of the test

DATA POWER;

V = 3;

DEL = 0.25;

SIGMA2 = 0.007;

ALPHA = 0.05;

NU1 = V - 1;

LHTPB = 1 - ALPHA;

DO R = 3 TO 6 BY 1;

NU2 = V*(R - 1);

PHI = (SQRT(R / (2*V*SIGMA2)))*DEL;

FVALUE = FINV(LHTPB, NU1, NU2);

NONCN = V*PHI**2;

POWER = 1 - PROBF(FVALUE, NU1, NU2, NONCN);

OUTPUT;

END;

PROC PRINT;

VAR R POWER;

(DEL) to be detected (i.e. �), the assumed largest value of the error variance (SIGMA2), the significance

level of the test (ALPHA), and the range of values of r to be investigated.

In Table 3.9, the degrees of freedom ν1 = v − 1 and ν2 = n − v = v(r − 1) for the F-distribution

are donated by NU1 and NU2. The “left-hand tail probability” 1 − α is called LHTPB, and is used in

calculating the critical value Fv−1,n−v,α, called FVALUE. From (3.6.20), the value of φ, labelled PHI

is calculated as
√

r�2/(2vσ2). The “non-centrality parameter” NONCN is δ2 = vφ2 and this is needed

by the non-central F distribution in the calculation of the power for the range of values of r specified.

The output, generated by the PROC PRINT statement is

Obs R POWER

2 3 0.70934

3 4 0.89565

4 5 0.96715

5 6 0.99058

and we can see that, just as in Example 3.6.1, to achieve a power of approximately 0.9, the number of

observations needed is r = 4 per level of the treatment factor. To see the values of all the variables

calculated at each step, remove the line VAR R POWER; which restricts which variables are printed.

3.9 Using R Software

Preliminaries

R is a free software environment for statistical computing and graphics, used extensively in this book.

Readers can install the R software after downloading it from http://cran.us.r-project.org, for example,

choosing the appropriate version for the computer and operating system. RStudio is free software

providing an enhanced environment for running R. After installing R, readers are recommended to

also download and install RStudio; it can be downloaded from http://www.rstudio.com, choosing

http://cran.us.r-project.org
http://www.rstudio.com
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again the appropriate version for the computer and operating system. Run either R or RStudio, as

RStudio invokes R.

Throughout the book, we shall assume that the reader has set up a working directory for R called

RCode and that R program files are either in the working directory or in specified subdirectories

of the working directory. For example, we assume that RCode includes a subdirectory called data

containing any data set that is to be read by R and a subdirectory called figs in which R will store

any plots generated. R programs and data files for this edition are available at the following website.

http://www.wright.edu/~dan.voss/DeanVossDraguljic.html

We shall assume that the user will execute the following commands or similar each time that R (or

RStudio) is started.

rm(list = ls()) # Remove all objects (start with clean slate)

opar = par() # Save default graphics parameters as opar

setwd("/RCode") # Set the working directory

getwd() # Confirm working directory

options(show.signif.stars = FALSE) # Show no stars for significance tests

options(width = 72, digits = 5, scipen = 2) # Control printed output

ooptions = options(width = 72, digits = 5, scipen = 2) # Save print options

The first command removes all existing R objects created previously by the user, clearing the slate

for a new session. The symbol “#” starts a line comment, used for program documentation. The second

command assigns R’s current graphics parameters par()—initially the default graphics parameter

values—to the object opar, saving them so they can be restored later via the command par(opar)

if desired. We will routinely use “=” for assignment, though use of “<−” is more traditional in R. The

setwd command in the third line sets /RCode as the working directory, where the software reads

and writes files by default. If RCode is not in the root directory, then use setwd("/path/RCode")

but specify the correct directory path to RCode. The getwd() command in the fourth line displays

the working directory, to confirm it is now /RCode. For functions that conduct hypothesis tests, the

options command in the fifth line suppresses printing of stars for various levels of significance. The

options command in line six controls printed output, restricting it to be at most 72 columns wide

with five significant digits, and penalizing use of scientific notation. We have initialized R in this way

or similarly when running our programs, though these commands will generally not be shown in our

subsequent program code. The last line saves these print options as ooptions, so if changed they

can be restored by the command options(ooptions).

While the above commands can be typed into the R Console and executed one by one, it is more

convenient to save them in a file, startup.r say, in the working directory. Then the single command

source("/RCode/startup.r")

will execute the commands in the startup.r file. We routinely executed this code line each time

we started R (or RStudio) to produce R program output in this book, though we do not show this code

line in our programs.

As will be seen in the following sections, when R is waiting for the next command, a prompt > is

displayed, and if the user command is not complete when a line is entered (for example if the final

parenthesis is missing), the prompt will change to + on the next line, prodding the user to enter the rest

of the command. To end an R session, type q().

It is prudent to use the latest production version of R. On a Windows operating system, theupdateR

command of the installr package will detect if there is a new R version available, and if so it will

download and install it and update previously installed add-on packages. The following commands,

when executed from within R, install and load the installr package and execute the updateR

command.

http://www.wright.edu/~dan.voss/DeanVossDraguljic.html
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install.packages("installr"); library(installr); updateR()

Assuming the user has installed and set up R as noted above, we are ready to use the software.

3.9.1 Randomization

A simple procedure for randomizing a completely randomized design was given in Sect. 3.2, p. 31. This

procedure is easily implemented using the R software, as we now illustrate. Consider a completely

randomized design for two treatments and r = 3 observations on each, giving a total of n = 6

observations.

The following R statements create and display a data frame named design, a data frame being a

data set consisting of equal-length columns of information. Here, the columns of design are the lists

of values of the two variables trtmt and ranno as required by steps 1 and 2 of the randomization

procedure in Sect. 3.2. In particular, the first statement creates the column trtmt of treatment labels.

The second statement creates the column ranno consisting of six uniform random numbers between

0 and 1, six being the length of the column trtmt. The third statement puts the columns trtmt

and ranno into a data frame, and assigns this object the name design. Then the fourth statement

displays design. The R output is shown immediately following the R statements.

> trtmt = c(1, 1, 1, 2, 2, 2) # Create column trtmt = (1, 1, 1, 2, 2, 2)

> ranno = runif(length(trtmt)) # Create column of 6 unif(0, 1) RVs

> design = data.frame(trtmt, ranno) # Create data.frame "design"

> design # Display the data.frame design

trtmt ranno

1 1 0.447827

2 1 0.494462

3 1 0.174414

4 2 0.894132

5 2 0.473540

6 2 0.010771

We digress to provide additional information about R, before finishing the randomization process in

the next paragraph. The command trtmt = rep(c(1, 2), each = 3) would yield the same

column trtmt, but by replicating 1 and 2 three times each—a more convenient approach for larger

designs. Each time the above R commands are run, a different set of random numbers will result. Typing

the command design causes the entire data frame design to be displayed. One could display only

what is in column 1 named trtmt, for example, by typing design$trtmt, design[, 1], or

design[, "trtmt"]. The columntrtmt also still exists as a separate object, that can be displayed

simply by typingtrtmt. One could remove this redundant object by the commandrm(trtmt). Note

that R is “case-sensitive”, so if the column name is trtmt, then R will not be able to locate a column

called, say, Trtmt with a capital T. The details about any of the commands used can be found by

typing ?commandName, for example typing ?runifwill bring up the command help file containing

many details about the use of runif.

The following additional statements sort the trtmt column of the data frame design by the

values of ranno, as required by step 3 of the randomization procedure. Specifically, the statement

order(ranno) yields the order 6 3 1 5 2 4, since the smallest random variate is in row 6, the second

smallest is in row 3, etc. So, the first statement below redefines the data frame design to have its rows

reordered accordingly, effectively sorting the rows based on the values of the random numbers (RNs).

The second statement below defines a new column of design named EU containing the integers from
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Table 3.10 R program for the soap experiment: reading and plotting data

Line R Code and Output

1 > # Read the data into the data.frame "soap.data"

2 > soap.data = read.table("data/soap.txt", header = TRUE)

3 > head(soap.data, 5) # Display first 5 lines of soap.data

4 Soap Cube PreWt PostWt WtLoss

5 1 1 1 13.14 13.44 -0.30

6 2 1 2 13.17 13.27 -0.10

7 3 1 3 13.17 13.31 -0.14

8 4 1 4 13.17 12.77 0.40

9 5 2 5 13.03 10.40 2.63

10 > # Add factor variable fSoap to soap.data for later ANOVA

11 > soap.data$fSoap = factor(soap.data$Soap)

12 > # Plot WtLoss vs Soap, specify axis labels, suppress x-axis.

13 > plot(WtLoss ˜ Soap, data = soap.data, xlab = "Soap",

14 + ylab = "Weight Loss (grams)", las = 1, xaxt = "n")

15 > # Insert x-axis (axis 1) with tick marks from 1 to 3 by 1.

16 > axis(1, at = seq(1,3,1))

1 to 6 as labels for the experimental units. Then the last statement asks for the sorted design to be

displayed.

> design = design[order(ranno), ] # Sort rows by RNs, save

> design$EU = c(1:6) # Add col EU = (1,2,3,4,5,6) to design

> design # Display the results of the randomization

trtmt ranno EU

6 2 0.010771 1

3 1 0.174414 2

1 1 0.447827 3

5 2 0.473540 4

2 1 0.494462 5

4 2 0.894132 6

Experimental units 2, 3, and 5 are to be assigned to treatment 1, and experimental units 1, 4, and 6 are

to be assigned to treatment 2.

3.9.2 Reading and Plotting Data

A sample R program to input, display, and plot the data is given in Table 3.10. Line numbers have been

included for reference, but they are not part of the R program and if included in the R code would yield

error messages. The prompt “>” and the continuation prompt “+” are supplied by R and should not be

typed by the user.

We use the data in Table 2.7, p. 23, from the soap experiment, and assume that the data are stored in

the file soap.txt in the data subdirectory of the working directory; that is, in data/soap.txt.

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Line 2 of Table 3.10 reads the data from the file soap.txt and puts it into an R data set (data frame)

called soap.data. Alternatively, one could enter the data via the keyboard, which is the standard

input device stdin(), by replacing line 2 with the following.

> soap.data = read.table(stdin(), header = TRUE)

0: Soap Cube PreWt PostWt WtLoss

1: 1 1 13.14 13.44 -0.30

2: 1 2 13.17 13.27 -0.10

: : : : : :

12: 3 12 13.00 11.18 1.82

13:

Keyboard data entry is ended by hitting the return key twice.

The head(soap.data, 5) command in line 3 displays the first five lines of the data set shown

in lines 4–9. Alternatively, the command head(soap.data) would display the first six lines by

default, and the command soap.data would display the full data set. The first column displayed

indicates the data is from rows 1–5 of the data set, and the other five columns show the five variables

in the data set, including the response variable WtLoss and the corresponding level of the treatment

factor Soap. In line 2, the statement header = TRUE (i.e. header = T) tells R that the columns

of data in the file soap.txt have headings, and these can be seen in line 4. If a data file has no

headings, the header statement may be omitted, the default being header = FALSE (i.e. header

= F).

In line 11, the data setsoap.data is augmented with a new variable,fSoap, created by converting

the numerical variable Soap to a factor variable, needed later for the analysis of variance.

The remaining code generates a plot of the data. The plot command in lines 13–14 generates a

scatterplot of WtLoss versus Soap like that shown in Fig. 3.6, with labels specified for each axis by

xlab and ylab. The option data = soap.data indicates that the variables being plotted are in

the data set soap.data. Alternatively, one could use the syntax

plot(soap.data$WtLoss ˜ soap.data$Soap, xlab ="Soap",

in line 13. The dollar sign identifies specific columns of the data set, so, for example,

soap.data$Soap just means “read the column labeled Soap from the data set soap.data”.

The + prompt in line 14 indicates that the prior command is not yet complete. The option las = 1

sets labels style 1, making tick mark labels horizontal, impacting y-axis labeling. The option xaxt =

"n" in line 14 suppresses the automatically generated x-axis (which would have five tick marks), then

the axis command in line 16 includes instead an x-axis with three tick marks specified to be at 1, 2

and 3—namely, a sequence starting at 1 and ending at 3 in steps of size 1. If the numerical variable

Soap was replaced by the factor variable fSoap in line 13, then a box plot would be obtained instead

of a scatterplot.

The resulting scatterplot is displayed in a graphics window, by default (on a PC). Alternatively,

one can redirect the scatterplot to be saved in the file ch3soap.pdf in pdf format, for example, as

illustrated by the following code.

pdf("figs/ch3soapplot.pdf", width = 5, height = 3) # Open a pdf file

# Insert plot command and its subcommands here

dev.off() # Close the pdf file

The pdf command opens the pdf file ch3soapplot.pdf in the figs subdirectory of the

working directory (as specified by the user upon startup), and specifies the dimension of the graphic

image to be saved. Once this has been done, plot function calls will send output to the pdf file.
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Fig.3.6 R data plot for the

soap experiment
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Then the dev.off() command closes the pdf file, so graphical output reverts to the default graphics

window.

3.9.3 Analysis of Variance

In this section we illustrate how the R software can be used to conduct a one-way analysis of variance

test for equality of the treatment effects, assuming model (3.3.1) is appropriate. Table 3.11 contains a

sample program and output, with line numbers again included for reference only. We continue to use the

soap experiment data, which in line 1 is read from the file soap.txt into the data set soap.data.

In line 3, we convert the numerical variable Soap to a factor variable, saving it as a new variable

fSoap of the soap.data data set. The statement in line 4 generates summary statistics for the

variables in columns 1, 5 and 6 of the data set, with the output shown in lines 5–11. If all six variables

are to be summarized, the statement summary(soap.data) without column numbers is sufficient.

One can see that the summary command treats the numeric variable Soap and the factor variable

fSoap differently, providing summary statistics for the Soap values, but levels and frequencies for

fSoap. A factor variable is treated as a qualitative variable by R, analogous to a CLASS variable in

SAS software.

The aov function in line 12 fits a linear model to the soap data, specifying WtLoss as the response

variable and fSoap as the primary source of variation, the symbol “∼” separating and distinguishing

these, saving the resulting information as the object model1. Because fSoap is a factor variable, it is

modeled as a classification variable as desired. The parameter μ and the error variables are automatically

included in the model. The anova(model1) command in line 13 displays the one-way analysis of

variance information shown in lines 14–19. In lines 17–18, the F value is the value of the ratio

msT/msE for testing the null hypothesis that the three treatment effects are all equal, and Pr(>F)

is the p-value of the test to be compared with the chosen significance level. The listed p-value is

5.91 × 10−7, so the null hypothesis is rejected for any chosen significance level larger than this small

value.

The library(lsmeans) command in line 21 loads the package lsmeans from the user’s

library for subsequent use; (this assumes the reader has already installed the package as discussed in

the next paragraph). The lsmeans command in line 22 generates the least squares means for the three

levels of the factor fSoap, plus further statistical information which will be discussed in Chap. 4. The

output is shown in lines 23–28.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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Table 3.11 R program for the soap experiment: analysis of variance and least squares means

Line R Code or Output

1 > soap.data = read.table("data/soap.txt", header = TRUE)

2 > # Add factor variable fSoap to soap.data for ANOVA

3 > soap.data$fSoap = factor(soap.data$Soap)

4 > summary(soap.data[,c(1,5:6)]) # Summarize data in cols 1, 5, 6

5 Soap WtLoss fSoap

6 Min. :1 Min. :-0.300 1:4

7 1st Qu.:1 1st Qu.: 0.275 2:4

8 Median :2 Median : 1.945 3:4

9 Mean :2 Mean : 1.552

10 3rd Qu.:3 3rd Qu.: 2.460

11 Max. :3 Max. : 3.150

12 > model1 = aov(WtLoss ˜ fSoap, data = soap.data)

13 > anova(model1)

14 Analysis of Variance Table

15

16 Response: WtLoss

17 Df Sum Sq Mean Sq F value Pr(>F)

18 fSoap 2 16.12 8.06 104 5.9e-07

19 Residuals 9 0.69 0.08

20 > # install.packages("lsmeans")

21 > library(lsmeans)

22 > lsmeans(model1, "fSoap")

23 fSoap lsmean SE df lower.CL upper.CL

24 1 -0.0350 0.1389 9 -0.34922 0.27922

25 2 2.7000 0.1389 9 2.38578 3.01422

26 3 1.9925 0.1389 9 1.67828 2.30672

27

28 Confidence level used: 0.95

Add-On Packages

Installation of the R software (see Sect. 1.2) installs the base software, including some base packages

providing limited functionality. There are thousands of additional user-defined packages that the user

may freely download, the lsmeans package introduced above being one example. To use any such

function not included in the base software installation, the “add-on” package containing the function

must first be installed and loaded. For example, the command install.packages("lsmeans")

in line 20 installs the lsmeans package, permanently saving it in a library of packages on the user’s

computer, so the command library(lsmeans) can load the lsmeans package from the user’s

library. A package only needs to be installed once. However, any add-on package must be loaded by the

user prior to its first use in any new R session. As such, when our programs require an add-on package,

we will routinely include the necessary library command to load the package. Furthermore, when

we use an add-on package for the first time, the corresponding program will include the corresponding

install.packages command, but commented out. Before running such a program the first time,

http://dx.doi.org/10.1007/978-3-319-52250-0_1
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Table 3.12 Calculating sample sizes using power of the test

> #install.packages(pwr)

> library(pwr)

> v = 3; del = 0.25; sig2 = 0.007; alpha = 0.05; pwr = 0.90

> pwr.anova.test(k = v, sig.level = alpha, power = pwr,

+ f = sqrt(delˆ2/(2*v*sig2)))

Balanced one-way analysis of variance power calculation

k = 3

n = 4.038656

f = 1.219875

sig.level = 0.05

power = 0.9

NOTE: n is number in each group

the reader can simply delete the comment character, “#”, so the package gets installed. On most systems,

the process is automatic.

For linux users, when the install.packages command is invoked for the first time, you may

get a warning that says in effect that a library is not writable and it will ask you whether you would

like to use a personal library. If you answer y, it will ask you if you would like to create one. If you

answer y again, it will ask you to select a CRAN “mirror” (i.e. a site from which to download the

package for installation). Select (give the number of) any site near your location, and then R will create

the personal library and download the package. After this, the install.packages command will

proceed automatically.

3.9.4 Calculating Sample Size Using Power of a Test

In Table 3.12, we show a sample R program which calculates the power of the test of the null hypothesis

H0 : {τ1 = · · · = τv}against HA: {at least two of the τi ’s differ}. The code shown is for the soap

experiment in Example 3.6.1, but is easily modified for other experiments by changing the values of the

number of levels of the treatment factor (v), the difference (del) to be detected (i.e. �), the assumed

largest value of the error variance (sig2), the significance level of the test (alpha), and the desired

power of the test pwr.

The R program from Table 3.12 uses function pwr.anova.test which can be found in the

package pwr. The function’s inputs k = v, sig.level = alpha, and power = pwr are

self-explanatory. The degrees of freedom ν1 = v − 1, ν2 = n − v = v(r − 1), and the criti-

cal value Fv−1,n−v,α for the F-distribution corresponding to the required significance level are calcu-

lated internally by R. From (3.6.20), the value of φ/
√

r , labeled as inputf, is calculated as
√

�2/(2vσ2)

and is needed by the non-central F distribution in the calculation of the power for different values of

r . The output is also shown in Table 3.12. and we can see that, just as in Example 3.6.1, to achieve a

power of approximately 0.9, the number of observations needed is r = 4 per level of the treatment

factor. Notice that r is labelled n in the R output.
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Exercises

1. Suppose that you are planning to run an experiment with one treatment factor having four levels

and no blocking factors. Suppose that the calculation of the required number of observations has

given r1 = r2 = r3 = r4 = 5. Assign at random 20 experimental units to the v = 4 levels of the

treatments, so that each treatment is assigned 5 units.

2. Suppose that you are planning to run an experiment with one treatment factor having three levels

and no blocking factors. It has been determined that r1 = 3, r2 = r3 = 5. Assign at random 13

experimental units to thev = 3 treatments, so that the first treatment is assigned 3 units and the

other two treatments are each assigned 5 units.

3. Suppose that you are planning to run an experiment with three treatment factors, where the first

factor has two levels and the other two factors have three levels each. Write out the coded form of the

18 treatment combinations. Assign 36 experimental units at random to the treatment combinations

so that each treatment combination is assigned two units.

4. For the one-way analysis of variance model (3.3.1), p. 33, the solution to the normal equations

used by the SAS software is τ̂i = yi. − yv. (i = 1, . . . , v) and μ̂ = yv..

(a) Is τi estimable? Explain.

(b) Calculate the expected value of the least squares estimator for τ1 −τ2 corresponding to the above

solution. Is τ1 − τ2 estimable? Explain.

5. Consider a completely randomized design with observations on three treatments (coded 1, 2, 3).

For the one-way analysis of variance model (3.3.1), p. 33, determine which of the following are

estimable. For those that are estimable, state the least squares estimator.

(a) τ1 + τ2 − 2τ3.

(b) μ + τ3.

(c) τ1 − τ2 − τ3.

(d) μ + (τ1 + τ2 + τ3)/3.

6. (requires calculus) Show that the normal equations for estimating μ, τ1, . . ., τv are those given in

Eq. (3.4.3) on p. 35.

7. (requires calculus) Show that the least squares estimator ofμ + τ is Y .. for the linear model Yi t =
μ+ τ + ǫ0

i t (t = 1, . . . , ri ; i = 1, 2, . . . , v), where the ǫ0
i t ’s are independent random variables with

mean zero and variance σ2. (This is the reduced model for the one-way analysis of variance test,

Sect. 3.5.1, p. 41.)

8. For the model in the previous exercise, find an unbiased estimator forσ2. (Hint: first calcu-

late E[ssE0] in (3.5.10), p. 42.)

9. (requires calculus) Find the least squares estimates ofμ1, μ2, …, μv for the linear model Yi t =
μi + ǫi t (t = 1, . . . , ri ; i = 1, 2, . . . , v), where the ǫi t ’s are independent random variables with

mean zero and variance σ2. Compare these estimates with the least squares estimates ofμ + τi

(i = 1, 2, . . . , v) in model (3.3.1), p. 33.

10. For the model in the previous exercise, find an unbiased estimator for σ2. Compare the estimator

with that in (3.4.7), p. 39.

11. Verify, for the one-way analysis of variance model (3.3.1), p. 33, that each treatment sample

variance S2
i is an unbiased estimator of the error varianceσ2, so that

E(SSE) =
∑

i

(ri − 1)E(S2
i ) = (n − v)σ2.
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Table 3.13 Times (in seconds) for the balloon experiment

Time order 1 2 3 4 5 6 7 8

Coded color 1 3 1 4 3 2 2 2

Inflation time 22.0 24.6 20.3 19.8 24.3 22.2 28.5 25.7

Time order 9 10 11 12 13 14 15 16

Coded color 3 1 2 4 4 4 3 1

Inflation time 20.2 19.6 28.8 24.0 17.1 19.3 24.2 15.8

Time order 17 18 19 20 21 22 23 24

Coded color 2 1 4 3 1 4 4 2

Inflation time 18.3 17.5 18.7 22.9 16.3 14.0 16.6 18.1

Time order 25 26 27 28 29 30 31 32

Coded color 2 4 2 3 3 1 1 3

Inflation time 18.9 16.0 20.1 22.5 16.0 19.3 15.9 20.3

12. Balloon experiment

Prior to 1985, the experimenter (Meily Lin) had observed that some colors of birthday balloons

seem to be harder to inflate than others. She ran this experiment to determine whether balloons

of different colors are similar in terms of the time taken for inflation to a diameter of 7 inches.

Four colors were selected from a single manufacturer. An assistant blew up the balloons and the

experimenter recorded the times (to the nearest 1/10 second) with a stop watch. The data, in the

order collected, are given in Table 3.13, where the codes 1, 2, 3, 4 denote the colors pink, yellow,

orange, blue, respectively.

(a) Plot inflation time versus color and comment on the results.

(b) Estimate the mean inflation time for each balloon color, and add these estimates to the plot from

part (a).

(c) Construct an analysis of variance table and test the hypothesis that color has no effect on inflation

time.

(d) Plot the data for each color in the order that it was collected. Are you concerned that the assump-

tions on the model are not satisfied? If so, why? If not, why not?

(e) Is the analysis conducted in part (c) satisfactory?

13. Heart–lung pump experiment, continued

The heart–lung pump experiment was described in Example 3.4.1, p. 37, and the data were shown

in Table 3.2, p. 38.

(a) Calculate an analysis of variance table and test the null hypothesis that the different number of

revolutions per minute have the same effects on the fluid flow rate.

(b) Are you happy with your conclusion? Why or why not?

(c) Calculate a 90% upper confidence limit for the error variance σ2.

14. Meat cooking experiment

(L. Alvarez, M. Burke, R. Chow, S. Lopez, and C. Shirk, 1998)
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Table 3.14 Post-cooking weight data (in grams) for the meat cooking experiment

Frying Grilling

Fat content Fat content

10% 15% 20% 10% 15% 20%

81 85 71 84 83 78

88 80 77 84 88 75

85 82 72 82 85 78

84 80 80 81 86 79

84 82 80 86 88 82

Table 3.15 Data for the trout experiment

Code Hemoglobin (grams per 100 ml)

1 6.7 7.8 5.5 8.4 7.0 7.8 8.6 7.4 5.8 7.0

2 9.9 8.4 10.4 9.3 10.7 11.9 7.1 6.4 8.6 10.6

3 10.4 8.1 10.6 8.7 10.7 9.1 8.8 8.1 7.8 8.0

4 9.3 9.3 7.2 7.8 9.3 10.2 8.7 8.6 9.3 7.2

Source: Gutsell (1951). Copyright © 1951 International Biometric Society. Reprinted with permission

An experiment was run to investigate the amount of weight lost (in grams) by ground beef ham-

burgers after grilling or frying, and how much the weight loss is affected by the percentage fat

in the beef before cooking. The experiment involved two factors: cooking method (factor A, with

two levels frying and grilling, coded 1, 2), and fat content (factor B, with three levels 10, 15, and

20%, coded 1, 2, 3). Thus there were six treatment combinations 11, 12, 13, 21, 22, 23, relabeled

as treatment levels 1, 2, …, 6, respectively. Hamburger patties weighing 110 g each were prepared

from meat with the required fat content. There were 30 “cooking time slots” which were randomly

assigned to the treatments in such a way that each treatment was observed five times (r = 5). The

patty weights after cooking are shown in Table 3.14.

(a) Plot the data and comment on the results.

(b) Write down a suitable model for this experiment.

(c) Calculate the least squares estimate of the mean response for each treatment. Show these estimates

on the plot obtained in part (a).

(d) Test the null hypothesis that the treatments have the same effect on patty post-cooking weight.

(e) Estimate the contrast τ1 − (τ2 + τ3)/2 which compares the effect on the post-cooked weight of

the average of the two higher fat contents versus the leanest meat for the fried hamburger patties.

(f) Calculate the variance associated with the contrast in part (e). How does the value of the variance

compare with the variance σ2 of the random error variables?

15. Trout experiment (Gutsell 1951, Biometrics)

The data in Table 3.15 show the measurements of hemoglobin (grams per 100 ml) in the blood of

brown trout. The trout were placed at random in four different troughs. The fish food added to the

troughs contained, respectively, 0, 5, 10, and 15 g of sulfamerazine per 100 pounds of fish (coded

1, 2, 3, 4). The measurements were made on ten randomly selected fish from each trough after 35

days.
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(a) Plot the data and comment on the results.

(b) Write down a suitable model for this experiment, assuming trough effects are negligible.

(c) Calculate the least squares estimate of the mean response for each treatment. Show these estimates

on the plot obtained in (a). Can you draw any conclusions from these estimates?

(d) Test the hypothesis that sulfamerazine has no effect on the hemoglobin content of trout blood.

(e) Calculate a 95% upper confidence limit for σ2.

16. Trout experiment, continued

Suppose the trout experiment of Exercise 3.15 is to be repeated with the same v = 4 treatments,

and suppose that the same hypothesis, that the treatments have no effect on hemoglobin content,

is to be tested.

(a) For calculating the number of observations needed on each treatment, what would you use as a

guess for σ2?

(b) Calculate the sample sizes needed for an analysis of variance test withα = 0.05 to have power

0.95 if: (i) � = 1.5; (ii) � = 1.0; (iii) � = 2.0.

17. Meat cooking experiment, continued

Suppose the meat cooking experiment of Exercise 3.14 is to be repeated with the same v = 6

treatments, and suppose the same hypothesis, that the treatments have the same effect on burger

patty weight loss, is to be tested.

(a) Calculate an unbiased estimate of σ2 and a 90% upper confidence limit for it.

(b) Calculate the sample sizes needed for an analysis of variance test withα = 0.05 to have power

0.90 if:

(i) � = 5.0; (ii) � = 10.0.

18. The diameter of a ball bearing is to be measured using three different calipers. How many observa-

tions should be taken on each caliper type if the null hypothesis H0:{effects of the calipers are the

same} is to be tested against the alternative hypothesis that the three calipers give different average

measurements. It is required to detect a difference of 0.01 mm in the effects of the caliper types with

probability 0.98 and a Type I error probability ofα = 0.05. It is thought that σ is about 0.03 mm.

19. An experiment is to be run to determine whether or not time differences in performing a simple

manual task are caused by different types of lighting. Five levels of lighting are selected ranging

from dim colored light to bright white light. The one-way analysis of variance model (3.3.1), p. 33

is thought to be a suitable model, and H0 : {τ1 = τ2 = τ3 = τ4 = τ5} is to be tested against

the alternative hypothesis HA:{the τi ’s are not all equal} at significance level 0.05. How many

observations should be taken at each light level given that the experimenter wishes to reject H0 with

probability 0.90 if the difference in the effects of any two light levels produces a 4.5-second time

difference in the task? It is thought thatσ is at most 3.0 seconds.



4Inferences for Contrasts and Treatment
Means

4.1 Introduction

The objective of an experiment is often much more specific than merely determining whether or not

all of the treatments give rise to similar responses. For example, a chemical experiment might be run

primarily to determine whether or not the yield of the chemical process increases as the amount of the

catalyst is increased. A medical experiment might be concerned with the efficacy of each of several

new drugs as compared with a standard drug. A nutrition experiment may be run to compare high

fiber diets with low fiber diets. Such treatment comparisons are formalized in Sect. 4.2. The purpose

of this chapter is to provide confidence intervals and hypothesis tests about treatment comparisons

and treatment means. We start, in Sect. 4.3, by considering a single treatment comparison or mean,

and then, in Sect. 4.4, we develop the techniques needed when more than one treatment comparison

or mean is of interest. The number of observations required to achieve confidence intervals of given

lengths is calculated in Sect. 4.5. SAS and R commands for confidence intervals and hypothesis tests

are provided in Sects. 4.6 and 4.7, respectively.

4.2 Contrasts

In Chap. 3, we defined a contrast to be a linear combination of the parameters τ1, τ2, . . . , τv of the

form ∑
ciτi , with

∑
ci = 0 .

For example, τu − τs is the contrast that compares the effects (as measured by the response variable)

of treatments u and s. If τu − τs = 0, then treatments u and s affect the response in exactly the same

way, and we say that these treatments do not differ. Otherwise, the treatments do differ in the way

they affect the response. We showed in Sect. 3.4 that for a completely randomized design and the

one-way analysis of variance model (3.3.1), every contrast
∑

ciτi is estimable with least squares

estimate ∑
ci τ̂i =

∑
ci (µ̂ + τ̂i ) =

∑
ci yi. (4.2.1)
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and corresponding least squares estimator
∑

ci Y i.. The variance of the least squares estimator is

Var
(∑

ci Y i.

)
=

∑
c2

i Var(Y i.) =
∑

c2
i (σ

2/ri ) = σ
2
∑

(c2
i /ri ) . (4.2.2)

The first equality uses the fact that the treatment sample means Y i. involve different response variables,

which in model (3.3.1) are independent. The error variance σ
2 is generally unknown and is estimated

by the unbiased estimate msE, giving the estimated variance of the contrast estimator as

V̂ar
(∑

ci Y i.

)
= msE

∑
(c2

i /ri ).

The estimated standard error of the estimator is the square root of this quantity, namely,

√
V̂ar

(∑
ci Y i.

)
=

√
msE

∑
(c2

i /ri ) . (4.2.3)

Normalized Contrasts

When several contrasts are to be compared, it is sometimes helpful to be able to measure them all

on the same scale. A contrast is said to be normalized if it is scaled so that its least squares estimator

has variance σ
2. From (4.2.2), it can be seen that a contrast �ciτi is normalized by dividing it by√

�c2
i /ri . If we write hi = ci/

√
�c2

i /ri , then the least squares estimator �hi Y i. of the normalized

contrast �hiτi has the following distribution:

∑
hi Y i. ∼ N

(∑
hiτi ,σ

2
)

, where hi = ci√∑
c2

i /ri

.

Normalized contrasts will be used for hypothesis testing (Sect. 4.3.3).

Contrast Coefficients

It is convenient to represent a contrast by listing only the coefficients of the parameters τ1, τ2, . . . , τv .

Thus,
∑

ciτi = c1τ1 + c2τ2 + · · · + cvτv would be represented by the list of contrast coefficients

[c1, c2, . . . , cv] .

Some types of contrasts are used frequently in practice, and these are identified in Sects. 4.2.1–4.2.4.

4.2.1 Pairwise Comparisons

As the name suggests, pairwise comparisons are simple differences τu − τs of pairs of parameters τu

and τs (u �= s). These are of interest when the experimenter wishes to compare each treatment with

every other treatment. The list of contrast coefficients for the pairwise difference τu − τs is

[0, 0, 1, 0, . . . , 0,−1, 0, . . . , 0] ,

where the 1 and −1 are in positions u and s, respectively. The least squares estimate of τu − τs is

obtained from (4.2.1) by setting cu = 1, cs = −1, and all other ci equal to zero, giving

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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τ̂u − τ̂s = yu. − ys. ,

and the corresponding least squares estimator is Y u. − Y s.. Its estimated standard error is obtained

from (4.2.3) and is equal to

√
V̂ar(Y u. − Y s.) =

√
msE ((1/ru) + (1/rs)) .

Example 4.2.1 Battery experiment, continued

Details for the battery experiment were given in Sect. 2.5.2 (p. 24). The experimenter was interested

in comparing the life per unit cost of each battery type with that of each of the other battery types.

The average lives per unit cost (in minutes/dollar) for the four batteries, calculated from the data in

Table 2.8, p. 27, are

y1. = 570.75 , y2. = 860.50 , y3. = 433.00 , y4. = 496.25 .

The least squares estimates of the pairwise differences are, therefore,

τ̂1 − τ̂2 = −289.75 , τ̂1 − τ̂3 = 137.75 , τ̂1 − τ̂4 = 74.50 ,

τ̂2 − τ̂3 = 427.50 , τ̂2 − τ̂4 = 364.25 , τ̂3 − τ̂4 = −63.25 .

The estimated pairwise differences suggest that battery type 2 (alkaline, store brand) is vastly superior

to the other three battery types in terms of the mean life per unit cost. Battery type 1 (alkaline, name

brand) appears better than types 3 and 4, and battery type 4 (heavy duty, store brand) better than

type 3 (heavy duty, name brand). We do, however, need to investigate whether or not these perceived

differences might be due only to random fluctuations in the data.

In Example 3.4.2 (p. 40), the error variance was estimated to be msE = 2367.71. The sample

sizes were r1 = r2 = r3 = r4 = 4, and consequently, the estimated standard error for each pairwise

comparison is equal to √
2367.71

(
1

4
+ 1

4

)
= 34.41 min/$ .

It can be seen that all of the estimated pairwise differences involving battery type 2 are bigger than

four times their estimated standard errors. This suggests that the perceived differences in battery type

2 and the other batteries are of sizable magnitudes and are unlikely to be due to random error. We shall

formalize these comparisons in terms of confidence intervals in Example 4.4.3 later in this chapter. �

4.2.2 Treatment Versus Control

If the experimenter is interested in comparing the effects of one special treatment with the effects of each

of the other treatments, then the special treatment is called the control. For example, a pharmaceutical

experiment might involve one or more experimental drugs together with a standard drug that has been

on the market for some years. Frequently, the objective of such an experiment is to compare the effect of

each experimental drug with that of the standard drug but not necessarily with the effects of any of the

other experimental drugs. The standard drug is then the control. If we code the control as level 1, and the

experimental drugs as levels 2, 3, . . . , v, respectively, then the contrasts of interest are τ2 − τ1, τ3 −
τ1, . . . , τv − τ1. These contrasts are known as treatment versus control contrasts. They form a subset of

the pairwise differences, so we can use the same formulae for the least squares estimate and the estimated

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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standard error. The contrast coefficients for the contrast τi − τ1 are [−1, 0, . . . , 0, 1, 0, . . . , 0], where

the 1 is in position i .

4.2.3 Difference of Averages

Sometimes the levels of the treatment factors divide naturally into two or more groups, and the experi-

menter is interested in the difference of averages contrast that compares the average effect of one group

with the average effect of the other group(s). For example, consider an experiment that is concerned

with the effect of different colors of exam paper (the treatments) on students’ exam performance (the

response). Suppose that treatments 1 and 2 represent the pale colors, white and yellow, whereas treat-

ments 3, 4, and 5 represent the darker colors, blue, green and pink. The experimenter may wish to

compare the effects of light and dark colors on exam performance. One way of measuring this is to

estimate the contrast 1
2 (τ1 + τ2) − 1

3 (τ3 + τ4 + τ5), which is the difference of the average effects of

the light and dark colors. The corresponding contrast coefficients are

[
1

2
,

1

2
, − 1

3
, − 1

3
, − 1

3

]
.

From (4.2.1) and (4.2.3), the least squares estimate would be

1

2
y1. + 1

2
y2. − 1

3
y3. − 1

3
y4. − 1

3
y5.

with estimated standard error

√
msE

(
1

4r1
+ 1

4r2
+ 1

9r3
+ 1

9r4
+ 1

9r5

)
.

Example 4.2.2 Battery experiment, continued

In the battery experiment of Sect. 2.5.2, p. 24, battery types 1 and 2 were alkaline batteries, while types

3 and 4 were heavy duty. In order to compare the running time per unit cost of these two types of

batteries, we examine the contrast 1
2 (τ1 + τ2) − 1

2 (τ3 + τ4). The least squares estimate is

1

2
(570.75 + 860.50) − 1

2
(433.00 + 496.25) = 251.00 min/$ ,

suggesting that the alkaline batteries are more economical (on average by over four hours per dollar

spent). The associated standard error is
√

msE(4/16) = 24.32 min/$, so the estimated difference in

running time per unit cost is over ten times larger than the standard error, suggesting that the observed

difference is not just due to random fluctuations in the data. �

4.2.4 Trends

Trend contrasts may be of interest when the levels of the treatment factor are quantitative and have a

natural ordering. For example, suppose that the treatment factor is temperature and its selected levels

are 50 ◦C, 75 ◦C, 100 ◦C, coded as 1, 2, 3, respectively. The experimenter may wish to know whether

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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the value of the response variable increases or decreases as the temperature increases and, if so, whether

the rate of change remains constant. These questions can be answered by estimating linear and quadratic

trends in the response.

The trend contrast coefficients for v equally spaced levels of a treatment factor and equal sample

sizes are listed in Table A.2 for values of v between 3 and 7. For v treatments, trends up to (v − 1)th

order can be measured. Experimenters rarely use more than four levels for a quantitative treatment

factor, since it is unusual for strong quartic and higher-order trends to occur in practice, especially

within the narrow range of levels considered in a typical experiment.

Table A.2 does not tabulate contrast coefficients for unequally spaced levels or for unequal sample

sizes. The general method of obtaining the coefficients of the trend contrasts involves fitting a regression

model to the noncoded levels of the treatment factor. It can be shown that the linear trend contrast

coefficients can easily be calculated as

ci = ri (xi − x .), where x . = (�ri xi )/n , (4.2.4)

where ri is the number of observations taken on the i th uncoded level xi of the treatment factor, and

n = �ri is the total number of observations. We are usually interested only in whether or not the linear

trend is likely to be negligible, and to make this assessment, the contrast estimate is compared with

its standard error. Consequently, we may multiply or divide the calculated coefficients by any integer

without losing any information. When the ri are all equal, the coefficients listed in Appendix A.2 are

obtained, possibly multiplied or divided by an integer. Expressions for quadratic and higher-order trend

coefficients are more complicated (see Draper and Smith 1998, Chap. 22).

Example 4.2.3 Heart–lung pump experiment, continued

The experimenter who ran the heart–lung pump experiment of Example 3.4.1, p. 37, expected to see

a linear trend in the data, since he expected the flow rate to increase as the number of revolutions

per minute (rpm) of the pump head was increased. The plot of the data in Fig. 3.1 (p. 38) shows the

observed flow rates at the five different levels of rpm. From the figure, it might be anticipated that the

linear trend is large but higher-order trends are very small.

The five levels of rpm observed were 50, 75, 100, 125, 150, which are equally spaced. Had there

been equal numbers of observations at each level, then we could have used the contrast coefficients

[−2,−1, 0, 1, 2 ] for the linear trend contrast and [ 2,−1,−2,−1, 2 ] for the quadratic trend contrast

as listed in Table A.2 for v = 5 levels of the treatment factor. However, here the sample sizes were

r1 = r3 = r5 = 5, r2 = 3 and r4 = 2. The coefficients for the linear trend are calculated via (4.2.4).

Now n = �ri = 20, and

(�ri xi )/n = 20−1 × (5(50) + 3(75) + 5(100) + 2(125) + 5(150)) = 98.75 .

So, we have

xi ri (xi − x .)

50 5 × (50 − 98.75) = −243.75
75 3 × (75 − 98.75) = −71.25

100 5 × (100 − 98.75) = 6.25
125 2 × (125 − 98.75) = 52.50
150 5 × (150 − 98.75) = 256.25

http://dx.doi.org/10.1007/978-3-319-52250-0_22
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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If the coefficients are multiplied by 4, they are then integers each divisible by 5 so rather than using the

calculated coefficients [−243.75, −71.25, 6.25, 52.50, 256.25], we can multiply them by 4/5 and use

the linear trend coefficients [−195, −57, 5, 42, 205]. The average flow rates (l/min) were calculated as

y1. = 1.1352 , y2. = 1.7220 , y3. = 2.3268 , y4. = 2.9250 , y5. = 3.5292 .

The least squares estimate �ci yi. of the linear contrast is then

−195y1. − 57y2. + 5y3. + 42y4. + 205y5. = 538.45

l/min. The linear trend certainly appears to be large. However, before drawing conclusions, we need to

compare this trend estimate with its corresponding estimated standard error. The data give
∑∑

y2
i t =

121.8176, and we calculate the error sum of squares (3.4.5), p. 39, as ssE = 0.0208 , giving an

unbiased estimate of σ
2 as

msE = ssE/(n − v) = 0.0208/(20 − 5) = 0.001387 .

The estimated standard error of the linear trend estimator is then

√
msE

(
(−195)2

5
+ (−57)2

3
+ (5)2

5
+ (42)2

2
+ (205)2

5

)
= 4.988 .

Clearly, the estimate of the linear trend is extremely large compared with its standard error.

Had we normalized the contrast, the linear contrast coefficients would each have been divided by

√∑
c2

i /ri =

√
(−195)2

5
+ (−57)2

3
+ (5)2

5
+ (42)2

2
+ (205)2

5
= 134.09,

and the normalized linear contrast estimate would have been 4.0156. The estimated standard error of

all normalized contrasts is
√

msE = 0.03724 for this experiment, so the normalized linear contrast

estimate remains large compared with the standard error. �

4.3 Individual Contrasts and Treatment Means

4.3.1 Confidence Interval for a Single Contrast

In this section, we obtain a formula for a confidence interval for an individual contrast. If confidence

intervals for more than one contrast are required, then the multiple comparison methods of Sect. 4.4

should be used instead. We give the formula first, and the derivation afterwards. A 100(1 − α)%

confidence interval for the contrast �ciτi is

∑
ci yi. − tn−v,α/2

√
msE

∑
c2

i /ri ≤
∑

ciτi (4.3.5)

≤
∑

ci yi. + tn−v,α/2

√
msE

∑
c2

i /ri .

We can write this more succinctly as

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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∑
ciτi ∈

(∑
ci yi. ± tn−v,α/2

√
msE

∑
c2

i /ri

)
, (4.3.6)

where the symbol ±, which is read as “plus or minus,” denotes that the upper limit of the interval is

calculated using + and the lower limit using −. The symbols “�ciτi ∈” mean that the interval includes

the true value of the contrast �ciτi with 100(1 − α)% confidence. For future reference, we note that

the general form of the above confidence interval is

∑
ciτi ∈

(∑
ci τ̂i ± tdf,α/2

√
V̂ar(�ci τ̂i )

)
, (4.3.7)

where df is the number of degrees of freedom for error.

To derive the confidence interval (4.3.5), we will need to use some results about normally distributed

random variables. As we saw in the previous section, for the completely randomized design and one-

way analysis of variance model (3.3.1), the least squares estimator of the contrast
∑

ciτi is
∑

ci Y i.,

which has variance Var(�ci Y i.) = σ
2
∑

c2
i /ri . This estimator is a linear combination of normally

distributed random variables and therefore also has a normal distribution. Subtracting the mean and

dividing by the standard deviation gives us a random variable

D

σ
=

∑
ci Y i. −

∑
ciτi

σ

√∑
c2

i /ri

, (4.3.8)

which has a N (0, 1) distribution. We estimate the error variance, σ
2, by msE, and from Sect. 3.4.6,

p. 39, we know that

MSE/σ2 = SSE/(n − v)σ2 ∼ χ
2
n−v/(n − v) .

It can be shown that the random variables D and MSE are independent (see Graybill, 1976), and the

ratio of a normally distributed random variable and a chi-squared random variable that are independent

has a t-distribution with the same number of degrees of freedom as the chi-squared distribution. Hence,

the ratio D/
√

MSE has a t distribution with n − v degrees of freedom. Using the expression (4.3.8),

we can now write down the following probability statement about D/
√

MSE:

P

⎛
⎝−tn−v,α/2 ≤

∑
ci Y i. −

∑
ciτi√

MSE
∑

c2
i /ri

≤ tn−v,α/2

⎞
⎠ = 1 − α ,

where tn−v,α/2 is the percentile of the tn−v distribution corresponding to a probability of α/2 in the

right-hand-tail, the value of which can be obtained from Table A.4. Manipulating the two inequalities,

the probability statement becomes

P

(∑
ci Y i. − tn−v,α/2

√
MSE

∑
c2

i /ri ≤
∑

ciτi (4.3.9)

≤
∑

ci Y i. + tn−v,α/2

√
MSE

∑
c2

i /ri

)
= 1 − α .

Then replacing the estimators by their observed values in this expression gives a 100(1 − α)% confi-

dence interval for
∑

ciτi as in (4.3.5).

Example 4.3.1 Heart–lung pump experiment, continued

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Consider the heart–lung pump experiment of Examples 3.4.1 and 4.2.3, p. 37 and 73. The least squares

estimate of the difference in fluid flow at 75 rpm and 50 rpm (levels 2 and 1 of the treatment factor,

respectively) is

�ci yi. = y2. − y1. = 0.5868

l/min. Since there were r2 = 5 observations at 75 rpm and r1 = 3 observations at 50 rpm, and msE =

0.001387, the estimated standard error of this contrast is

√
msE �c2

i /ri =
√

0.001387

(
1

3
+ 1

5

)
= 0.0272 l/min .

Using this information, together with t15,0.025 = 2.131, we obtain from (4.3.6) a 95% confidence

interval (in units of l/min) for τ2 − τ1 as

(0.5868 ± (2.131)(0.0272)) = (0.5288, 0.6448) .

This tells us that with 95% confidence, the fluid flow at 75 rpm of the pump is between 0.53 and 0.64

liters per minute greater than at 50 rpm. �

Confidence bounds, or one-sided confidence intervals, can be derived in the same manner as two-

sided confidence intervals. For the completely randomized design and one-way analysis of variance

model (3.3.1), a 100(1 − α)% upper confidence bound for
∑

ciτi is

∑
ciτi <

∑
ci yi. + tdf,α

√
msE

∑
c2

i /ri , (4.3.10)

and a 100(1 − α)% lower confidence bound for
∑

ciτi is

∑
ciτi >

∑
ci yi. − tdf,α

√
msE

∑
c2

i /ri , (4.3.11)

where tdf,α is the percentile of the t distribution with df degrees of freedom and probability α in the

right-hand tail.

4.3.2 Confidence Interval for a Single Treatment Mean

For the one-way analysis of variance model (3.3.1), the true mean response µ + τs of the sth level of a

treatment factor was shown in Sect. 3.4 to be estimable with least squares estimator Y s.. Although one

is unlikely to be interested in only one of the treatment means, we can obtain a confidence interval as

follows.

Since Y s. ∼ N (µ + τs,σ
2/rs) for model (3.3.1), we can follow the same steps as those leading

to (4.3.6) and obtain a 100(1 − α)% confidence interval for µ + τs as

µ + τs ∈ (ys. ± tdf,α/2

√
msE/rs) . (4.3.12)

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Example 4.3.2 Heart–lung pump experiment, continued

Suppose that the experimenter had required a 99% confidence interval for the true average fluid

flow (µ + τ3) for the heart–lung pump experiment of Example 3.4.1, p. 37, when the revolutions per

minute of the pump are set to 100 rpm. Using (4.3.12) and r3 = 5, y3. = 2.3268, msE = 0.001387,

n − v = 20 − 5, and t15,0.005 = 2.947, the 99% confidence interval for µ + τ3 is

µ + τ3 ∈ (2.3268 ± (2.947)(0.01666)) = (2.2777, 2.3759) .

So, with 99% confidence, the true average flow rate at 100 rpm of the pump is believed to be between

2.28 and 2.38 l/min. �

4.3.3 Hypothesis Test for a Single Contrast or Treatment Mean

The outcome of a hypothesis test can be deduced from the corresponding confidence interval in the

following way. The null hypothesis H0 : �ciτi = h will be rejected at significance level α in favor

of the two-sided alternative hypothesis HA : �ciτi �= h if the corresponding confidence interval for

�ciτi fails to contain h. For example, the 95% confidence interval for τ2 − τ1 in Example 4.3.1 does

not contain zero, so the hypothesis H0 : τ2 − τ1 = 0 (that the flow rates are the same at 50 and 75 rpm)

would be rejected at significance level α = 0.05 in favor of the alternative hypothesis (that the flow

rates are not equal).

We can make this more explicit, as follows. Suppose we wish to test the hypothesis H0 : �ciτi = 0

against the alternative hypothesis HA : �ciτi �= 0. The interval (4.3.6) fails to contain 0 if the absolute

value of �ci yi. is bigger than tn−v,α/2

√
msE �c2

i /ri . Therefore, the rule for testing the null hypothesis

against the alternative hypothesis is

reject H0 if

∣∣∣∣∣∣

∑
ci yi.√

msE
∑

c2
i /ri

∣∣∣∣∣∣
> tn−v,α/2 , (4.3.13)

where | | denotes absolute value. We call such rules decision rules. If H0 is rejected, then HA is

automatically accepted. The test statistic can be squared, so that the decision rule becomes

reject H0 if

(∑
ci yi.

)2

msE
∑

c2
i /ri

> t2
n−v,α/2 = F1,n−v,α ,

and the F distribution can be used instead of the t distribution. Notice that the test statistic is the square

of the normalized contrast estimate divided by msE. We call the quantity

ssc =
(∑

ci yi.

)2

∑
c2

i /ri

(4.3.14)

the sum of squares for the contrast, or contrast sum of squares (even though it is the “sum” of only

one squared term). The decision rule can be more simply expressed as

reject H0 if
ssc

msE
> F1,n−v,α . (4.3.15)

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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For future reference, we can see that the general form of ssc/msE is

ssc

msE
=

(∑
ci τ̂i

)2

V̂ar
(∑

ci τ̂i

) . (4.3.16)

The above test is a two-tailed test, since the null hypothesis will be rejected for both large and small

values of the contrast. One-tailed tests can be derived also, as follows.

The decision rule for the test of H0 : �ciτi = 0 against the one-sided alternative hypothesis HA :∑
ciτi > 0 is

reject H0 if

∑
ci yi.√

msE
∑

c2
i /ri

> tn−v,α . (4.3.17)

The outcome of this test can be deduced from the appropriate one-sided confidence bound. In particular,

the null hypothesis will be rejected at significance level α if the corresponding 100(1 − α)% lower

confidence bound for
∑

ciτi in Eq. (4.3.11) is above zero so excludes zero.

Similarly, for the one-sided alternative hypothesis HA :
∑

ciτi < 0, the decision rule is

reject H0 if

∑
ci yi.√

msE
∑

c2
i /ri

< −tn−v,α . (4.3.18)

Here the null hypothesis will be rejected at significance level α if the corresponding 100(1 − α)%

upper confidence bound for
∑

ciτi in Eq. (4.3.10) is below zero so excludes zero.

If the hypothesis test concerns a single treatment mean, for example, H0 : µ + τs = 0, then the

decision rules (4.3.13)–(4.3.18) are modified by setting cs equal to one and all the other ci equal to

zero.

Example 4.3.3 Filter experiment

Lorenz et al. (1982) describe an experiment that was carried out to determine the relative performance

of seven membrane filters in supporting the growth of bacterial colonies. The seven filter types are

regarded as the seven levels of the treatment factor and are coded 1, 2, . . . , 7. Filter types 1, 4, and 7

were received presterilized. Several different types of data were collected, but the only data considered

here are the colony counts of fecal coliforms from a sample of Olentangy River water (August 1980)

that grew on each filter. Three filters of each type were observed and the average colony counts1 were

y1. = 36.0, y2. = 18.0, y3. = 27.7, y4. = 28.0, y5. = 28.3, y6. = 37.7, y7. = 30.3 .

The mean squared error was msE = 21.6. Suppose we wish to test the hypothesis that the presterilized

filters do not differ from the nonpresterilized filters in terms of the average colony counts, against a

two-sided alternative hypothesis that they do differ. The hypothesis of interest involves a difference of

averages contrast, that is,

H0 : 1

3
(τ1 + τ4 + τ7) − 1

4
(τ2 + τ3 + τ5 + τ6) = 0 .

1Reprinted from Journal AWWA, Vol. 74, No. 8 (August 1982), by permission. Copyright © 1982, American Water
Works Association.
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From (4.3.15), the decision rule is to reject H0 if

ssc

msE
=

[
1
3 (y1. + y4. + y7.) − 1

4 (y2. + y3. + y5. + y6.)
]2

msE

[
( 1

3 )2

3 + ( 1
3 )2

3 + ( 1
3 )2

3 + (− 1
4 )2

3 + (− 1
4 )2

3 + (− 1
4 )2

3 + (− 1
4 )2

3

] > F1,14,α .

Selecting a probability of a Type I error equal to α = 0.05, this becomes

reject H0 if
(3.508)2

(21.6)(0.1944)
= 2.931 > F1,14,0.05 .

Since F1,14,0.05 = 4.6, there is not sufficient evidence to reject the null hypothesis, and we conclude

that the presterilized filters do not differ significantly from the nonpresterilized filters when α is set at

0.05.

Notice that the null hypothesis would be rejected if the probability of a Type I error is set a little

higher than α = 0.10, since F1,14,0.10 = 3.10. Thus, if these experimenters are willing to accept a high

risk of incorrectly rejecting the null hypothesis, they would be able to conclude that there is a difference

between the presterilized and the nonpresterilized filters.

A 95% confidence interval for this difference can be obtained from (4.3.6) as follows:

1

3
(τ1 + τ4 + τ7) − 1

4
(τ2 + τ3 + τ5 + τ6) ∈

(
3.508 ± t14,0.025

√
(21.6)(0.1944)

)
,

and since t14,0.025 = 2.145, the interval becomes

(3.508 ± (2.145)(2.0492)) = (−0.888, 7.904) ,

where the measurements are average colony counts. The interval contains zero, which agrees with the

hypothesis test at α = 0.05. �

4.3.4 Equivalence of Tests and Confidence Intervals (Optional)

There is a stronger relationship between hypothesis tests and confidence intervals (including both 1- and

2-sided confidence intervals) than was described in Sect. 4.3.3. As already discussed, the outcome of a

hypothesis test at significance level α can be deduced from the corresponding 100(1 − α)% confidence

interval. Correspondingly, though less well known, one can conclude from a hypothesis test that the

true value of the parameter is in the corresponding confidence interval, by virtue of rejecting all values

outside the interval, providing more specific test conclusions than simply whether or not one rejects

the null hypothesis and so believes the alternative.

To illustrate this, consider a two-tailed level-α test of the null hypothesis H0 :
∑

ciτi = 0 against

the alternative hypothesis HA :
∑

ciτi �= 0. Under standard practice, only the null hypothesis H0 is

tested at significance level α. If H0 is rejected in favor of HA, one simply eliminates zero as a possible

value of the treatment contrast, and the hypothesis testing procedure guarantees that the probability of

making a mistake by rejecting H0 :
∑

ciτi = 0 when it is true is at most α.

Expanding upon standard practice, suppose one not only tests H0; rather, suppose one conducts

a standard two-tailed level-α test of the null hypothesis H0b :
∑

ciτi = b against the alternative
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hypothesis HAb :
∑

ciτi �= b for each real number b. Then the probably of rejecting H0 :
∑

ciτi = 0 if

it is true is still controlled to be α. Moreover, even though this expanded testing procedure involves con-

ducting an infinite number of tests rather than only one, the probability of making any false rejections—

namely, of falsely rejecting any true null hypothesis H0b—is still at most α. This follows from the

partitioning principle, (see Finner and Strassburger 2002, and references therein). In particular, because

the sets {b} partition the set of real numbers, H0b is only true for exactly one value of b, b∗ say. So,

one can only make a mistake by rejecting the only true null hypothesis H0b∗ , and the probability of

rejecting H0b∗ is α. Thus, in terms of error rates, there is no additional cost in testing infinitely many

hypothesis H0b instead of just one.

Furthermore, as we know, the null hypothesis H0b will be rejected at level-α precisely for those

values b outside the 100(1 − α)% confidence interval for
∑

ciτi . In other words, all values of
∑

ciτi

outside of the 100(1 − α)% confidence interval are rejected at simultaneous significance level α.

Hence, one can conclude from this extended test that the true value of
∑

ciτi is in the corresponding

100(1 − α)% confidence interval for
∑

ciτi . This is true whether or not one rejects H0, providing a

more specific conclusion than simply rejecting the null hypothesis or not.

For example, if one does reject H0 :
∑

ciτi = 0 at significance level α, then one can conclude with

Type I error probability, α not only that
∑

ciτi �= 0 but also more specifically that the true value of∑
ciτi is in the corresponding 100(1 − α)% confidence interval for

∑
ciτi , where this confidence

interval will consist only of positive values if H0 is rejected and
∑

ci τ̂i > 0, or only of negative values

if H0 is rejected and
∑

ci τ̂i < 0. On the other hand, if one fails to reject H0, one can still conclude

that the true value of
∑

ciτi is in the corresponding 100(1 − α)% confidence interval for
∑

ciτi , but

this confidence interval will include zero as a possible value of the treatment contrast.

The analogous equivalence exists between one-sided tests and corresponding confidence bounds.

Consider for example the standard level-α test of H0 : �ciτi = 0 against the one-sided alternative

hypothesis HA :
∑

ciτi > 0. More broadly, one can conduct a standard one-tailed α-level test of the

null hypothesis H0b :
∑

ciτi = b against the alternative hypothesis HAb :
∑

ciτi > b for each real

number b. In so doing, H0b :
∑

ciτi = b will be rejected for exactly those values of b that are below

the 100(1 − α)% lower confidence bound for
∑

ciτi given in Eq. (4.3.11). In other words, the values

of
∑

ciτi rejected at level α are exactly the values outside of the 100(1 − α)% (one-sided) confidence

interval. Consequently, whether or not H0 is rejected, one can conclude that the true value of
∑

ciτi

is above the 100(1 − α)% lower confidence bound for
∑

ciτi , and one will reject H0 and conclude∑
ciτi > 0 exactly when the lower confidence bound is positive.

Similarly, for testing H0 : �ciτi = 0 against HA :
∑

ciτi < 0 at level α, one can expand this by

conducting a standard one-tailed level-α test of H0b :
∑

ciτi = b against HAb :
∑

ciτi < b for each

real number b. Then the values of
∑

ciτi rejected at level α are exactly the values above the 100(1 −
α)% upper confidence bound given in Eq. (4.3.10). Consequently, whether or not H0 is rejected, one

can conclude that the true value of
∑

ciτi is below its 100(1 − α)% upper confidence bound. Also,

one will reject H0 and conclude
∑

ciτi < 0 exactly when the upper confidence bound is negative.

The equivalence between testing and confidence intervals illustrated above applies quite broadly,

including for example to one-step multiple comparison procedures such as those considered in the next

section (as discussed by Voss 2008, 2010). The partitioning principle also facilitates the construction

of more complicated confidence sets corresponding to stepwise multiple tests (see Stefansson et al.

1988).
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4.4 Methods of Multiple Comparisons

4.4.1 Multiple Confidence Intervals

Often, the most useful analysis of experimental data involves the calculation of a number of different

confidence intervals, one for each of several contrasts or treatment means. The confidence level for

a single confidence interval is based on the probability, like (4.3.9), that the random interval will be

“correct” (meaning that the random interval will contain the true value of the contrast or function).

It is shown below that when several confidence intervals are calculated, the probability that they are

all simultaneously correct can be alarmingly small. Similarly, when several hypotheses are to be tested,

the probability that at least one hypothesis is incorrectly rejected can be uncomfortably high. Much

research has been done over the years to find ways around these problems. The resulting techniques are

known as methods of multiple comparison, the intervals are called simultaneous confidence intervals,

and the tests are called simultaneous hypothesis tests.

Suppose an experimenter wishes to calculate m confidence intervals, each having a 100(1 − α
∗)%

confidence level. Then each interval will be individually correct with probability 1 − α
∗. Let S j be

the event that the j th confidence interval will be correct and S j the event that it will be incorrect

( j = 1, . . . , m). Then, using the standard rules for probabilities of unions and intersections of events,

it follows that

P(S1 ∩ S2 ∩ · · · ∩ Sm) = 1 − P(S1 ∪ S2 ∪ · · · ∪ Sm) .

This says that the probability that all of the intervals will be correct is equal to one minus the probability

that at least one will be incorrect. If m = 2,

P(S1 ∪ S2) = P(S1) + P(S2) − P(S1 ∩ S2)

≤ P(S1) + P(S2) .

A similar result, which can be proved by mathematical induction, holds for any number m of events,

that is,

P(S1 ∪ S2 ∪ · · · ∪ Sm) ≤
∑

j

P(S j ) ,

with equality if the events S1, S2, . . . , Sm are mutually exclusive. Consequently,

P(S1 ∩ S2 ∩ · · · ∩ Sm) ≥ 1 −
∑

j

P(S j ) = 1 − mα
∗ ; (4.4.19)

that is, the probability that the m intervals will simultaneously be correct is at least 1 − mα
∗. The

probability mα
∗is called the overall significance level or experimentwise error rate. A typical value

for α
∗ for a single confidence interval is 0.05, so the probability that six confidence intervals each

calculated at a 95% individual confidence level will simultaneously be correct is at least 0.7. Although

“at least” means “bigger than or equal to,” it is not known in practice how much bigger than 0.7 the

probability might actually be. This is because the degree of overlap between the events S1, S2, . . . , Sm

is generally unknown. The probability “at least 0.7” translates into an overall confidence level of “at

least 70%” when the responses are observed. Similarly, if an experimenter calculates ten confidence

intervals each having individual confidence level 95%, then the simultaneous confidence level for the
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ten intervals is at least 50%, which is not very informative. As m becomes larger the problem becomes

worse, and when m ≥ 20, the overall confidence level is at least 0%, clearly a useless assertion!

Similar comments apply to the hypothesis testing situation. If hypotheses for m different contrasts

are to be tested, each at significance level α
∗, then the probability that at least one hypothesis is

incorrectly rejected is at most mα
∗.

Various methods have been developed to ensure that the overall confidence level is not too small and

the overall significance level is not too high. Some methods are completely general, that is, they can be

used for any set of estimable functions, while others have been developed for very specialized purposes

such as comparing each treatment with a control. Which method is best depends on which contrasts are

of interest and the number of contrasts to be investigated. In this section, four methods are discussed

that control the overall confidence level and overall significance level. The terms preplanned contrasts

and data snooping occur in the summary of methods and the subsequent subsections. These have

the following meanings. Before the experiment commences, the experimenter will have written out a

checklist, highlighted the contrasts and/or treatment means that are of special interest, and designed

the experiment in such a way as to ensure that these are estimable with as small variances as possible.

These are the preplanned contrasts and means. After the data have been collected, the experimenter

usually looks carefully at the data to see whether anything unexpected has occurred. One or more

unplanned contrasts may turn out to be the most interesting, and the conclusions of the experiment

may not be as anticipated. Allowing the data to suggest additional interesting contrasts is called data

snooping.

The following summary is written in terms of confidence intervals, but it also applies to hypothesis

tests. A shorter confidence interval corresponds to a more powerful hypothesis test. The block designs

mentioned in the summary will be discussed in Chaps. 10 and 11.

Summary of Multiple Comparison Methods

1. Bonferroni method for preplanned comparisons

Applies to any m preplanned estimable contrasts or functions of the parameters. Gives shorter

confidence intervals than the other methods listed if m is small. Can be used for any design. Cannot

be used for data snooping.

2. Scheffé method for all comparisons

Applies to any m estimable contrasts or functions of the parameters. Gives shorter intervals than

Bonferroni’s method if m is large. Allows data snooping. Can be used for any design.

3. Tukey method for all pairwise comparisons

Best for all pairwise comparisons. Can be used for completely randomized designs, randomized

block designs, and balanced incomplete block designs. Is believed to be applicable (conservative)

for other designs as well. Can be extended to include all contrasts, but Scheffé’s method is generally

better for these.

4. Dunnett method for treatment-versus-control comparisons

Best for all treatment-versus-control contrasts. Can be used for completely randomized designs,

randomized block designs, and balanced incomplete block designs.

Details of confidence intervals obtained by each of the above methods are given in Sects. 4.4.2–4.4.6.

The terminology “a set of simultaneous 100(1 − α)% confidence intervals” will always refer to the

fact that the overall confidence level for a set of contrasts or treatment means is (at least) 100(1 − α)%.

Each of the four methods discussed gives confidence intervals of the form

http://dx.doi.org/10.1007/978-3-319-52250-0_10
http://dx.doi.org/10.1007/978-3-319-52250-0_11
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∑

i

ciτi ∈
(∑

i

ci τ̂i ± w

√
V̂ar(�ci τ̂i )

)
, (4.4.20)

where w, which we call the critical coefficient, depends on the method, on v, on the number of

confidence intervals calculated, and on the number of error degrees of freedom. The term

msd = w

√
V̂ar(�ci τ̂i ) ,

which is added and subtracted from the least squares estimate in (4.4.20), is called the minimum

significant difference, because if the estimate is larger than msd, the confidence interval excludes zero,

and the contrast is significantly different from zero.

4.4.2 Bonferroni Method for Preplanned Comparisons

The inequality (4.4.19) shows that if m simultaneous confidence intervals are calculated for preplanned

contrasts, and if each confidence interval has confidence level 100(1 − α
∗)%, then the overall con-

fidence level is greater than or equal to 100(1 − mα
∗)%. Thus, an experimenter can ensure that the

overall confidence level is at least 100(1 − α)% by setting α
∗ = α/m. This is known as the Bonferroni

method for simultaneous confidence intervals. Replacing α by α/m in the formula (4.3.6), p. 75, for

an individual confidence interval, we obtain a formula for a set of simultaneous 100(1 − α)% confi-

dence intervals for m preplanned contrasts �ciτi in a completely randomized design with the one-way

analysis of variance model (3.3.1), as

∑

i

ciτi ∈

⎛
⎝∑

i

ci yi. ± tn−v,α/(2m)

√
msE

∑

i

c2
i /ri

⎞
⎠ , (4.4.21)

where the critical coefficient, wB , is

wB = tn−v,α/(2m) .

Since α/(2m) is likely to be an atypical value, the percentiles tn−v,α/(2m) may need to be obtained

by use of a computer package, or by approximate interpolation between values in Table A.4, or by

using the following approximate formula due to Peiser (1943):

tdf,α/(2m) ≈ zα/(2m) + (z3
α/(2m) + zα/(2m))/(4(df)) , (4.4.22)

where df is the error degrees of freedom (equal to n − v in the present context), and where zα/(2m)

is the percentile of the standard normal distribution corresponding to a probability of α/(2m) in the

right hand tail. The standard normal distribution is tabulated in Table A.3 and covers the entire range

of values for α/(2m). When m is very large, α/(2m) is very small, possibly resulting in extremely

wide simultaneous confidence intervals. In this case, the Scheffé or Tukey methods described in the

following subsections would be preferred.

If some of the m simultaneous intervals are for true mean responses µ + τs , then the required

intervals are of the form (4.3.12), p. 76, with α replaced by α/m, that is,

µ + τs ∈
(

ys. ± tn−v,α/(2m)

√
msE/rs

)
. (4.4.23)

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Similarly, replacing α by α/m in (4.3.15), a set of m null hypotheses, each of the form

H0 :
v∑

i=1

ciτi = 0 ,

can be tested against their respective two-sided alternative hypotheses at overall significance level α

using the set of decision rules each of the form

reject H0 if
ssc

msE
> F1,df,α/m . (4.4.24)

Each null hypothesis is rejected if the corresponding confidence interval (4.4.21) excludes zero, and

each confidence interval consists of exactly those values that would not be rejected by a two-tailed test.

Note that Bonferroni’s method can be use only for preplanned contrasts and means. An experimenter

who looks at the data and then proceeds to calculate simultaneous confidence intervals for the few

contrasts that look interesting has effectively calculated a very large number of intervals. This is

because the interesting contrasts are usually those that seem to be significantly different from zero, and

a rough mental calculation of the estimates of a large number of contrasts has to be done to identify

these interesting contrasts. Scheffé’s method should be used for contrasts that were selected after the

data were examined.

Example 4.4.1 Filter experiment, continued

The filter experiment was described in Example 4.3.3, p. 78. Suppose that before the data had been

collected, the experimenters had planned to calculate a set of simultaneous 90% confidence intervals for

the following m = 3 contrasts. These contrasts have been selected based on the details of the original

study described by Lorenz et al. (1982).

(i) 1
3 (τ1 + τ4 + τ7) − 1

4 (τ2 + τ3 + τ5 + τ6). This contrast measures the difference in the average

effect of the presterilized and the nonpresterilized filter types. This was used in Example 4.3.3 to

illustrate a hypothesis test for a single contrast.

(ii) 1
2 (τ1 + τ7) − 1

5 (τ2 + τ3 + τ4 + τ5 + τ6). This contrast measures the difference in the average

effects of two filter types with gradated pore size and five filter types with uniform pore size.

(iii) 1
6 (τ1 + τ2 + τ4 + τ5 + τ6 + τ7) − τ3. This contrast is the difference in the average effect of the

filter types that are recommended by their manufacturers for bacteriologic analysis of water and the

single filter type that is recommended for sterility testing of pharmaceutical or cosmetic products.

From Example 4.3.3, we know that

y1. = 36.0, y2. = 18.0, y3. = 27.7, y4. = 28.0, y5. = 28.3,

y6. = 37.7, y7. = 30.3, ri = 3, msE = 21.6.

The formula for each of the three preplanned simultaneous 90% confidence intervals is given

by (4.4.21) and involves the critical coefficient wB = t14,(0.1)/6 = t14,0.0167, which is not available in

Table A.4. Either the value can be calculated from a computer program, or an approximate value can

be obtained from formula (4.4.22) as

t14,0.0167 ≈ 2.128 + (2.1283 + 2.128)/(4 × 14) = 2.338.
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The minimum significant difference for each of the three simultaneous 90% confidence intervals is

msd = 2.338

√
(21.6)

∑
c2

i /3 = 6.2735

√∑
c2

i .

Thus, for the first interval, we have

msd = 6.2735

√
3

(
1

9

)
+ 4

(
1

16

)
= 4.791 ,

giving the interval as

1

3
(τ1 + τ4 + τ7) − 1

4
(τ2 + τ3 + τ5 + τ6) ∈ (3.508 ± 4.791) = (−1.283, 8.299) .

Calculating the minimum significant differences separately for the other two confidence intervals leads

to

1

2
(τ1 + τ7) − 1

5
(τ2 + τ3 + τ4 + τ5 + τ6) ∈ (−0.039, 10.459) ;

1

6
(τ1 + τ2 + τ4 + τ5 + τ6 + τ7) − τ3 ∈ (−4.759, 8.793) .

Notice that all three intervals include zero, although the second is close to excluding it. Thus, at overall

significance level α = 0.10, we would fail to reject the hypothesis that there is no difference in average

colony counts between the presterilized and nonpresterilized filters, nor between filter 3 and the others,

nor between filters with gradated and uniform pore sizes. At a slightly higher significance level, we

would reject the hypothesis that the filters with gradated pore size have the same average colony counts

as those with uniform pore size. The same conclusion would be obtained if (4.4.24) were used to test

simultaneously, at overall level α = 0.10, the hypotheses that each of the three contrasts is zero. The

confidence interval, whether utilized directly or obtained as the conclusion of the test, has the added

benefit that it provides more specific conclusions. For example, we can say with overall 90% confidence

that on average, the filters with gradated pore size give rise to colony counts up to 10.4 greater than

the filters with uniform pore sizes. �

4.4.3 Scheffé Method of Multiple Comparisons

The main drawbacks of the Bonferroni method of multiple comparisons are that the m contrasts to

be examined must be preplanned and the confidence intervals can become very wide if m is large.

Scheffé’s method, on the other hand, provides a set of simultaneous 100(1 − α)% confidence intervals

whose widths are determined only by the number of treatments and the number of observations in the

experiment, no matter how many contrasts are of interest. The two methods are compared directly later

in this section.

Scheffé’s method is based on the fact that every possible contrast �ciτi can be written as a linear

combination of the set of (v − 1) treatment versus control contrasts, τ2 − τ1, τ3 − τ1, . . . , τv − τ1.

(We leave it to the reader to check that this is true.) Once the experimental data have been collected, it

is possible to find a 100(1 − α)% confidence region for these v − 1 treatment-versus-control contrasts.
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The confidence region not only determines confidence bounds for each treatment-versus-control con-

trast, it determines bounds for every possible contrast �ciτi and, in fact, for any number of contrasts,

while the overall confidence level remains fixed. The mathematical details are given by Scheffé (1959).

For v treatments in a completely randomized design and the one-way analysis of variance

model (3.3.1), a set of simultaneous 100(1 − α)% confidence intervals for all contrasts �ciτi is given by

∑

i

ciτi ∈

⎛
⎝∑

i

ci yi. ±
√

(v − 1)Fv−1,n−v,α

√
msE

∑

i

c2
i /ri

⎞
⎠ . (4.4.25)

Notice that this is the same form as the general formula (4.4.20), p. 83, where the critical coefficient

w is

wS =
√

(v − 1)Fv−1,n−v,α .

If confidence intervals for the treatment means µ + τi are also of interest, the critical coefficient wS

needs to be replaced by

w∗
S =

√
vFv,n−v,α .

The reason for the increase in the numerator degrees of freedom is that any of the functions µ + τi can

be written as a linear combination of the v − 1 treatment versus control contrasts and one additional

function µ + τ1. For the completely randomized design and model (3.3.1), a set of simultaneous

100(1 − α)% confidence intervals for any number of true mean responses and contrasts is therefore

given by

∑

i

ciτi ∈

⎛
⎝∑

i

ci yi. ±
√

vFv,n−v,α

√
msE

∑

i

c2
i /ri

⎞
⎠

together with

µ + τs ∈
(

yi. ±
√

vFv,n−v,α

√
msE/rs

)
. (4.4.26)

Example 4.4.2 Filter experiment, continued

If we look at the observed average colony counts,

y1. = 36.0, y2. = 18.0, y3. = 27.7, y4. = 28.0,

y5. = 28.3, y6. = 37.7, y7. = 30.3,

for the filter experiment of Examples 4.3.3 and 4.4.1 (p. 78 and 84), filter type 2 appears to give a

much lower count than the other types. One may wish to recalculate each of the three intervals in

Example 4.4.1 with filter type 2 excluded. It might also be of interest to compare the filter types 1 and

6, which showed the highest average colony counts, with the other filters. These are not preplanned

contrasts. They have become interesting only after the data have been examined, and therefore we

need to use Scheffé’s method of multiple comparisons. In summary, we are interested in the following

twelve contrasts:

1
3 (τ1 + τ4 + τ7) − 1

3 (τ3 + τ5 + τ6) , 1
2 (τ1 + τ7) − 1

4 (τ3 + τ4 + τ5 + τ6) ,
1
5 (τ1 + τ4 + τ5 + τ6 + τ7) − τ3 ,

τ1 − τ3 , τ1 − τ4 , τ1 − τ5 , τ1 − τ6 , τ1 − τ7 ,

τ6 − τ3 , τ6 − τ4 , τ6 − τ5 , τ6 − τ7 .

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3


4.4 Methods of Multiple Comparisons 87

The formula for a set of Scheffé 90% simultaneous confidence intervals is given by (4.4.25) with

α = 0.10. Since v = 7, n = 21, and msE = 21.6 for the filter experiment, the minimum significant

difference for each interval becomes

msd =
√

6F6,14,0.10

√
21.6 �c2

i /3 = 9.837

√
�c2

i .

The twelve simultaneous 90% confidence intervals are then

1

3
(τ1 + τ4 + τ7) − 1

3
(τ3 + τ5 + τ6)

∈
(

(31.43 − 31.23) ± 9.837

√
3

(
1

9

)
+ 3

(
1

9

))

= (−7.83, 8.23) ,

1

2
(τ1 + τ7) − 1

4
(τ3 + τ4 + τ5 + τ6) ∈ (−5.79, 11.24) ,

1

5
(τ1 + τ4 + τ5 + τ6 + τ7) − τ3 ∈ (−6.42, 15.14) ,

τ1 − τ3 ∈ (−5.61, 22.21) , τ6 − τ3 ∈ (−3.91, 23.91) ,

τ1 − τ4 ∈ (−5.91, 21.91) , τ6 − τ4 ∈ (−4.21, 23.61) ,

τ1 − τ5 ∈ (−6.21, 21.61) , τ6 − τ5 ∈ (−4.51, 23.31) ,

τ1 − τ6 ∈ (−15.61, 12.21) , τ6 − τ7 ∈ (−6.51, 21.31) ,

τ1 − τ7 ∈ (−8.21, 19.61) .

These intervals are all fairly wide and all include zero. Consequently, at overall error rate α = 0.1, we

are unable to infer that any of the contrasts are significantly different from zero. �

Relationship Between Analysis of Variance and the Scheffé Method

The analysis of variance test and the Scheffé method of multiple comparisons are equivalent in the

following sense. The analysis of variance test will reject the null hypothesis H0 : τ1 = τ2 = · · · = τv

at significance level α if there is at least one confidence interval among the infinite number of Scheffé

simultaneous 100(1 − α)% confidence intervals for all contrasts �ciτi that excludes zero. However,

the intervals that exclude zero may not be among those for the interesting contrasts being examined.

Other methods of multiple comparisons do not relate to the analysis of variance test in this way.

It is possible when using one of the other multiple comparison methods that one or more intervals

in a simultaneous 100(1 − α)% set may exclude 0, while the analysis of variance test of H0 is not

rejected at significance level α. Hence, if specific contrasts of interest have been identified in advance

of running the experiment and a method of multiple comparisons other than Scheffé’s method is to be

used, then it is sensible to analyze the data using only the multiple comparison procedure.

4.4.4 Tukey Method for All Pairwise Comparisons

In some experiments, confidence intervals may be required only for pairwise difference contrasts.

Tukey, in 1953, proposed a method that is specially tailored to handle this situation and that gives

shorter intervals for pairwise differences than do the Bonferroni and Scheffé methods.



88 4 Inferences for Contrasts and Treatment Means

For the completely randomized design and the one-way analysis of variance model (3.3.1), Tukey’s

simultaneous confidence intervals for all pairwise comparisons τi − τs, i �= s, with overall confidence

level at least 100(1 − α)% is given by

τi − τs ∈
(

(yi. − ys.) ± wT

√
msE

(
1

ri

+ 1

rs

))
, (4.4.27)

where the critical coefficient wT is

wT = qv,n−v,α/
√

2 ,

and where qv,n−v,α is tabulated in Appendix A.8. When the sample sizes are equal (ri = r;
i = 1, . . . , v), the overall confidence level is exactly 100(1 − α)%. When the sample sizes are unequal,

the confidence level is at least 100(1 − α)%.

The derivation of (4.4.27) is as follows. For equal sample sizes, the formula for Tukey’s simultaneous

confidence intervals is based on the distribution of the statistic

Q = max{Ti } − min{Ti }√
MSE/r

,

where Ti = Y i. − (µ + τi ) for the one-way analysis of variance model (3.3.1), and where max{Ti } is

the maximum value of the random variables T1, T2, . . . , Tv and min{Ti } the minimum value. Since the

Y i.’s are independent, the numerator of Q is the range of v independent N (0,σ2/r) random variables,

and is standardized by the estimated standard deviation. The distribution of Q is called the Studentized

range distribution. The percentile corresponding to a probability of α in the right-hand tail of this

distribution is denoted by qv,n−v,α, where v is the number of treatments being compared, and n − v is

the number of degrees of freedom for error. Therefore,

P

(
max{Ti } − min{Ti }√

MSE/r
≤ qv,n−v,α

)
= 1 − α .

Now, if max{Ti } − min{Ti } is less than or equal to qv,n−v,α

√
MSE/r , then it must be true that |Ti −

Ts | ≤ qv,n−v,α

√
MSE/r for every pair of random variables Ti , Ts , i �= s. Using this fact and the above

definition of Ti , we have

1 − α = P
(
−qv,n−v,α

√
MSE/r ≤ (Y i. − Y s.) − (τi − τs)

≤ qv,n−v,α

√
MSE/r , for all i �= s

)
.

Replacing Y i. by its observed value yi., and MSE by the observed value msE, a set of simultaneous

100(1 − α)% confidence intervals for all pairwise differences τi − τs , i �= s, is given by

τi − τs ∈
(
(yi. − ys.) ± qv,n−v,α

√
msE/r

)
,

which can be written in terms of the critical coefficient as

τi − τs ∈
(

(yi. − ys.) ± wT

√
msE

(
1

r
+ 1

r

))
. (4.4.28)

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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More recently, Hayter (1984) showed that the same form of interval can be used for unequal sample

sizes as in (4.4.27), and that the overall confidence level is then at least 100(1 − α)%.

Example 4.4.3 Battery experiment, continued

In the battery experiment of Example 4.2.1 (p. 71), we considered the pairwise differences in the life

lengths per unit cost of v = 4 different battery types, and we obtained the least squares estimates

τ̂1 − τ̂2 = −289.75 , τ̂1 − τ̂3 = 137.75 , τ̂1 − τ̂4 = 74.50 ,

τ̂2 − τ̂3 = 427.50 , τ̂2 − τ̂4 = 364.25 , τ̂3 − τ̂4 = −63.25 .

The standard error was

√
msE( 1

4 + 1
4 ) = 34.41, and the number of error degrees of freedom was

n − v = (16 − 4) = 12. From Table A.8, q4,12,0.05 = 4.20, so wT = 4.20/
√

2, and the minimum sig-

nificant difference is

msd = (4.20/
√

2) (34.41) = 102.19 .

Therefore, using Tukey’s method, the simultaneous 95% confidence intervals for the pairwise com-

parisons of lifetimes per unit cost of the different battery types are

τ1 − τ2 ∈ (−289.75 ± 102.19) = (−391.94,−187.56),

τ1 − τ3 ∈ (137.75 ± 102.19) = (35.56, 239.94),

τ1 − τ4 ∈ (−27.69, 176.69), τ2 − τ3 ∈ (325.31, 529.69),

τ2 − τ4 ∈ (262.06, 466.44), τ3 − τ4 ∈ (−165.44, 38.94).

Four of these intervals exclude zero, and one can conclude (at an overall 95% confidence level) that

battery type 2 (alkaline, store brand) has the highest lifetime per unit cost, and battery type 3 (heavy

duty, name brand) has lower lifetime per unit cost than does battery type 1 (alkaline, name brand). The

intervals show us that with overall 95% confidence, battery type 2 is between 188 and 391 minute per

dollar better than battery type 1 (the name brand alkaline battery) and even more economical than the

heavy-duty brands. �

Example 4.4.4 Bonferroni, Scheffé and Tukey methods compared

Suppose that v = 5, n = 35, and α = 0.05, and that only the 10 pairwise comparisons τi − τs , i �= s,

are of interest to the experimenter and these were specifically selected prior to the experiment (i.e.,

were preplanned). If we compare the critical coefficients for the three methods, we obtain

Bonferroni : wB = t30,.025/10 = 3.02,

Scheffé : wS =
√

4 F4,30,.05 = 3.28,

Tukey : wT = 1√
2
q5,30,.05 = 2.91.

Since wT is less than wB , which is less than wS for this example, the Tukey intervals will be shorter

than the Bonferroni intervals, which will be shorter than the Scheffé intervals. �
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4.4.5 Dunnett Method for Treatment-Versus-Control Comparisons

In 1955, Dunnett developed a method of multiple comparisons that is specially designed to provide

a set of simultaneous confidence intervals for preplanned treatment-versus-control contrasts τi − τ1

(i = 2, . . . , v), where level 1 corresponds to the control treatment. The intervals are shorter than those

given by the Scheffé, Tukey, and Bonferroni methods, but the method should not be used for any other

type of contrasts.

The formulae for the simultaneous confidence intervals are based on the joint distribution of the

estimators Y i. − Y 1. of τi − τ1 (i = 2, . . . , v). This distribution is a special case of the multivariate t

distribution and depends on the correlation between Y i. − Y 1. and Y s. − Y 1.. For the completely ran-

domized design, with equal numbers of observations r2 = · · · = rv = r on the experimental treatments

and r1 = c observations on the control treatment, the correlation is

ρ = r/(c + r) .

In many experiments, the same number of observations will be taken on the control and experimental

treatments, in which case ρ = 0.5. However, the shortest confidence intervals for comparing v − 1

experimental treatments with a control treatment are generally obtained when c/r is chosen to be close

to
√

v − 1. Since we have tabulated the multivariate t-distribution only with correlation ρ = 0.5, we

will discuss only the case c = r . Other tables can be found in the book of Hochberg and Tamhane

(1987), and intervals can also be obtained via some computer packages (see Sects. 4.6.2 and 4.7.2 for

the SAS and R software, respectively).

If the purpose of the experiment is to determine which of the experimental treatments give a sig-

nificantly higher response than the control treatment, then one-sided confidence bounds should be

used. For a completely randomized design with equal sample sizes and the one-way analysis of vari-

ance model (3.3.1), Dunnett’s simultaneous one-sided 100(1 − α)% confidence bounds for treatment-

versus-control contrasts τi − τ1 (i = 2, 3, . . . , v) are

τi − τ1 ≥ (yi. − y1.) − wD1

√
msE

(
2

r

)
, (4.4.29)

where the critical coefficient is

wD1 = t
(0.5)
v−1,n−v,α

and where t
(0.5)
v−1,n−v,α is the percentile of the maximum of a multivariate t-distribution with common

correlation 0.5 and n − v degrees of freedom, corresponding to a Type I error probability of α in the

right-hand tail. The critical coefficient is tabulated in Table A.9. If the right hand side of (4.4.29) is

positive, we infer that the i th experimental treatment gives a larger response than the control.

If the purpose is to determine which of the experimental treatments give a significantly lower

response than the control, then the inequality is reversed, and the confidence bound becomes

τi − τ1 ≤ (yi. − y1.) + wD1

√
msE

(
2

r

)
. (4.4.30)

If the right-hand side is negative, we infer that the i th experimental treatment gives a smaller response

than the control.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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To determine which experimental treatments are better than the control and which ones are worse,

two-sided intervals of the general form (4.4.20) are used as for the other multiple comparison methods.

For the completely randomized design, one-way analysis of variance model (3.3.1), and equal sample

sizes, the formula is

τi − τ1 ∈
(

yi. − y1. ± wD2

√
msE

(
2

r

))
, (4.4.31)

where the critical coefficient is

wD2 = |t |(0.5)
v−1,n−v,α

and is the upper critical value for the maximum of the absolute values of a multivariate t-distribution

with correlation 0.5 and n − v error degrees of freedom, corresponding to the chosen value of α in the

right-hand tail. The critical coefficients for equal sample sizes are provided in Table A.10.

For future reference, the general formula for Dunnett’s two-sided simultaneous 100(1 − α)% con-

fidence intervals for treatment versus control contrasts τi − τ1 (i = 2, 3, . . . , v) is

τi − τ1 ∈
(

(τ̂i − τ̂1) ± wD2

√
V̂ar(τ̂i − τ̂1)

)
, (4.4.32)

and, for one-sided confidence bounds, we replace wD2 by wD1 and replace “∈” by “≤” or “≥.” The

critical coefficients are

wD2 = |t |(0.5)
v−1,df,α and wD1 = t

(0.5)
v−1,df,α

for two-sided and one-sided intervals, respectively, where df is the number of error degrees of freedom.

Example 4.4.5 Soap experiment, continued

Suppose that as a preplanned objective of the soap experiment of Sect. 2.5.1, p. 20, the experimenter

had wanted simultaneous 99% confidence intervals comparing the weight losses of the deodorant

and moisturizing soaps (levels 2 and 3) with that of the regular soap (level 1). Then it is appropriate

to use Dunnett’s method as given in (4.4.31). From Sect. 3.7.2, r1 = r2 = r3 = 4, msE = 0.0772,

τ̂2 − τ̂1 = 2.7350, and τ̂3 − τ̂1 = 2.0275. From Table A.10, wD2 = |t |(0.5)
v−1,n−v,α = |t |(0.5)

2,9,0.01 = 3.63,

so the minimum significant difference is

msd = 3.63
√

msE(2/4) = 0.713 .

Hence, the simultaneous 99% confidence intervals are

τ2 − τ1 ∈ (2.7350 ± 0.713) ≈ (2.022, 3.448)

and

τ3 − τ1 ∈ (2.0275 ± 0.713) ≈ (1.314, 2.741) .

One can conclude from these intervals (with overall 99% confidence) that the deodorant soap (soap 2)

loses between 2 and 3.4 g more weight on average than does the regular soap, and the moisturizing

soap loses between 1.3 and 2.7 g more weight on average than the regular soap. We leave it to the

reader to verify that neither the Tukey nor the Bonferroni method would have been preferred for these

contrasts (see Exercise 7). �

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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4.4.6 Combination of Methods

The Bonferroni method is based on the fact that if m individual confidence intervals are obtained, each

with confidence level 100(1 − α
∗)%, then the overall confidence level is at least 100(1 − mα

∗)%. The

same fact can be used to combine the overall confidence levels arising from more than one multiple

comparison procedure.

In Example 4.4.1 (p. 84), the Bonferroni method was used to calculate simultaneous 90% confi-

dence intervals for m = 3 preplanned contrasts. In Example 4.4.2 (p. 86), the analysis was continued

by calculating simultaneous 90% Scheffé intervals for twelve other contrasts. The overall error rate

for these two sets of intervals combined is therefore at most 0.1 + 0.1 = 0.2, giving an overall, or

“experimentwise,” confidence level of at least 100(1 − 0.2)% = 80% for all fifteen intervals together.

Different possible strategies for multiple comparisons should be examined when outlining the

analysis at step (g) of the checklist (Sect. 2.2, p. 7). Suppose that in the above example the overall

level for all intervals (both planned and otherwise) had been required to be at least 90%. We examine

two possible strategies that could have been used. First, the confidence levels for the Bonferroni and

Scheffé contrasts could have been adjusted, dividing α = 0.10 into two pieces, α1 for the preplanned

contrasts and α2 for the others, where α1 + α2 = 0.10. This strategy would have resulted in intervals

that were somewhat wider than the above for all of the contrasts. Alternatively, Scheffé’s method could

have been used with α = 0.10 for all of the contrasts including the three preplanned contrasts. This

strategy would have resulted in wider intervals for the three preplanned contrasts but not for the others.

Both strategies would result in an overall, or experimentwise, confidence level of 90% instead of 80%.

4.4.7 Methods Not Controlling Experimentwise Error Rate

We have introduced four methods of multiple comparisons, each of which allows the experimenter to

control the overall confidence level, and the same methods can be used to control the experimentwise

error rate when multiple hypotheses are to be tested. There exist other multiple comparison procedures

that are more powerful (i.e., that more easily detect a nonzero contrast) but do not control the overall

confidence level nor the experimentwise error rate. While some of these are used quite commonly, we

do not advocate their use. Such procedures include Duncan’s multiple range test, Fisher’s protected

LSD procedure, and the Newman–Keuls method. (For more details, see Hsu 1996.)

4.5 Sample Sizes

Before an experiment can be run, it is necessary to determine the number of observations that should

be taken on each level of each treatment factor (step (h) of the checklist in Sect. 2.2, p. 7). In Sect. 3.6.2,

a method was presented to calculate the sample sizes needed to achieve a specified power of the test

of the hypothesis H0 : τ1 = · · · = τv . In this section we show how to determine the sample sizes to

achieve confidence intervals of specified lengths.

The lengths of confidence intervals decrease as sample sizes increase. Consequently, if the length

of an interval is specified, it should be possible to calculate the required sample sizes, especially when

these are equal. However, there is a problem. Since the experimental data have not yet been collected,

the value of the mean squared error is not known. As in Sect. 3.6.2, if the value of the mean squared

error can be reasonably well be guessed at, either from previous experience or from a pilot study, then

a trial and error approach to the problem can be followed, as illustrated in the next example.

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Example 4.5.1 Bean-soaking experiment

Suppose we were to plan an experiment to compare the effects of v = 5 different soaking times on the

growth rate of mung bean seeds. The response variable will be the length of a shoot of a mung bean

seed 48 hours after soaking. Suppose that a pilot experiment has indicated that the mean square for

error is likely to be not more than 10 mm2, and suppose that we would like a set of 95% simultaneous

confidence intervals for pairwise differences of the soaking times, with each interval no wider than

6 mm (that is, the half width or minimum significant difference should be no greater than 3 mm).

The formula for each of the simultaneous confidence intervals for pairwise comparisons using

Tukey’s method of multiple comparisons is given by (4.4.27) p. 88. For equal sample sizes, the interval

half width, or minimum significant difference, is required to be at most 3 mm; that is, we require

msd = wT

√
10

(
1

r
+ 1

r

)
≤ 3 ,

where wT = q5,5r−5,.05/
√

2 or, equivalently,

q2
5,5r−5,.05 ≤ 0.9r .

Adopting a trial-and-error approach, we guess a value for r , say r = 10. Then, from Table A.8, we find

q2
5,45,.05 ≈ 4.032 = 16.24, which does not satisfy the requirement that q2 ≤ 0.9r = 9. A larger value

for r is needed, and we might try r = 20 next. The calculations are most conveniently laid out in table

form, as follows.
r 5r − 5 q2

5,5r−5,0.05 0.9r Action

10 45 4.032 = 16.24 9.00 Increase r

20 95 3.952 = 15.60 18.00 Decrease r

15 70 3.972 = 15.76 13.50 Increase r

18 85 3.962 = 15.68 16.20 Decrease r

17 80 3.962 = 15.68 15.30

If r = 17 observations are taken on each of the five soaking times, and if the mean square for error is

approximately 10 mm2 in the main experiment, then the 95% Tukey simultaneous confidence intervals

for pairwise comparisons will be a little over the required 6 mm in length. If r = 18 observations are

taken, the interval will be a little shorter than the 6 mm required. If the cost of the experiment is high,

then r = 17 would be selected; otherwise, r = 18 might be preferred.

Trial and error procedures such as that illustrated in Example 4.5.1 for Tukey’s method of multiple

comparisons can be used for any of the other multiple comparison methods to obtain the approximate

sample sizes required to meet the objectives of the experiment. The same type of calculation can be

done for unequal sample sizes, provided that the relative sizes are specified, for example r1 = 2r2 =
2r3 = 2r4.

Unless more information is desired on some treatments than on others, or unless costs or variances

are unequal, it is generally advisable to select equal sample sizes whenever possible. Choosing equal

sample sizes produces two benefits! Confidence intervals for pairwise comparisons are all the same

length, which makes them easier to compare, and the multiple comparison and analysis of variance

procedures are less sensitive to an incorrect assumption of normality of the error variables.

Quite often, the sample size calculation will reveal that the required number of observations is too

large to meet the budget or the time restrictions of the experiment. There are several possible remedies:
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(a) Refine the experimental procedure to reduce the likely size of msE,

(b) Omit one or more treatments,

(c) Allow longer confidence intervals,

(d) Allow a lower confidence level.

4.6 Using SAS Software

In this section we illustrate how to use the SAS software to generate information for confidence

intervals and hypothesis tests for individual contrasts and means and also for the multiple comparison

procedures. We use the data from the battery experiment of Sect. 2.5.2 (p. 24).

A sample SAS program to analyze the data is given in Table 4.1. As in Chap. 3, line numbers have

been included for reference but are not part of the SAS program. A data set BATTERY, with variables

TYPE, LPUC and ORDER, is created from the statements in lines 1–9. The treatment factor is the type

of battery TYPE, the response variable is the life per unit cost LPUC, and the one-way analysis of

variance model (3.3.1) was used for the analysis. Lines 10–12 generate the analysis of variance table

shown in the top of Fig. 4.1.

4.6.1 Inferences on Individual Contrasts

The SAS statements ESTIMATE and CONTRAST are part of the GLM procedure and are used for

making inferences concerning specific contrasts.

The ESTIMATE statements (lines 13–15 of Table 4.1) generate information for constructing confi-

dence intervals or conducting hypothesis tests for individual contrasts. Each of the three ESTIMATE

statements includes a user-selected contrast name in single quotes, together with the name of the factor

for which the effects of levels are to be compared, and the coefficients of the contrast to be estimated.

Table 4.1 SAS program for the battery experiment: contrasts and multiple comparisons

Line SAS Program

1 DATA BATTERY;

2 INPUT TYPE LPUC ORDER;

3 LINES;

4 1 611 1

5 2 923 2

6 1 537 3

7 : : :

8 3 413 16

9 ;

10 PROC GLM;

11 CLASS TYPE;

12 MODEL LPUC = TYPE;

13 ESTIMATE ’DUTY’ TYPE 1 1 -1 -1 / DIVISOR = 2;

14 ESTIMATE ’BRAND’ TYPE 1 -1 1 -1 / DIVISOR = 2;

15 ESTIMATE ’INTERACTN’ TYPE 1 -1 -1 1 / DIVISOR = 2;

16 CONTRAST ’BRAND’ TYPE 1 -1 1 -1;

17 LSMEANS TYPE / ADJUST = TUKEY CL PDIFF ALPHA = 0.01;

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Fig. 4.1 Analysis of
variance and output from
the CONTRASTS and
ESTIMATE statements

If the contrast coefficients are to be divided by a constant, this is indicated by means of the DIVISOR

option. The information generated by these statements is shown in the bottom section of Fig. 4.1.

The columns show the contrast name, the contrast estimate �ci yi., the standard error
√

msE(�c2
i /ri )

for the estimate, the value of the t-statistic for testing the null hypothesis that the contrast is zero

(see (4.3.13), p. 77), and the corresponding p-value for a two-tailed test. For each of the contrasts

shown in Fig. 4.1, the p-value is at most 0.0006, indicating that all three contrasts are significantly

different from zero for any choice of individual significance level α
∗ greater than 0.0006. The overall

and individual significance levels should be selected prior to analysis. The parameter estimates and

standard errors can be used to construct confidence intervals by hand, using the critical coefficient for

the selected multiple comparison methods (see also Sect. 4.6.2).

The CONTRAST statement in line 16 of Table 4.1 generates the information shown in the middle

portion of Fig. 4.1 that is needed in (4.3.15), p. 77, for testing the single null hypothesis that the brand

contrast is zero versus the alternative hypothesis that it is not zero. The “F Value” of 52.63 is the

square of the “t Value” of −7.25 (up to rounding error) for the brand contrast generated by the

ESTIMATE statement, the two tests (4.3.13) and (4.3.15) being equivalent.

4.6.2 Multiple Comparisons

The LSMEANS statement (line 17) in the GLM procedure in Table 4.1 can be used to generate the

observed least squares means yi. for each level of a factor, and to implement the multiple comparisons

procedures introduced in Sect. 4.4. Inclusion of the options ADJUST=TUKEY, PDIFF and CL causes

the SAS software to use the Tukey method to compare the effects of each pair of levels, providing both

p-values for simultaneous testing and confidence limits for simultaneous estimation of all pairwise

comparisons. Individual confidence intervals for each treatment mean are also provided as a conse-

quence of the CL option. The option ALPHA=0.01 sets the confidence level at 99%, both for Tukey’s
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Fig. 4.2 Tukey’s method
for the battery experiment

method for the simultaneous pairwise comparisons and for the individual confidence intervals for each

treatment mean. Part of the corresponding SAS output is given in Fig. 4.2.

Other methods of multiple comparisons can also be requested as options in the LSMEANS statement

of the GLM procedure. For example, the options ADJUST=BON and ADJUST=SCHEFFE request

all pairwise comparisons using the methods of Bonferroni and Scheffé, respectively. The option

ADJUST=DUNNETT requests Dunnett’s 2-sided method of comparing all treatments with a con-

trol, the lowest treatment level serving as the control by default. To explicitly specify level 1, say,

as the control, replace PDIFF with PDIFF=CONTROL(’1’). Similarly, replacing PDIFF with

PDIFF=CONTROLU(’1’) requests simultaneous lower bounds for the treatment-versus-control con-

trasts τi − τ1 by Dunnett’s method and is useful for “upper-tailed"alternative hypotheses—namely, for

showing which treatments have a larger effect than the control treatment (coded 1). Likewise, the option

PDIFF=CONTROLL(’1’) provides upper bounds useful for “lower-tailed" alternatives—namely, for

showing which treatments have a smaller effect than the control treatment (coded 1).

4.7 Using R Software

In this section we illustrate how to use the R software to generate information for confidence intervals

and hypothesis tests for individual contrasts and means and also for the multiple comparison procedures.

We use the data from the battery experiment of Sect. 2.5.2 (p. 24). The treatment factor is type of battery

Type, the response variable is the life per unit cost LPUC, and the one-way analysis of variance

model (3.3.1) was used for the analysis.

A sample R program to analyze the data is given in Table 4.2. Line numbers have been included

for the sake of reference but they are not part of the R program. The data are read from file by the

statement in line 1 of the R code. In line 2, the data set is augmented with a new variable, fType,

created by converting the numerical variable Type to a factor variable. The head command in line 3

displays the first 3 lines of the data set. The function aov in line 4 fits the one-way analysis of variance

model (3.3.1) to the data, saving the results as the object model1 for use by subsequent R functions.

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 4.2 R program for the battery experiment

Line R Code

1 battery.data = read.table("data/battery.txt", header=T)

2 battery.data$fType = factor(battery.data$Type)

3 head(battery.data, 3)

4 model1 = aov(LPUC ˜ fType, data=battery.data) # Fit aov model

5 anova(model1) # Display 1-way ANOVA

6 # Individual contrasts: estimates, CIs, tests

7 library(lsmeans)

8 lsmType = lsmeans(model1, ˜ fType) # Compute and save lsmeans

9 levels(battery.data$fType)

10 summary(contrast(lsmType, list(Duty=c( 1, 1,-1,-1)/2,

11 Brand=c( 1,-1, 1,-1)/2,

12 DB=c( 1,-1,-1, 1)/2)),

13 infer=c(T,T), level=0.95, side="two-sided")

14 # Multiple comparisons

15 confint(lsmType, level=0.90) # Display lsmeans and 90

16 # Tukey’s method

17 summary(contrast(lsmType, method="pairwise", adjust="tukey"),

18 infer=c(T,T), level=0.99, side="two-sided")

19 # Dunnett’s method

20 summary(contrast(lsmType, method="trt.vs.ctrl", adjust="mvt", ref=1),

21 infer=c(T,T), level=0.99, side="two-sided")

The anova(model1) function in line 5 generates the analysis of variance data shown in the top of

Table 4.3.

4.7.1 Inferences on Individual Contrasts

The lsmeans package, loaded in line 7, provides the functionality for computing least squares means

and using these for inferences on treatment contrasts. The lsmeans statement (line 8) uses the

results of the previously fitted model (line 4) to compute least squares means for each battery type

(i.e. for each level of fType), saving the results as lsmType. The levels command in line 9

displays the levels of the factor fType in order: "1" "2" "3" "4". Using the least squares means

saved in line 8, the summary and contrast functions of the lsmeans package (lines 10–13 of

Table 4.2) are coupled to generate least squares estimates, tests, and confidence intervals for specified

treatment contrasts. For each of these contrasts, the coefficients correspond to the respective levels

of fType displayed by line 9. In particular, the contrast function inputs the least squares means

lsmType for each battery type plus a list of contrasts, including a name and the coefficients for

each, and would generate the information in the middle of Table 4.3 except the confidence limits. The

confidence limits are obtained by wrapping the contrast function in the summary function, for

which the option infer=c(T,T) requests confidence intervals and tests. The confidence level is

optionally specified to be 95% (the default). Two-sided confidence intervals and tests (the default)

are also optionally specified, whereas side="<" would request upper confidence limits and specify

one-sided alternative hypotheses corresponding to the contrasts being less than zero, for example.
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Table 4.3 R output: analysis of variance, individual contrasts, and Tukey’s method

> anova(model1) # Display 1-way ANOVA

Analysis of Variance Table

Response: LPUC

Df Sum Sq Mean Sq F value Pr(>F)

fType 3 427915 142638 60.2 1.7e-07

Residuals 12 28412 2368

> # Individual contrasts: estimates, CIs, tests

> library(lsmeans)

> lsmType = lsmeans(model1, ˜ fType) # Compute and save lsmeans

> levels(battery.data$fType)

[1] "1" "2" "3" "4"

> summary(contrast(lsmType, list(Duty=c( 1, 1,-1,-1)/2,

+ Brand=c( 1,-1, 1,-1)/2,

+ DB=c( 1,-1,-1, 1)/2)),

+ infer=c(T,T), level=0.95, side="two-sided")

contrast estimate SE df lower.CL upper.CL t.ratio p.value

Duty 251.00 24.33 12 197.99 304.01 10.317 <.0001

Brand -176.50 24.33 12 -229.51 -123.49 -7.255 <.0001

DB -113.25 24.33 12 -166.26 -60.24 -4.655 0.0006

Confidence level used: 0.95

> # Tukey’s method

> summary(contrast(lsmType, method="pairwise", adjust="tukey"),

+ infer=c(T,T), level=0.99, side="two-sided")

contrast estimate SE df lower.CL upper.CL t.ratio p.value

1 - 2 -289.75 34.407 12 -423.6021 -155.898 -8.421 <.0001

1 - 3 137.75 34.407 12 3.8979 271.602 4.004 0.0082

1 - 4 74.50 34.407 12 -59.3521 208.352 2.165 0.1882

2 - 3 427.50 34.407 12 293.6479 561.352 12.425 <.0001

2 - 4 364.25 34.407 12 230.3979 498.102 10.586 <.0001

3 - 4 -63.25 34.407 12 -197.1021 70.602 -1.838 0.3035

Confidence level used: 0.99

Conf-level adjustment: tukey method for comparing a family of 4 estimates

P value adjustment: tukey method for comparing a family of 4 estimates

Lines 6–13 of the R code are reproduced in the middle of Table 4.3, along with the corresponding

output. The output for each listed contrast includes the contrast name, the estimate �ci yi., the standard

error
√

msE(�c2
i /ri ) of the estimate, the number of error degrees of freedom, the 95% confidence

interval for the treatment contrast, the value of the t-statistic for testing the null hypothesis that the

contrast is zero (see (4.3.13) p. 77), and the corresponding p-value for a two-tailed test. For each of

the contrasts shown in Table 4.3, the p-value is less than 0.0006, indicating that all three contrasts

are significantly different from zero for any choice of individual significance level α
∗ greater than

0.0006. The overall and individual significance levels should be selected prior to analysis. For multiple
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comparisons including non-pairwise comparisons, the contrast estimates and standard errors could be

used to construct confidence intervals by hand, using the critical coefficient for the selected multiple

comparison methods (see Sect. 4.6.2). Pairwise comparisons will be illustrated in the next section.

4.7.2 Multiple Comparisons

Multiple comparisons procedures introduced in Sect. 4.4 are implemented by the R code in lines 14–

21 of Table 4.2. The least squares means package lsmeans, loaded in line 7, provides functions to

generate the observed least squares means yi. for each level of a factor, and also to implement the

multiple comparisons procedures introduced in Sect. 4.4. In line 8, lsmeans uses the information

stored in model1 to compute the least squares mean for each battery type, saving the least squares

means as lsmType for subsequent use. The confint function in line 15 would display the least

squares means and corresponding individual 90% confidence intervals for the treatment means (not

shown).

Multiple comparison methods can be implemented by coupling the summary and contrast

functions, as illustrated for Tukey’s method in lines 16–18. These code lines and the corresponding

output are shown in the bottom of Table 4.3. The option method="pairwise" requests all pairwise

comparisons. The contrast statement embedded in line 17 would apply Tukey’s method to test

whether each pairwise comparison is zero. One also gets the corresponding Tukey confidence intervals

by including the summary function and its options, where infer=c(T,T) requests confidence

intervals as well as tests,level=0.99 sets the confidence level, andside="two-sided" requests

two-sided confidence intervals and tests. Tukey’s method and two-sided inferences are the defaults for

all pairwise comparisons, so adjust="tukey" and side="two-sided" are redundant here,

but one can replace "tukey" with "scheffe" or "bonferroni" to apply the corresponding

method, or with "none" for no multiple comparisons adjustment. The default confidence level is

95%. Using method="revpairwise" reverses the order of the pairwise comparisons, considering

τ j − τi rather than τi − τ j .

Implementation of Dunnett’s method for all treatment-versus-control comparisons is similar and

illustrated by lines 19–21 of Table 4.2. The option method="trt.vs.ctrl" yields all treatment-

versus-control comparisons (not shown). Dunnett’s method uses critical values from the multivariate

t-distribution, corresponding to adjust="mvt". These critical values are computed by simulation,

so the results vary slightly from run to run unless a simulation seed is specified. Also, if the number

of treatments is large, implementation of R functions for the multivariate t-distribution may be slow

or simply not work, so the default option adjust="dunnettx" provides an approximation of

Dunnett’s method for two-sided confidence intervals that runs faster and dependably, though it is only

applicable when the contrast estimates have pairwise correlations of 0.5 such as in the equireplicate case.

The first level of the factor, "1", which happens to be level 1 in this case, is the control by default; the

syntax ref=1 illustrates how to specify the first (or any) level as the control. Also, "two-sided"

is the default for confidence intervals and tests, but one can specify side="<" for the one-sided

alternative HA : τi < τ1 and the corresponding upper confidence bound for τi − τ1, or side=">" for

the alternative HA : τi > τ1 and the corresponding lower confidence bound for τi − τ1.

For additional functionality for multiple comparisons procedures, see the multiple comparisons

package multcomp.
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Exercises

1. Buoyancy experiment

Consider conducting an experiment to investigate the question, “Is the buoyancy of an object in

water affected by different concentrations of salt in the water?”

(a) Complete steps (a)–(d) of the checklist (p. 7) in detail. Specify any preplanned contrasts or

functions that should be estimated. State, with reasons, which, if any, methods of multiple

comparisons will be used.

(b) Run a small pilot experiment to obtain a preliminary estimate of σ
2.

(c) Finish the checklist.

2. Cotton-spinning experiment, continued

For the cotton-spinning experiment of Sect. 2.3, p. 13, identify any contrasts or functions that you

think might be interesting to estimate. For any contrasts that you have selected, list the correspond-

ing contrast coefficients.

3. Meat cooking experiment, continued

The meat cooking experiment was described in Exercise 14 of Chap. 3, and the data were given in

Table 3.14, p. 68.

(a) Compare the effects of the six treatments, pairwise, using Scheffé’s method of multiple com-

parisons and a 95% overall confidence level.

(b) Consider µ + (τ1 + τ4)/2, µ + (τ2 + τ5)/2, and µ + (τ3 + τ6)/2. What do these represent?

Make pairwise comparisons of these three expressions, using Scheffé’s method of multiple

comparisons and a 95% overall confidence level for all treatment contrasts. Interpret the results.

4. Reaction time experiment

(L. Cai, T. Li, Nishant, and A. van der Kouwe, 1996)

The experiment was run to compare the effects of auditory and visual cues on speed of response

of a human subject. A personal computer was used to present a “stimulus” to a subject, and the

reaction time required for the subject to press a key was monitored. The subject was warned that

the stimulus was forthcoming by means of an auditory or a visual cue. The experimenters were

interested in the effects on the subjects’ reaction time of the auditory and visual cues and also in

different elapsed times between cue and stimulus. Thus, there were two different treatment factors:

“cue stimulus” at two levels “auditory” or “visual,” and “elapsed time between cue and stimulus”

at three levels “five,” “ten,” or “fifteen” seconds. This gave a total of six treatment combinations,

which can be coded as
1 = auditory, 5 sec 4 = visual, 5 sec

2 = auditory, 10 sec 5 = visual, 10 sec

3 = auditory, 15 sec 6 = visual, 15 sec

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 4.4 Reaction times, in seconds, for the reaction time experiment—(order of collection in parentheses)

Treatments

1 2 3 4 5 6

0.204 (9) 0.167 (3) 0.202 (13) 0.257 (7) 0.283 (6) 0.256 (1)

0.170 (10) 0.182 (5) 0.198 (16) 0.279 (14) 0.235 (8) 0.281 (2)

0.181 (18) 0.187 (12) 0.236 (17) 0.269 (15) 0.260 (11) 0.258 (4)

The results of a pilot experiment, involving only one subject, are shown in Table 4.4. The reaction

times were measured by the computer and are shown in seconds. The order of observation is shown

in parentheses.

(a) Identify a set of contrasts that you would find particularly interesting in this experiment. (Hint:

A comparison between the auditory treatments and the visual treatments might be of interest).

These are your preplanned contrasts.

(b) Plot the data. What does the plot suggest about the treatments?

(c) Test the hypothesis that the treatments do not have different effects on the reaction time against

the alternative hypothesis that they do have different effects.

(d) Calculate a set of simultaneous 90% confidence intervals for your preplanned contrasts, using

a method or methods of your choice. State your conclusions.

5. Trout experiment, continued

Exercise 15 of Chap. 3 (p. 67) concerns a study of the effects of four levels of sulfamerazine (0, 5,

10, 15 g per 100 lb of fish) on the hemoglobin content of trout blood. An analysis of variance test

rejected the hypothesis that the four treatment effects are the same at significance level α = 0.01.

(a) Compare the four treatments using Tukey’s method of pairwise comparisons and a 99% overall

confidence level.

(b) Compare the effect of no sulfamerazine on the hemoglobin content of trout blood with the

average effect of the other three levels. The overall confidence level of all intervals in parts (a)

and (b) should be at least 98%.

6. Battery experiment, continued

In Example 4.4.3 (page 89), Tukey’s method is used to obtain a set of 95% simultaneous confidence

intervals for the pairwise differences τi − τs . Verify that this method gives shorter confidence

intervals than would either of the Bonferroni or Scheffé methods (for v = 4 and r = 4).

7. Soap experiment, continued

The soap experiment was described in Sect. 2.5.1, p. 20, and an analysis was given in Sect. 3.7.2,

p. 50.

(a) Suppose that the experimenter had been interested only in the contrast τ1 − 1
2 (τ2 + τ3), which

compares the weight loss for the regular soap with the average weight loss for the other two

soaps. Calculate a confidence interval for this single contrast.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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(b) Test the hypothesis that the regular soap has the same average weight loss as the average

of the other two soaps. Do this via your confidence interval in part (a) and also via (4.3.13)

and (4.3.15).

(c) In Example 4.4.5 (p. 91), Dunnett’s method was used for simultaneous 99% confidence intervals

for two preplanned treatment-versus-control contrasts. Would either or both of the Bonferroni

and Tukey methods have given shorter intervals?

(d) Which method would be the best if all pairwise differences are required? Calculate a set of

simultaneous 99% confidence intervals for all of the pairwise differences. Why are the intervals

longer than those in part (c)?

8. Trout experiment, continued

(a) For the trout experiment in Exercise 15 of Chap. 3 (see p. 67), test the hypotheses that the linear

and quadratic trends in hemoglobin content of trout blood due to the amount of sulfamerazine

added to the diet is negligible. State the overall significance level of your tests.

(b) Regarding the absence of sulfamerazine in the diet as the control treatment, calculate simul-

taneous 99% confidence intervals for the three treatment-versus-control comparisons. Which

method did you use and why?

(c) What is the overall confidence level of the intervals in part (b) together with those in Exercise 5?

Is there a better strategy than using three different procedures for the three sets of intervals?

Explain.

9. Battery experiment, continued

Suppose the battery experiment of Sect. 2.5.2 (p. 24) is to be repeated. The experiment involved

four treatments, and the error standard deviation is estimated from that experiment to be about

48.66 minutes per dollar (minute/dollar).

(a) Calculate a 90% upper confidence limit for the error variance σ
2.

(b) How large should the sample sizes be in the new experiment if Tukey’s method of pairwise

comparisons is to be used and it is desired to obtain a set of 95% simultaneous confidence

intervals of length at most 100 minutes per dollar?

(c) How large should the sample sizes be in the new experiment if Scheffé’s method is to be

used to obtain a set of 95% simultaneous confidence intervals for various contrasts and if the

confidence interval for the duty contrast is to be of length at most 100 minute per dollar?

10. Trout experiment, continued

Consider again the trout experiment in Exercise 15 of Chap. 3.

(a) Suppose the experiment were to be repeated. Suggest the largest likely value for the error mean

square msE.

(b) How many observations should be taken on each treatment so that the length of each interval in

a set of simultaneous 95% confidence intervals for pairwise comparisons should be at most 2 g

per 100 ml?

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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5.1 Introduction

Throughout the two previous chapters, we discussed experiments whose data could be described by

the one-way analysis of variance model (3.3.1), that is,

Yi t = μ + τi + ǫi t ,

ǫi t ∼ N (0,σ2) ,

ǫi t
′s are mutually independent ,

t = 1, . . . , ri , i = 1, . . . , v .

This model implies that the response variables Yi t are mutually independent and have a normal distri-

bution with mean μ + τi and variance σ2, that is, Yi t ∼ N (μ + τi ,σ
2). For a given experiment, the

model is selected in step (f) of the checklist using any available knowledge about the experimental

situation, including the anticipated major sources of variation, the measurements to be made, the type

of experimental design selected, and the results of any pilot experiment. However, it is not until the

data have been collected that the adequacy of the model can be checked. Even if a pilot experiment has

been used to help select the model, it is still important to check that the chosen model is a reasonable

description of the data arising from the main experiment.

Methods of checking the model assumptions form the subject of this chapter, together with some

indications of how to proceed if the assumptions are not valid. We begin by presenting a general

strategy, including the order in which model assumptions should be checked. For checking model

assumptions, we rely heavily on residual plots. We do so because while examination of residual plots

is more subjective than would be testing for model lack-of-fit, the plots are often more informative

about the nature of the problem, the consequences, and the corrective action.

5.2 Strategy for Checking Model Assumptions

In this section we discuss strategy and introduce the notions of residuals and residual plots. A good

strategy for checking the assumptions about the model is to use the following sequence of checks.

• Check the form of the model—are the mean responses for the treatments adequately described by

E(Yi t ) = μ + τi , i = 1, . . . , v?

© Springer International Publishing AG 2017
A. Dean et al., Design and Analysis of Experiments,
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• Check for outliers—are there any unusual observations (outliers)?

• Check for independence—do the error variables ǫi t appear to be independent?

• Check for constant variance—do the error variables ǫi t have similar variances for each treatment?

• Check for normality—do the error variables ǫi t appear to be a random sample from a normal

distribution?

For all of the fixed-effects models considered in this book, these same assumptions should be checked,

except that E(Yi t ) differs from model to model. The assumptions of independence, equal variance,

and normality are the error assumptions mentioned in Chap. 3.

5.2.1 Residuals

The assumptions on the model involve the error variables, ǫi t = Yi t − E(Yi t ), and can be checked by

examination of the residuals. The i t th residual êi t is defined as the observed value of Yi t − Ŷi t , where

Ŷi t is the least squares estimator of E[Yi t ], that is,

êi t = yi t − ŷi t .

For the one-way analysis of variance model (3.3.1), E[Yi t ] = μ + τi , so the i t th residual is

êi t = yi t − (μ̂ + τ̂i ) = yi t − yi. .

While one can simply use the residuals, we prefer to work with the standardized residuals, since

standardization facilitates the identification of outliers. The standardization we use is achieved by

dividing the residuals by their standard deviation, that is, by
√

ssE/(n − 1). The standardized residuals,

zi t = êi t√
ssE/(n − 1)

,

then have sample variance equal to 1.0. Residuals standardized in this simplistic way are scaled

residuals. Readers may prefer to use Studentized residuals, obtained by dividing each residual by its

estimated standard error, either including or excluding the corresponding observation from the model

fit. However, there is little distinction between these various approaches for analysis of variance models

for data that is balanced or nearly so.

If the assumptions on the model are correct, the standardized error variables ǫi t/σ are independently

distributed with a N (0, 1) distribution, so the observed values ei t/σ = (yi t − (μ + τi ))/σ would

constitute independent observations from a standard normal distribution. Although the standardized

residuals are dependent and involve estimates of both ei t and σ, their behavior should be similar.

Consequently, methods for evaluating the model assumptions using the standardized residuals look for

deviations from patterns that would be expected of independent observations from a standard normal

distribution.

5.2.2 Residual Plots

A residual plot is a plot of the standardized residuals zi t against the levels of another variable, the choice

of which depends on the assumption being checked. In Fig. 5.1, we show a plot of the standardized

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 5.1 Data for the trout experiment

Code Hemoglobin (grams per 100 ml) yi.

1 6.7 7.8 5.5 8.4 7.0 7.8 8.6 7.4 5.8 7.0 7.20

2 9.9 8.4 10.4 9.3 10.7 11.9 7.1 6.4 8.6 10.6 9.33

3 10.4 8.1 10.6 8.7 10.7 9.1 8.8 8.1 7.8 8.0 9.03

4 9.3 9.3 7.2 7.8 9.3 10.2 8.7 8.6 9.3 7.2 8.69

Source: Gutsell (1951). Copyright c© 1951 International Biometric Society. Reprinted with permission

residuals against the levels of the treatment factor for the trout experiment. Plots like this are useful

for evaluating the assumption of constant error variance as well as the adequacy of the model.

Example 5.2.1 Constructing a residual plot: trout experiment

The trout experiment was described in Exercise 15 of Chap. 3. There was one treatment factor (grams

of sulfamerazine per 100 lb of fish) with four levels coded 1, 2, 3, 4, each observed r = 10 times. The

response variable was grams of hemoglobin per 100 ml of trout blood. The n = 40 data values are

reproduced in Table 5.1 together with the treatment means.

Using the one-way analysis of variance model (3.3.1), it can be verified that ssE = 56.471. The

residuals êi t = yi t − yi. and the standardized residuals zi t = êi t/
√

ssE/(n − 1) are shown in Table 5.2.

For example, the observation y11 = 6.7 yields the residual

ê11 = 6.7 − 7.2 = −0.5

and the standardized residual

z11 = −0.5/
√

56.471/39 = −0.42

to two decimal places.

A plot of the standardized residuals against treatments is shown in Fig. 5.1. The residuals sum to

zero for each treatment since �t (yi t − yi.) = 0 for each i = 1, . . . , v. The standardized residuals seem

fairly well scattered around zero, although the spread of the residuals for treatment 2 seems a little

larger than the spread for the other three treatments. This could be interpreted as a sign of unequal

variances of the error variables or that the data values having standardized residuals 2.14 and −2.43

Fig. 5.1 Plot of
standardized residuals for
the trout experiment
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Table 5.2 Residuals and standardized residuals for the trout experiment

Treatment Residuals

1 −0.50 0.60 −1.70 1.20 −0.20

0.60 1.40 0.20 −1.40 −0.20

2 0.57 −0.93 1.07 −0.03 1.37

2.57 −2.23 −2.93 −0.73 1.27

3 1.37 −0.93 1.57 −0.33 1.67

0.07 −0.23 −0.93 −1.23 −1.03

4 0.61 0.61 −1.49 −0.89 0.61

1.51 0.01 −0.09 0.61 −1.49

Treatment Standardized residuals

1 −0.42 0.50 −1.41 1.00 −0.17

0.50 1.16 0.17 −1.16 −0.17

2 0.47 −0.77 0.89 −0.02 1.14

2.14 −1.85 −2.43 −0.61 1.06

3 1.14 −0.77 1.30 −0.27 1.39

0.06 −0.19 −0.77 −1.02 −0.86

4 0.51 0.51 −1.24 −0.74 0.51

1.25 0.01 −0.07 0.51 −1.24

are outliers, or it could be attributed to chance variation. Methods for checking for outliers and equality

of variances will be discussed in Sects. 5.4 and 5.6, respectively. �

5.3 Checking the Fit of the Model

The first assumption to be checked is the assumption that the model E(Yi t ) for the mean response is

correct. One purpose of running a pilot experiment is to choose a model that is a reasonable description

of the data. If this is done, the model assumption checks for the main experiment should show no

problems. If the model for mean response does not adequately fit the data, then there is said to be model

lack of fit. If this occurs and if the model is changed accordingly, then any stated confidence levels and

significance levels will only be approximate. This should be taken into account when decisions are to

be made based on the results of the experiment.

In general, the fit of the model is checked by plotting the standardized residuals versus the levels

of each independent variable (treatment factor, block factor, or covariate) included in the model. Lack

of fit is indicated if the residuals exhibit a nonrandom pattern about zero in any such plot, being too

often positive for some levels of the independent variable and too often negative for others.

For model (3.3.1), the only independent variable included in the model is the treatment factor. Since

the residuals sum to zero for each level of the treatment factor, lack of fit would only be detected if

there were a number of unusually large or small observations. However, lack of fit can also be detected

by plotting the standardized residuals against the levels of factors that were omitted from the model.

For example, for the trout experiment, if the standardized residuals were plotted against the age of

the corresponding fish and if the plot were to show a pattern, then it would indicate that age should

have been included in the model as a covariate. A similar idea is discussed in Sect. 5.5 with respect to

checking for independence.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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5.4 Checking for Outliers

An outlier is an observation that is much larger or much smaller than expected. This is indicated by a

residual that has an unusually large positive or negative value. Outliers are fairly easy to detect from

a plot of the standardized residuals versus the levels of the treatment factors. Any outlier should be

investigated. Sometimes such investigation will reveal an error in recording the data, and this can be

corrected. Otherwise, outliers may be due to the error variables not being normally distributed, or

having different variances, or an incorrect specification of the model.

If all of the model assumptions hold, including normality, then approximately 68% of the stan-

dardized residuals should be between −1 and +1, approximately 95% between −2 and +2, and

approximately 99.7% between −3 and +3. If there are more outliers than expected under normality,

then the true confidence levels are lower than stated and the true significance levels are higher.

Example 5.4.1 Checking for outliers: battery experiment

In the battery experiment of Sect. 2.5.2 (p. 24), four observations on battery life per unit cost were

collected for each of four battery types. Figure 5.2 shows the standardized residuals plotted versus

battery type for the data as originally entered into the computer for analysis using model (3.3.1). This

plot shows two related anomalies. There is one apparent outlier for battery type 2, the residual value

being −2.98. Also, all of the standardized residuals for the other three battery types are less than one

in magnitude. This is many more than the 68% expected.

An investigation of the outlier revealed a data entry error for the corresponding observation—a life

length of 473 minutes was typed, but the recording sheet for the experiment showed the correct value

to be 773 minutes. The unit cost for battery type 2 was $0.935 per battery, yielding the erroneous value

of 506 minutes per dollar for the life per unit cost, rather than the correct value of 827. After correcting

the error, the model was fitted again and the standardized residuals were replotted, as shown in Fig. 5.3.

Observe how correcting the single data entry error corrects both problems observed in Fig. 5.2.

Not only is there no outlier, but the distribution of the 16 standardized residuals about zero is as one

might anticipate for independent observations from a standard normal distribution—about a third of

the standardized residuals exceed one in magnitude, and all are less than two in magnitude. The two

anomalies are related, since correcting the data entry error makes ssE smaller and the standardized

residuals correspondingly larger. �

For an outlier like that shown in Fig. 5.2, the most probable cause of the problem is a measurement

error, a recording error, or a transcribing error. When an outlier is detected, the experimenter should

Fig. 5.2 Original residual
plot for the battery
experiment
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Fig. 5.3 Residual plot
after data correction for the
battery experiment
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look at the original recording sheet to see whether the original data value has been copied incorrectly

at some stage. If the error can be found, then it can be corrected. When no obvious cause can be found

for an outlier, the data value should not automatically be discarded, since it may be an indication of an

occasional erratic behavior of a treatment. For example, had it not been due to a typographical error,

the outlier for battery type 2 in the previous example might have been due to a larger variability in the

responses for battery type 2.

The experimenter has to decide whether to include the unusual value in the analysis or whether

to omit it. First, the data should be reanalyzed without the outlying value. If the conclusions of the

experiment remain the same, then the outlier can safely be left in the analysis. If the conclusions change

dramatically, then the outlier is said to be influential, and the experimenter must make a judgment as to

whether the outlying observation is likely to be an experimental error or whether unusual observations

do occur from time to time. If the experimenter decides on the former, then the analysis should be

reported without the outlying observation. If the experimenter decides on the latter, then the model is

not adequate to describe the experimental situation, and a more complicated model would be needed.

5.5 Checking Independence of the Error Terms

Since the checks for the constant variance and normality assumptions assume that the error terms are

independent, a check for independence should be made next. The most likely cause of nonindepen-

dence in the error variables is the similarity of experimental units close together in time or space.

The independence assumption is checked by plotting the standardized residuals against the order in

which the corresponding observations were collected and against any spatial arrangement of the cor-

responding experimental units. If the independence assumption is satisfied, the residuals should be

randomly scattered around zero with no discernible pattern. Such is the case for Fig. 5.4 for the battery

experiment. If the plot were to exhibit a strong pattern, then this would indicate a serious violation of

the independence assumption, as illustrated in the following example.

Example 5.5.1 Checking independence: balloon experiment

The experimenter who ran the balloon experiment in Exercise 12 of Chap. 3 was concerned about

lack of independence of the observations. She had used a single subject to blow up all the balloons

in the experiment, and the subject had become an expert balloon blower before the experiment was

finished! Having fitted the one-way analysis of variance model (3.3.1) to the data (Table 3.13), she

plotted the standardized residuals against the time order in which the balloons were inflated. The plot

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Fig. 5.4 Residual plot for
the battery experiment
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Fig. 5.5 Residual plot for
the balloon experiment
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is shown in Fig. 5.5. There appears to be a strong downward drift in the residuals as time progresses.

The observations are clearly dependent. �

If an analysis is conducted under the assumptions of model (3.3.1) when, in fact, the error vari-

ables are dependent, the statistical conclusions may be distorted. For example, if errors corresponding

to observations on the same treatment are positively correlated, but errors associated with different

treatments are independently distributed, this artificially increases the power of tests, causing the true

significance levels of tests under model (3.3.1) to be higher than stated, and causing the true confi-

dence levels of confidence intervals to be lower than stated. Conversely, if groups of observations on

different treatments (analogous to observations in the same block) have positively correlated errors,

but errors associated with other pairs of observations (analogous to observations in different blocks)

are independent, this tends to inflate the mean squared error and deflate test power, causing the true

significance levels of tests under model (3.3.1) to be lower than stated, and causing the true confidence

levels of confidence intervals to be higher than stated. The problem of dependent errors can be difficult

to correct and a different model would need to be used (e.g. Chap. 17). If there is a clear trend in the

residual plot, such as the linear trend in Fig. 5.5, it may be possible to add terms into the model to

represent a time or space effect. For example, a more complex model that might be adequate for the

balloon experiment is

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_17
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Yi t = μ + τi + γxi t + ǫi t

ǫi t ∼ N (0,σ2)

ǫi t
′s are mutually independent

t = 1, 2, . . . , ri ; i = 1, . . . , v ,

where the variable xi t denotes the time at which the observation was taken and γ is a linear time trend

parameter that must be estimated. Such a model is called an analysis of covariance model and will

be studied in Chap. 9. The assumptions for analysis of covariance models are checked using the same

types of plots as discussed in this chapter. In addition, the standardized residuals should also be plotted

against the values of xi t .

Had the experimenter in the balloon experiment anticipated a run order effect, she could have selected

an analysis of covariance model prior to the experiment. Alternatively, she could have grouped the

observations into blocks of, say, eight observations. Notice that each group of eight residuals in Fig. 5.5

looks somewhat randomly scattered. As mentioned earlier in this chapter, when the model is changed

after the data have been examined, then stated confidence levels and significance levels using that same

data are inaccurate.

If a formal test of independence is desired, the most commonly used test is that of Durbin and

Watson (1951) for time-series data (see Neter et al. 1996, pp. 504–510).

5.6 Checking the Equal Variance Assumption

If the independence assumption appears to be satisfied, then the equal-variance assumption should be

checked. Studies have shown that if the sample sizes r1, . . . , rv are chosen to be equal, then unless one

variance is considerably larger than the others, the significance level of hypothesis tests and confidence

levels of the associated confidence intervals remain close to the stated values. However, if the sample

sizes are unequal, and if the treatment factor levels which are more highly variable in response happen

to have been observed fewer times (i.e. if smaller ri coincide with larger Var(ǫi t ) = σ2
i ), then the

statistical procedures are generally quite liberal, and the experimenter has a greater chance of making

a Type I error in testing than anticipated, and also, the true confidence level of a confidence interval is

lower than intended. On the other hand, if the large ri coincide with large σ2
i , then the procedures are

conservative (significance levels are lower than stated and confidence levels are higher). Thus, unless

there is good knowledge of which treatment factor levels are the more variable, an argument can be

made that the sample sizes should be chosen to be equal.

5.6.1 Detection of Unequal Variances

The most common pattern of nonconstant variance is that in which the error variance increases as the

mean response increases. This situation is suggested when the plot of the standardized residuals versus

the fitted values resembles a megaphone in shape, as in Fig. 5.6. In such a case, one can generally find

a transformation of the data, known as a variance-stabilizing transformation, which will correct the

problem (see Sect. 5.6.2).

If the residual plot indicates unequal variances but not the pattern of Fig. 5.6 (or its mirror image),

then a variance-stabilizing transformation is generally not available. Approximate and somewhat less

powerful methods of data analysis such as those discussed in Sect. 5.6.3 must then be applied.

An unbiased estimate of the error variance σ2
i for the i th treatment is the sample variance of the

residuals for the i th treatment, namely

http://dx.doi.org/10.1007/978-3-319-52250-0_9
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Fig. 5.6 Megaphone-
shaped residual
plot
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2 (5.6.1)

= 1

ri − 1

ri∑

t=1

(yi t − yi.)
2 .

There do exist tests for the equality of variances, but they tend to have low power unless there are

large numbers of observations on each treatment factor level. Also, the tests tend to be very sensitive

to nonnormality. (The interested reader is referred to Neter et al. 1996, p. 763).

A rule of thumb that we shall apply is that the usual analysis of variance F-test and the methods

of multiple comparisons discussed in Chap. 4 are appropriate, provided that the ratio of the largest

of the v treatment variance estimates to the smallest, s2
max/s2

min, does not exceed three. The rule of

thumb is based on simulation studies suggesting that the methods of analysis are appropriate, provided

that the largest ratio of actual variances, σ2
max/σ

2
min, does not exceed three. Since the actual variances

are unknown in practice, we are basing our rule of thumb on the estimates s2
i of the variances. Be

aware, however, that it is possible, and perhaps even likely, for the ratio of extreme variance estimates

s2
max/s2

min to exceed three, even when the model assumptions are correct, making the rule of thumb

conservative.

Example 5.6.1 Comparing variances: trout experiment

Figure 5.1 (p. 105) shows a plot of the standardized residuals against the levels of the treatment factor

for the trout experiment. The plot suggests that the variance of the error variables for treatment 2 might

be larger than the variances for the other treatments. Using the data in Table 3.15, we obtain

i 1 2 3 4

yi. 7.20 9.33 9.03 8.69

s2
i 1.04 2.95 1.29 1.00

so s2
max/s2

min = 2.95, which satisfies our rule of thumb, but only just. Both the standard analysis using

model (3.3.1) and an approximate analysis that does not require equal variances will be discussed in

Example 5.6.3. �

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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5.6.2 Data Transformations to Equalize Variances

Finding a transformation of the data to equalize the variances of the error variables involves finding

some function h(yi t ) of the data so that the model

h(Yi t ) = μ∗ + τ∗
i + ǫ∗

i t

holds and ǫ∗
i t ∼ N (0,σ2) and the ǫ∗

i t ’s are mutually independent for all t = 1, . . . , ri and i = 1, . . . , v.

An appropriate transformation can generally be found if there is a clear relationship between the error

variance σ2
i = Var(ǫi t ) and the mean response E[Yi t ] = μ + τi , for i = 1, . . . , v. If the variance and

the mean increase together, as suggested by the megaphone-shaped residual plot in Fig. 5.6, or if one

increases as the other decreases, then the relationship between σ2
i and μ + τi is often of the form

σ2
i = k(μ + τi )

q , (5.6.2)

where k and q are constants. In this case, the function h(yi t ) should be chosen to be

h(yi t ) =

⎧
⎨
⎩

(yi t )
1−(q/2) if q �= 2,

ln(yi t ) if q = 2 and all yi t ’s are nonzero,

ln(yi t + 1) if q = 2 and some yi t ’s are zero.

(5.6.3)

Here “ln” denotes the natural logarithm, which is the logarithm to the base e. Usually, the value of q

is not known, but a reasonable approximation can be obtained empirically as follows. Substituting the

least squares estimates for the parameters into Eq. (5.6.2) and taking logs of both sides gives

ln(s2
i ) = ln(k) + q(ln(yi.)) .

Therefore, the slope of the line obtained by plotting ln(s2
i ) against ln(yi.) gives an estimate for q. This

will be illustrated in Example 5.6.2.

The value of q is sometimes suggested by theoretical considerations. For example, if the normal

distribution assumed in the model is actually an approximation to the Poisson distribution, then the

variance would be equal to the mean, and q = 1. The square-root transformation h(yi t ) = (yi t )
1/2

would then be appropriate. The binomial distribution provides another commonly occurring case for

which an appropriate transformation can be obtained theoretically. If each Yi t has a binomial distribution

with mean mp and variance mp(1 − p), then a variance-stabilizing transformation is

h(yi t ) = sin−1
√

yi t/m = arcsin
(√

yi t/m
)

.

When a transformation is found that equalizes the variances, then it is necessary to check or recheck

the other model assumptions, since a transformation that cures one problem could cause others. If there

are no problems with the other model assumptions, then analysis can proceed using the techniques of

the previous two chapters, but using the transformed data h(yi t ).

Example 5.6.2 Choosing a transformation: battery experiment

In Sect. 2.5.2, the response variable considered for the battery experiment was “battery life per unit

cost,” and a plot of the residuals versus the fitted values looks similar to Fig. 5.3 and shows fairly

constant error variances.

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 5.3 Life data for the battery experiment

Battery Lifetime (minutes) yi. s2
i

1 602 529 534 585 562.50 1333.71

2 863 743 773 840 804.75 3151.70

3 232 255 200 215 225.50 557.43

4 235 282 238 228 245.75 601.72

Fig. 5.7 Residual plot for
the battery life data
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Suppose, however, that the response variable of interest had been “battery life” regardless of cost.

The corresponding data are given in Table 5.3. The battery types are

1 = alkaline, name brand

2 = alkaline, store brand

3 = heavy duty, name brand

4 = heavy duty, store brand

Figure 5.7 shows a plot of the standardized residuals versus the fitted values. Variability seems to

be increasing modestly with mean response, suggesting that a transformation can be found to stabilize

the error variance. The ratio of extreme variance estimates is s2
max/s2

min = s2
2/s2

3 = 3151.70/557.43 ≈
5.65. Hence, based on the rule of thumb, a variance stabilizing transformation should be used. Using

the treatment sample means and variances from Table 5.3, we have

i yi. ln(yi.) s2
i ln(s2

i )

1 562.50 6.3324 1333.71 7.1957

2 804.75 6.6905 3151.70 8.0557

3 225.50 5.4183 557.43 6.3233

4 245.75 5.5043 601.72 6.3998

Figure 5.8 shows a plot of ln(s2
i ) against ln(yi.). This plot is nearly linear, so the slope will provide

an estimate of q in (5.6.2). A line can be drawn by eye or by the regression methods of Chap. 8.

Both methods give a slope approximately equal to q = 1.25. From Eq. (5.6.3) a variance-stabilizing

transformation is

h(yi t ) = (yi t )
0.375 .

http://dx.doi.org/10.1007/978-3-319-52250-0_8
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Fig. 5.8 Plot of ln(s2
i )

versus ln(yi.) for the
battery life data
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Table 5.4 Transformed life data
√

yi t for the battery experiment

Brand xi t = h(yi t ) = √
yi t x i. s2

i

1 24.536 23.000 23.108 24.187 23.708 0.592

2 29.377 27.258 27.803 28.983 28.355 0.982

3 15.232 15.969 14.142 14.663 15.001 0.614

4 15.330 16.793 15.427 15.100 15.662 0.587

Since (yi t )
0.375 is close to (yi t )

0.5, and since the square root of the data values is perhaps more

meaningful than (yi t )
0.375, we will try taking the square root transformation. The square roots of the

data are shown in Table 5.4.

The transformation has stabilized the variances considerably, as evidenced by s2
max/s2

min =
0.982/0.587 ≈ 1.67. Checks of the other model assumptions for the transformed data also reveal

no severe problems. The analysis can now proceed using the transformed data. The stated significance

level and confidence levels will now be approximate, since the model has been changed based on the

data. For the transformed data, msE = 0.6936. Using Tukey’s method of multiple comparisons to

compare the lives of the four battery types (regardless of cost) at an overall confidence level of 99%,

the minimum significant difference obtained from Eq. (4.4.28) is

msd = q4,12,0.01

√
msE/4 = 5.50

√
0.6936/4 = 2.29 .

Comparing msd with the differences in the sample means x i. of the transformed data in Table 5.4,

we can conclude that at an overall 99% level of confidence, all pairwise differences are significantly

different from zero except for the comparison of battery types 3 and 4. Furthermore, it is reasonable

to conclude that type 2 (alkaline, store brand) is best, followed by type 1 (alkaline, name brand).

However, any more detailed interpretation of the results is muddled by use of the transformation,

since the comparisons use mean values of
√

life. A more natural transformation, which also provided

approximately equal error variances, was used in Sect. 2.5.2. There, the response variable was taken

to be “life per unit cost,” and confidence intervals were able to be calculated in meaningful units. �

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_2
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5.6.3 Analysis with Unequal Error Variances

An alternative to transforming the data to equalize the error variances is to use a method of data

analysis that is designed for nonconstant variances. Such a method will be presented for constructing

confidence intervals. The method is approximate and tends to be less powerful than the methods of

Chap. 4 with transformed data. However, the original data units are maintained, and the analysis can

be used whether or not a variance-stabilizing transformation is available.

Without the assumption of equal variances for all treatments, the one-way analysis of variance

model (3.3.1) is

Yi t = μ + τi + ǫi t ,

ǫi t ∼ N (0,σ2
i ) ,

ǫi t
′s are mutually independent ,

t = 1, . . . , ri , i = 1, . . . , v.

For this model, each contrast �ciτi in the treatment parameters remains estimable, but the least squares

estimator �ci τ̂i = �ci Y i. now has variance Var(�ci Y i.) = �c2
i σ

2
i /ri . If we estimate σ2

i by s2
i as

given in (5.6.1), then
�ci τ̂i − �ciτi
√

V̂ar(�ci τ̂i )

has approximately a t-distribution with df degrees of freedom, where

V̂ar(�ci τ̂i ) =
∑ c2

i

ri

s2
i and df =

(�c2
i s2

i /ri )
2

∑ (c2
i s2

i /ri )
2

(ri −1)

. (5.6.4)

Then an approximate 100(1 − α)% confidence interval for a single treatment contrast �ciτi is

∑
ciτi ∈

(∑
ci τ̂i ± w

√
V̂ar(�ci τ̂i )

)
, (5.6.5)

where w = tdf,α/2 and �ci τ̂i = �ci yi., all sums being from i = 1 to i = v. The formulae for

V̂ar(�ci τ̂i ) and df in (5.6.4), often called Satterthwaite’s approximation, are due to Smith (1936),

Welch (1938), and Satterthwaite (1946). The approximation is best known for use in inferences on a

pairwise comparison τh − τi of the effects of two treatments, in which case, for samples each of size r ,

(5.6.4) reduces to

V̂ar(τ̂h − τ̂i ) =
s2

h

r
+

s2
i

r
and df =

(r − 1)(s2
h + s2

i )2

s4
h + s4

i

. (5.6.6)

Satterthwaite’s approach can be extended to multiple comparison procedures by changing the critical

coefficient w appropriately and computing �ci τ̂i and df separately for each contrast. For Tukey’s

method, for example, the critical coefficient in (5.6.5) is wT = qv,df,α/
√

2; this variation on Tukey’s

method is the Games–Howell method due to Games and Howell (1976). Simulation studies by Dunnett

(1980) have shown this Games–Howell method to maintain approximately the specified error rate,

though in a few circumstances it can be modestly liberal (true α slightly larger than the stated value).

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Fig. 5.9 Residual plot for
the trout experiment
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Example 5.6.3 Satterthwaite’s approximation: trout experiment

In Example 5.6.1, it was shown that the ratio of the maximum to the minimum error variance for

the trout experiment satisfies the rule of thumb, but only just. The standardized residuals are plotted

against the fitted values in Fig. 5.9. The data for treatment 2 are the most variable and have the highest

mean response, but there is no clear pattern of variability increasing as the mean response increases.

In fact, it can be verified that a plot of ln(s2
i ) against ln(yi.) is not very close to linear, suggesting that

a transformation will not be successful in stabilizing the variances.

To obtain simultaneous approximate 95% confidence intervals for pairwise comparisons in the treat-

ment effects by Tukey’s method using Satterthwaite’s approximation, we use Eqs. (5.6.5) and (5.6.6)

with r = 10. The minimum significant difference for pairwise comparison τh − τi is

msd = 1√
2

q4,df,0.05

√
s2

h

r
+

s2
i

r
,

the size of which depends upon which pair of treatments is being compared. From Example 5.6.1, we

have

s2
1 = 1.04, s2

2 = 2.95, s2
3 = 1.29, s2

4 = 1.00 .

The values of
√

V̂ar(τ̂h − τ̂i ) =
√

s2
h/r + s2

i /r are listed in Table 5.5. Comparing the values of msd with

the values of yh. − yi. in Table 5.5, we can conclude with simultaneous approximate 95% confidence

Table 5.5 Approximate values for Tukey’s multiple comparisons for the trout experiment

(h, i)

√
s2

h/r + s2
i /r df q4,df,0.05 msd yh. − yi.

(2, 3) 0.651 15.6 ≈ 16 4.05 1.86 0.30

(2, 4) 0.629 14.5 ≈ 15 4.08 1.82 0.64

(2, 1) 0.631 14.6 ≈ 15 4.08 1.82 2.13

(3, 4) 0.478 17.7 ≈ 18 4.00 1.35 0.34

(3, 1) 0.483 17.8 ≈ 18 4.00 1.37 1.83

(4, 1) 0.452 18.0 ≈ 18 4.00 1.28 1.49
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that each of treatments 2, 3, and 4 yields statistically significantly higher mean response than does

treatment 1.

Since s2
max/s2

min = 2.95, we could accept the rule of thumb and apply Tukey’s method (4.4.28) for

equal variances. The minimum significant difference for each pairwise comparison would then be

msd = q4,36,0.05

√
msE/10 = 3.82

√
1.5685/10 ≈ 1.51 .

Comparing this with the values of yh.−yi. in Table 5.5, the same conclusion is obtained as in the analysis

using Satterthwaite’s approximation, namely, treatment 1 has significantly lower mean response than

do treatments 2, 3, and 4. The three confidence intervals involving treatment 2, having length 2(msd),

would be slightly wider using Satterthwaite’s approximation, and the other three confidence intervals

would be slightly narrower. Where there is so little difference in the two methods of analysis, the

standard analysis would usually be preferred. �

5.7 Checking the Normality Assumption

The assumption that the error variables have a normal distribution is checked using a normal probability

plot, which is a plot of the standardized residuals against their normal scores. Normal scores are

percentiles of the standard normal distribution, and we will show how to obtain them after providing

motivation for the normal probability plot.

If a given linear model is a reasonable description of a set of data without any outliers, and if the

error assumptions are satisfied, then the standardized residuals would look similar to n independent

observations from the standard normal distribution. In particular, the qth smallest standardized residual

would be approximately equal to the 100[q/(n + 1)]th percentile of the standard normal distribution.

Consequently, when the model assumptions hold, a plot of the qth smallest standardized residual

against the 100[q/(n + 1)]th percentile of the standard normal distribution for each q = 1, 2, . . . , n

would show points roughly on a straight line through the origin with slope equal to 1.0. However, if

any of the model assumptions fail, and in particular if the normality assumption fails, then the normal

probability plot shows a nonlinear pattern.

Blom, in 1958, recommended that the standardized residuals be plotted against the 100[(q −
0.375)/(n + 0.25)]th percentiles of the standard normal distribution rather than the 100[q/(n + 1)]th
percentiles, since this gives a slightly straighter line. These percentiles are called Blom’s normal scores.

Blom’s qth normal score is the value ξq for which

P(Z ≤ ξq) = (q − 0.375)/(n + 0.25),

where Z is a standard normal random variable. Hence, Blom’s qth normal score is

ξq = �−1[(q − 0.375)/(n + 0.25)] , (5.7.7)

where � is the cumulative distribution function (cdf) of the standard normal distribution. The normal

scores possess a symmetry about zero, that is, the j th smallest and the j th largest scores are always

equal in magnitude but opposite in sign.

The normal scores are easily obtained and normal probability plots are easily generated using

most statistical packages, as illustrated in Sects. 5.8 and 5.9 for SAS and R software, respectively.

Alternatively, the normal scores can be calculated as shown in Example 5.7.1 using Table A.3 for the

standard normal distribution.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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Table 5.6 Normal scores: battery experiment

zi t ξq
√

yi t Battery

−1.47 −1.77 27.258 2

−1.15 −1.28 14.142 3

−0.95 −0.99 23.000 1

−0.80 −0.76 23.108 1

−0.76 −0.57 15.100 4

−0.74 −0.40 27.803 2

−0.45 −0.23 14.663 3

−0.45 −0.08 15.330 4

−0.32 0.08 15.427 4

0.31 0.23 15.232 3

0.64 0.40 24.187 1

0.84 0.57 28.983 2

1.11 0.76 24.536 1

1.30 0.99 15.969 3

1.37 1.28 29.377 2

1.52 1.77 16.793 4

Example 5.7.1 Computing normal scores: battery experiment

To illustrate the normal probability plot and the computation of normal scores, consider the battery

life data (regardless of cost) that were transformed in Example 5.6.2 to equalize the variances. The

transformed observations, standardized residuals, and normal scores are listed in Table 5.6, in order of

increasing size of the residuals. In the battery experiment there were n = 16 observations in total. The

first normal score that corresponds to the smallest residual (q = 1) is

ξ1 = �−1[(1 − 0.375)/(16 + 0.25)] = �−1(0.0385) .

Thus, the area under the standard normal curve to the left of ξ1 is 0.0385. Using a table for the standard

normal distribution or a computer program, this value is

�−1(0.0385) = −1.77 .

By symmetry, the largest normal score is 1.77. The other normal scores are calculated in a similar fash-

ion, and the corresponding normal probability plot is shown in Fig. 5.10. We discuss the interpretation

of this plot below. �

For inferences concerning treatment means and contrasts, the assumption of normality needs only to

be approximately satisfied. Interpretation of a normal probability plot, such as that in Fig. 5.10, requires

some basis of comparison. The plot is not completely linear. Such plots always exhibit some sampling

variation even if the normality assumption is satisfied. Since it is difficult to judge a straight line for

small samples, normal probability plots are useful only if there are at least 15 standardized residuals

being plotted. A plot for 50 standardized residuals that are known to have a normal distribution is

shown in plot (a) of Fig. 5.11 and can be used as a benchmark of what might be expected when the

assumption of normality is satisfied.

Small deviations from normality do not badly affect the stated significance levels, confidence levels,

or power. If the sample sizes are equal, the main case for concern is that in which the distribution has
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Fig. 5.10 Normal
probability plot for the
square root battery data
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Fig. 5.11 Normal
probability plots for two
distributions
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(b) Distribution with heavy tails

heavier tails than the normal distribution, as in plot (b) of Fig. 5.11. The apparent outliers are caused

by the long tails of the nonnormal distribution, and a model based on normality would not be adequate

to represent such a set of data. If this is the case, then use of nonparametric methods of analysis should

be considered (as described, for example, by Hollander and Wolfe 2013). Sometimes, a problem of

nonnormality can be cured by taking a transformation of the data, such as ln(yi t ). However, it should be

remembered that any transformation could cause a problem of unequal variances where none existed

before. If the equal variance assumption does not hold for a given set of data, then a separate normal

probability plot should be generated for each treatment instead of one plot using all n residuals (provided

that there are sufficient data values).

The plot for the transformed battery life data shown in Fig. 5.10 is less linear than the benchmark

plot, but it does not exhibit the extreme behavior of plot (b) of Fig. 5.11 for the heavy-tailed nonnormal

distribution. Consequently, the normality assumption can be taken to be approximately satisfied, and

the stated confidence and significance levels will be approximately correct.

5.8 Using SAS Software

5.8.1 Residual Plots

We now illustrate use of the SAS software to generate the various plots used in this chapter. In the

following sections, we will check the assumptions on the one-way analysis of variance model (3.3.1)

for the data of the mung bean experiment described in Example 5.8.1 below.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 5.7 Data for the mung bean experiment

Treatment Shoot length in mm (Order of observation in parentheses)

1 1.5 (14) 1.1 (15) 1.3 (18) 0.9 (30)

8.5 (35) 10.6 (39) 3.5 (42) 7.4 (43)

2 0.0 (3) 0.6 (4) 9.5 (7) 11.3 (12)

12.6 (17) 8.1 (27) 7.8 (29) 7.3 (37)

3 5.2 (16) 0.4 (23) 3.6 (31) 2.8 (36)

12.3 (45) 14.1 (46) 0.3 (47) 1.8 (48)

4 13.2 (1) 14.8 (11) 10.7 (13) 13.8 (20)

9.6 (24) 0.0 (34) 0.6 (40) 8.2 (44)

5 5.1 (5) 3.3 (21) 0.2 (26) 3.9 (28)

7.0 (32) 9.5 (33) 11.1 (38) 6.2 (41)

6 11.6 (2) 2.3 (6) 6.7 (8) 2.5 (9)

10.6 (10) 10.8 (19) 15.9 (22) 9.0 (25)

Example 5.8.1 Mung bean experiment

An experiment was run in 1993 by K.H. Chen, Y.F. Kuo, R. Sengupta, J. Xu, and L.L. Yu to compare

watering schedules and growing mediums for mung bean seeds. There were two treatment factors:

“amount of water” with three levels (1, 2, and 3 teaspoons of water per day) and “growing medium”

having two levels (tissue and paper towel, coded 1 and 2). We will recode the six treatment combinations

as 1 = 11, 2 = 12, 3 = 21, 4 = 22, 5 = 31, 6 = 32.

Forty-eight beans of approximately equal weights were randomly selected for the experiment. These

were all soaked in water in a single container for two hours. After this time, the beans were placed in

separate containers and randomly assigned to a treatment (water/medium) combination in such a way

that eight containers were assigned to each treatment combination. The 48 containers were placed on

a table in a random order. The shoot lengths of the beans were measured (in mm) after one week. The

data are shown in Table 5.7 together with the order in which they were collected. �

A SAS program that generates the residual plots for the mung bean experiment is shown in Table 5.8.

The program uses the SAS procedures GLM, PRINT, and SGPLOT, all of which were introduced in

Sect. 3.8.

The values of the factors ORDER (order of observation), WATER, MEDIUM, and the response vari-

able LENGTH are entered into the data set MUNGBEAN using the INPUT statement. The treatment

combinations are then recoded, with the levels of TRTMT representing the recoded levels 1–6.

The OUTPUT statement in the GLM procedure calculates and saves the predicted values ŷi t as the

variable YPRED and two copies of the residuals êi t as the variables E and Z in a new data set named

MUNGBN2. The data set MUNGBN2 also contains all of the variables in the original data set MUNGBEAN.

The residuals stored as the variableZ are then standardized using the procedureSTANDARD by dividing

each residual by
√

ssE/(n − 1). This is done by requesting the procedure STANDARD to achieve a

standard deviation of 1.0. The variables E and Z then represent the residuals and standardized residuals,

respectively.

The procedure RANK is used to compute Blom’s normal scores. The procedure orders the standard-

ized residuals from smallest to largest and calculates their ranks. (The qth smallest residual has rank q.)

The values of the variable NSCORE calculated by this procedure are the normal scores for the values

of Z. The PRINT procedure prints all the values of the variables created so far. Some representative

output is shown in Fig. 5.12. The PRINT statement can be omitted if this information is not wanted.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 5.8 SAS program to generate residual plots: mung bean experiment

DATA MUNGBEAN;

INPUT ORDER WATER MEDIUM LENGTH;

TRTMT = 2*(WATER-1) + MEDIUM;

LINES;

1 2 2 13.2

2 3 2 11.6

3 1 2 0.0

: : : :

48 2 1 1.8

;

PROC GLM;

CLASS TRTMT;

MODEL LENGTH = TRTMT;

OUTPUT OUT=MUNGBN2 PREDICTED=YPRED RESIDUAL=E RESIDUAL=Z;

;

PROC STANDARD STD=1.0; VAR Z;

PROC RANK NORMAL=BLOM; VAR Z; RANKS NSCORE;

PROC PRINT;

;

* Plotting standardized residuals versus run order;

PROC SGPLOT;

SCATTER X=ORDER Y=Z;

XAXIS LABEL = ’Order’;

YAXIS LABEL = ’Standardized Residuals’;

REFLINE 0 / AXIS=Y;

;

* Plotting standardized residuals versus normal scores;

PROC SGPLOT;

SCATTER X=NSCORE Y=Z;

XAXIS VALUES = (-4 to 4 by 2) LABEL = ’Normal Scores’;

YAXIS LABEL = ’Standardized Residuals’;

REFLINE 0 / AXIS=Y;

REFLINE 0 / AXIS=X;

Fig. 5.12 Output from
PROC PRINT
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Fig. 5.13 Plot of zi t

versus run order: mung
bean experiment
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Fig. 5.14 Plot of zi t

versus normal score: mung
bean experiment
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Plots of the standardized residuals zi t against treatments, predicted values, run order, and normal

scores may be of interest. For illustration, the last two of these are requested using the SGPLOT

procedure. Vertical and horizontal reference lines at zero may be included as appropriate via the

REFLINE statements.

For the mung bean experiment, a plot of the standardized residuals against the order in which the

observations are collected is shown in Fig. 5.13, and a plot of standardized residuals against normal

scores is shown in Fig. 5.14. Neither of these plots indicates any serious problems with the assumptions

on the model.

A plot of the standardized residuals against the predicted values (not shown) suggests that treatment

variances are not too unequal, but that there could be outliers associated with one or two of the

treatments. The first nine lines of the SAS program in Table 5.9, through the first PRINT procedure,

produced the first four columns of output of Fig. 5.15. From this, the rule of thumb can be checked that

the sample variances should not differ by more than a factor of 3. It can be verified that the ratio of the

maximum and minimum variances is under 2.7 for this experiment.

When the equal-variance assumption does not appear to be valid, the experimenter may choose

to use an analysis based on Satterthwaite’s approximation (see Sect. 5.8.3), using formulas involving

the treatment sample variances such as those in Fig. 5.15. A normal probability plot such as that

of Fig. 5.14 would not be relevant; rather, the normality assumption needs to be checked for each

treatment separately. This can be done by generating a separate normal probability plot for each

treatment (provided that the sample sizes are sufficiently large). To obtain the plots, first obtain the

normal scores separately for each treatment by including a BY TRTMT statement in the SORT and



5.8 Using SAS Software 123

Table 5.9 SAS program to plot ln(s2
i ) against ln(yi.): mung bean experiment

DATA MUNGBEAN; SET MUNGBEAN;

PROC SORT; BY TRTMT;

PROC MEANS NOPRINT MEAN VAR; BY TRTMT;

VAR LENGTH;

OUTPUT OUT=MUNGBN3 MEAN=MEANLNTH VAR=VARLNTH;

PROC PRINT;

VAR TRTMT MEANLNTH VARLNTH;

DATA MUNGBN3; SET MUNGBN3;

LN_MEAN=LOG(MEANLNTH); LN_VAR=LOG(VARLNTH);

PROC PRINT;

VAR TRTMT MEANLNTH VARLNTH LN_MEAN LN_VAR;

PROC SGPLOT;

SCATTER X = LN_MEAN Y = LN_VAR;

XAXIS VALUES = (1.4 to 2.2 by .2) LABEL = ’ln(mean)’;

YAXIS VALUES = (2.5 to 3.5 by .2) LABEL = ’ln(var)’;

Fig. 5.15 Treatment
sample means and
variances: mung bean
experiment

RANK procedures. Then, instead of SGPLOT, use the SGPANEL procedure and PANELBY TRTMT to

produce a panel of plots—one for each treatment. Sample program lines are as follows.

PROC SORT; BY TRTMT;

PROC RANK NORMAL=BLOM; BY TRTMT;

VAR Z; RANKS NSCORE;

PROC SGPANEL; PANELBY TRTMT;

SCATTER X=NSCORE Y=Z;

5.8.2 Transforming the Data

If a variance-stabilizing transformation is needed, a plot of ln(s2
i ) against ln(ȳi.) can be achieved via

the program in Table 5.9 (shown for the mung bean experiment). These statements can be added to

those in Table 5.8 either before the GLM procedure or at the end of the program.

The SORT procedure and the BY statement sort the observations in the original data set MUNGBEAN

using the values of the variable TRTMT. This is required by the subsequent MEANS procedure with the

NOPRINT option, which computes the mean and variance of the variable LENGTH separately for each
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Fig. 5.16 Plot of ln(s2
i )

against ln(yi.): mung bean
experiment
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treatment, without printing the results. TheOUTPUT statement creates a data set namedMUNGBN3, with

one observation for each treatment, and with the two variables MEANLNTH and VARLNTH containing

the sample mean lengths and sample variances for each treatment. Two new variables LN_MEAN and

LN_VAR are created.

These are the natural logarithm, or log base e, of the sample mean and variance of length for

each treatment. The PRINT procedure prints the values of the variables TRTMT, MEANLNTH,

VARLNTH, LN_MEAN, LN_VAR. The output is in Fig. 5.15.

Finally, the SGPLOT procedure generates the plot of ln(s2
i ) against ln(ȳi.), shown in Fig. 5.16. The

values do not fall along a straight line, so a variance-stabilizing transformation of the type given in

Eq. (5.6.3) does not exist for this data set. However, since the ratio of the maximum to the minimum

variance is less than 3.0, a transformation is not vital, according to our rule of thumb.

If an appropriate transformation is identified, then the transformed variable can be created from the

untransformed variable in a DATA step of a SAS program, just as the variables LN_MEAN and LN_VAR

were created in the data setMUNGBN3by transforming the variablesMEANLNTH andVARLNTH, respec-

tively. Alternatively, the transformation can be achieved after the INPUT statement in the same way

as the factor TRTMT was created. SAS statements useful for the variance-stabilizing transformations

of Eq. (5.6.3) include:

Transformation SAS Statement

h = ln(y) H = LOG(Y);
h = sin−1(y) H = ARSIN(Y);
h = y p H = Y ∗ ∗P;

5.8.3 Implementing Satterthwaite’s Method

In Example 5.6.3, given indications of unequal variances in the trout experiment, simultaneous approx-

imate 95% confidence intervals for pairwise comparisons were computed using the Games–Howell

method—namely, using Satterthwaite’s approximation in conjunction with Tukey’s method. This

method can be implemented in SAS software using PROC MIXED—a procedure that will be intro-

duced in greater detail in later chapters. Appropriate statements are given in Table 5.10. TheREPEATED

statement relaxes the model assumption of equal variances, allowing for separate variance estimates s2
i

at each level of sulfa. Correspondingly, the model is fit by restricted maximum likelihood estimation

rather than ordinary least squares (see Chap. 19 for more on restricted maximum likelihood estima-

tion). The collective options in the MODEL and LSMEANS statements implement Tukey’s method,

http://dx.doi.org/10.1007/978-3-319-52250-0_19


5.8 Using SAS Software 125

Table 5.10 SAS program for multiple comparisons with unequal variances: trout experiment

DATA TROUT;

INPUT SULFA HEMO;

LINES;

1 6.7

1 7.8

1 5.5

: :

4 7.2

;

PROC MIXED;

CLASS SULFA;

MODEL HEMO = SULFA / DDFM=SATTERTH;

REPEATED / GROUP=SULFA;

LSMEANS SULFA / ADJDFE=ROW ADJUST=TUKEY;

Fig. 5.17 Approximate multiple comparisons allowing for unequal variances: trout experiment

using Satterthwaite’s method to compute the number of degrees of freedom separately for each pair-

wise comparison. Some of the corresponding multiple comparisons output is shown in Fig. 5.17. The

estimates, standard errors, and degrees of freedom match the values in Table 5.5, and the adjusted

confidence limits correspond to the values ȳh. − ȳi. ± msd computable from the estimates and msd

values in Table 5.5.

5.9 Using R Software

5.9.1 Residual Plots

We now illustrate use of the R software to generate the various plots used in this chapter. In the

following sections, we will check the assumptions on the one-way analysis of variance model (3.3.1)

for the data of the mung bean experiment described in Example 5.8.1, p. 120. The experiment was

conducted to compare the effects of two treatment factors—“amount of water” (1, 2, or 3 teaspoons

of water per day) and “growing medium” (tissue and paper towel, coded 1 and 2)—on the growth of

mung beans. The response variable was shoot lengths of the beans measured (in mm) after one week.

The experiment was a completely randomized design with eight replicates, and the experimental units

http://dx.doi.org/10.1007/978-3-319-52250-0_3


126 5 Checking Model Assumptions

were 48 containers placed in random order on a table. The data were provided in Table 5.7, with the

six treatment combinations recoded as 1 = 11, 2 = 12, 3 = 21, 4 = 22, 5 = 31, 6 = 32.

An R program that generates the residual plots for the mung bean experiment is shown in Table 5.11,

with the first three lines of data displayed. After reading the data, the program uses the R function aov,

introduced in Sect. 3.9.3, to fit model (3.3.1), saving related information as the object model. Conse-

quently, the fitted values and residuals are available as the columns ypred = fitted(model) and

e = resid(model), respectively. The function sd(e) computes the sample standard deviation

of the residuals, so the column z = e/sd(e) contains the standardized residuals. Semi-colons sep-

arate commands on the same line. Blom’s normal scores are computed by Eq. (5.7.7), p. 117, using the

column q = rank(e) of ranks of the residuals and the standard normal quantile (inverse cumulative

distribution) function qnorm, and are saved as the column nscore. The qth smallest residual has

rank q and yields the qth smallest normal score. Creating these four new variables within the brackets

of the statement

mung.data = within(mung.data, {...})

Table 5.11 R program to generate residual plots: mung bean experiment

# R code and output

mung.data = read.table("data/mungbean.txt", header=T)

model1 = aov(Length ˜ factor(Trtmt), data=mung.data)

# Compute predicted values, residuals, standardized residuals, normal scores

mung.data = within(mung.data, {

# Compute predicted, residual, and standardized residual values

ypred = fitted(model1); e = resid(model1); z = e/sd(e);

# Compute Blom’s normal scores

n = length(e); q = rank(e); nscore = qnorm((q-0.375)/(n+0.25)) })

# Display first 3 lines of mung.data, 4 digits per variable

print(head(mung.data, 3), digits=4)

Order Water Medium Length Trtmt nscore q n z e ypred

1 1 2 2 13.2 4 0.9201 40 48 0.9820 4.337 8.863

2 2 3 2 11.6 6 0.5758 35 48 0.6622 2.925 8.675

3 3 1 2 0.0 2 -1.6036 3 48 -1.6188 -7.150 7.150

# Generate residual plots

plot(z ˜ Trtmt, data=mung.data, ylab="Standardized Residuals", las=1)

abline(h=0) # Horizontal line at zero

plot(z ˜ Order, data=mung.data, ylab="Standardized Residuals", las=1)

abline(h=0)

plot(z ˜ ypred, data=mung.data, ylab="Standardized Residuals", las=1)

abline(h=0)

plot(z ˜ nscore, data=mung.data, ylab="Standardized Residuals", las=1)

qqline(mung.data$z) # Line through 1st and 3rd quantile points

# A simpler way to generate the normal probability plot

qqnorm(mung.data$z); qqline(mung.data$z)

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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enables their creation from variables in the data set mung.data and their addition to the data set.

Alternatively, the normal scores could be obtained by replacing the three statements for n, q and

nscore with the single statement

nscore = qqnorm(z)$x

though the resulting normal scores are only Blom’s normal scores for 10 or fewer residuals, with

nscore = qnorm((q-0.5)/n) otherwise. Here, qqnorm is a plotting function to be discussed

shortly that generates a normal probability plot with normal scores on the x axis.

Plots of the standardized residuals zi t against treatments, run order, predicted values, and normal

scores are generated by the four plot function calls. For each of the first three plots, the statement

abline(h=0) causes inclusion of a horizontal reference line at zero. For the normal probability plot,

the statementqqline(mung.data$z) causes inclusion of a line through the first and third quantile-

quantile points of z and nscore—namely, through the point corresponding to the first quantile of

each variable, and through the point corresponding to their third quantiles.

The last three lines of code illustrate an alternative, simpler method of generating the normal

probability plot, using the function qqnorm(z). This function generates a normal probability plot,

plotting the standardized residuals z against the normal scores—namely, the quantiles of the standard

normal distribution. This function uses Blom’s normal scores for 10 or fewer z-values, and uses normal

scores equal to the 100[(q−0.5)/n]th percentiles of the standard normal distribution otherwise. These

normal scores, corresponding to the x-axis of the plot, can be saved by the command nscore =

qqnorm(z)$x as noted above. As will be seen, using the qqnorm function is convenient if separate

normal probability plots are needed for each treatment.

For the mung bean experiment, a plot of the standardized residuals against the order in which the

observations are collected is shown in Fig. 5.18, and a plot of standardized residuals against normal

Fig. 5.18 Plot of zi t

versus order: mung bean
experiment
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Fig. 5.19 Plot of zi t

versus normal score: mung
bean experiment
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Table 5.12 R program to plot ln(s2
i ) against ln(yi.): mung bean experiment

# R Code and Output

mung.data = read.table("data/mungbean.txt", header=T)

# Compute sample means and variances and their natural logs by trtmt

MeanLnth = by(mung.data$Length, mung.data$Trtmt, mean) # Sample means

VarLnth = by(mung.data$Length, mung.data$Trtmt, var) # Sample variances

LnMean = log(MeanLnth) # Column of ln sample means

LnVar = log(VarLnth) # Column of ln sample variances

Trtmt = c(1:6) # Column of trtmt levels

stats = cbind(Trtmt, MeanLnth, VarLnth, LnMean, LnVar) # Column bind

stats # Display the stats data

Trtmt MeanLnth VarLnth LnMean LnVar

1 1 4.3500 15.171 1.4702 2.7194

2 2 7.1500 21.117 1.9671 3.0501

3 3 5.0625 28.057 1.6219 3.3342

4 4 8.8625 32.803 2.1818 3.4905

5 5 5.7875 12.156 1.7557 2.4978

6 6 8.6750 21.679 2.1604 3.0764

plot(LnVar ˜ LnMean, las=1)

scores is shown in Fig. 5.19. Neither of these plots indicates any serious problems with the assumptions

on the model.

A plot of the standardized residuals against the predicted values (not shown) suggests that treatment

variances are not too unequal, but that there could be outliers associated with one or two of the treat-

ments. In the R program in Table 5.12, the second block of code computes the sample statistics displayed

subsequently by treatment. The by function is used to compute the (sample) mean and variance of

Length by Trtmt, saving the results in the columns MeanLnth and VarLnth, respectively. Then

the natural log of each value is computed, saving the log sample means and log sample variances in the

columns LnMean and LnVar, respectively. The cbind function column-binds these four columns

with another containing the treatment labels, saving them as stats, which is then displayed. Given

the displayed information, the rule of thumb can be checked that the sample variances should not differ

by more than a factor of 3. It can be verified that the ratio of the maximum and minimum variances is

under 2.7 for this experiment.

When the equal-variance assumption does not appear to be valid, the experimenter may choose

to use an analysis based on Satterthwaite’s approximation (see Sect. 5.9.3), using formulas involving

the treatment sample variances such as those in Table 5.12. A normal probability plot such as that of

Fig. 5.19 would not be relevant, but the normality assumption needs to be checked for each treatment

separately. This can be done by generating a separate normal probability plot for each treatment (pro-

vided that the sample sizes are sufficiently large). These separate plots are generated by the following

single line of R code.

by(mung.data$z, mung.data$Trtmt, qqnorm) # Generate NPPlots by Trtmt
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Fig. 5.20 Plot of ln(s2
i ) against ln(yi.); mung bean experiment

The by function applies the function qqnorm to the variable z at each Trtmt level. Alternatively,

these plots can be generated one-by-one using the following example for treatment 1, where the main

option adds a main title to the plot.

qqnorm(mung.data$z[mung.data$Trtmt == 1],

main = "Normal Probability Plot: Trtmt 1")

qqline(mung.data$z)

5.9.2 Transforming the Data

If a variance-stabilizing transformation is needed, a plot of ln(s2
i ) against ln(ȳi.) can be achieved

as illustrated in the R program in Table 5.12 (shown for the mung bean experiment). First, we need

to compute the statistics to be plotted. The R functions mean and var compute sample mean and

variance, respectively, of a specified variable and, when coupled with the by function, can compute

such statistics for a specified variable at each level of a factor. In our program, the by function in the

code line

MeanLnth = by(mung.data$Length, mung.data$Trtmt, mean)

applies the function mean to the variable Length for (by) each level of Trtmt, saving the resulting

sample means as elements of the column MeanLnth. The column VarLnth of sample variances is

computed similarly, coupling the by and var functions. The function, log, is then used to compute

the natural logarithm, or log base e, of the average length and the sample variance for each treatment,

saving the results in the columns LnMean and LnVar, respectively. The levels 1–6 of Trtmt are

assigned to the new column Trtmt for display purposes. The results are then displayed as columns

using the cbind function. Note that these columns of data were created outside of the mung.data

data set, since they have fewer entries.

Finally, theplot function generates the plot of ln(s2
i ) against ln(ȳi.), shown in Fig. 5.20. The values

do not fall along a straight line, so a variance-stabilizing transformation of the type given in Eq. (5.6.3)

does not exist for this data set. However, since the ratio of the maximum to the minimum variance is

less than 3.0, a transformation is not vital, according to our rule of thumb.

If an appropriate transformation is identified, then the transformed variable can be created from the

untransformed variable by applying the appropriate R function. R functions useful for the variance-

stabilizing transformations of Eq. (5.6.3) include:
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Transformation R Function

h = ln(y) h = log(y)

h = sin−1(y) h = asin(y)

h = y p h = yˆp

5.9.3 Implementing Satterthwaite’s Method

In Example 5.6.3, given indications of unequal variances in the trout experiment, simultaneous approx-

imate 95% confidence intervals for pairwise comparisons were computed using the Games–Howell

method—namely, using Satterthwaite’s approximation in conjunction with Tukey’s method. This

method is implemented in Table 5.13 by reading the author-defined R function GamesHowell from

the file GamesHowell.r in the funcs subdirectory of the working directory, then calling this

function via the following code line:

GamesHowell(y = trout.data$Hemo, T = trout.data$Sulfa, alpha = 0.05)

The function inputs are the column of observations y, the column of corresponding treatment levels

T, and the joint significance level α with a default value of 0.05. The results, shown at the bottom of

Table 5.13, match the corresponding information in Table 5.5 and Fig. 5.17.

This touches upon an important characteristic of the R software—namely, that one can create user-

defined functions to implement methods and procedures that may not otherwise be available as R

functions. For example, the code

GamesHowell = function(y, T, alpha = 0.05){function code}

Table 5.13 R program and output for multiple comparisons with unequal variances: trout experiment

trout.data = read.table("data/trout.txt", header = T)

head(trout.data, 3)

Sulfa Hemo

1 1 6.7

2 1 7.8

3 1 5.5

# Read user-defined function from file GamesHowell.r

source("funcs/GamesHowell.r")

# Call the function, which returns the results displayed below

GamesHowell(y = trout.data$Hemo, T = trout.data$Sulfa, alpha = 0.05)

[[1]]

[1] "Games-Howell method of MCP for tau_i-tau_s with alpha = 0.05"

[[2]]

i s estimate stde df t p msd lcl ucl

1 2 4 0.64 0.62831 14.482 1.01860 0.74148 1.8186 -1.1786 2.45860

2 3 4 0.34 0.47854 17.720 0.71050 0.89161 1.3546 -1.0146 1.69460

3 2 3 0.30 0.65083 15.609 0.46095 0.96645 1.8672 -1.5672 2.16720

4 1 4 -1.49 0.45153 17.994 -3.29990 0.01897 1.2762 -2.7662 -0.21381

5 1 3 -1.83 0.48237 17.793 -3.79380 0.00673 1.3649 -3.1949 -0.46514

6 1 2 -2.13 0.63123 14.640 -3.37430 0.01994 1.8246 -3.9546 -0.30540
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Table 5.14 R function GamesHowell for multiple comparisons with unequal variances

# Contents of file GamesHowell.r:

GamesHowell = function(y, T, alpha=0.05){

# y is a data column, T the corresp column of trtmt levels.

# For the y-values corresponding to each level in T, compute:

r = tapply(y, T, length) # Column of reps r_i

ybar = tapply(y, T, mean) # Column of trtmt sample means ybar_i

s2 = tapply(y, T, var) # Column of trtmt sample variances sˆ2_i

v = length(r) # v = number of treatments (length of column r)

combos = combn(v,2) # 2 by v-choose-2, cols being combos (i,s)

i = combos[1,] # Save row 1, i.e. the i’s, as the column i

s = combos[2,] # Save row 2, i.e. the s’s, as the column s

# For each combo (i,s), compute est of tau_i - tau_s, stde, etc.

estimate = combn(v, 2, function(is) -diff(ybar[is]) ) # est’s

stde = combn(v, 2, function(is) sqrt(sum(s2[is]/r[is])) ) # stde’s

t = estimate/stde # t-statistics

df = combn(v, 2, function(is)

(sum(s2[is]/r[is]))ˆ2/(sum((s2[is]/r[is])ˆ2/(r[is]-1))) ) # df’s

p = ptukey(abs(t)*sqrt(2), v, df, lower.tail=F) # p-values

p = round(p, digits=5) # Keep at most 5 decimal places

w = qtukey(0.05,v,df,lower.tail=F)/sqrt(2) # Critical coefficients

msd = w*stde # msd’s

lcl = estimate - msd # Lower confidence limits

ucl = estimate + msd # Upper confidence limits

results = cbind(i, s, estimate, stde, df, t, p, msd, lcl, ucl)

results = signif(results, digits=5) # Keep 5 significant digits

results = results[rev(order(estimate)),] # Sort by estimates

rownames(results) = seq(1:nrow(results)) # Name rows 1,2,...,nrows

header=paste("Games-Howell method of MCP for tau_i-tau_s",

"with alpha =",alpha)

return(list(header,results))

} # end function

uses function to create and define a new function named GamesHowell in terms of three parame-

ters y, T, and alpha, with 0.05 as the default value of alpha. Here “function code” would be

replaced by R code defining what the function does given the input parameters and what information

it returns when done. Such code defining a function can be saved in a separate file then read into a

program using the source function, as illustrated in Table 5.13. This facilitates reuse of the function

in other R programs. Alternatively, the code defining a function can simply be included directly in an

R program, replacing the code line source("GamesHowell.r") in Table 5.13, for example. For

the interested reader, the GamesHowell function code is provided and discussed in the following

optional subsection.

The User-Defined R Function GamesHowell (Optional)

The author-defined function GamesHowell was used in Table 5.13 to implement the Games–Howell

method of multiple comparisons. The R code defining the function is provided in Table 5.14 for

the interested reader. R functions are defined via the R function function. In particular, the

code GamesHowell = function(y, T, alpha=0.05) indicates that a new function named

GamesHowell is being defined in terms of three parameters y, T, and alpha, and that the default

value of alpha is 0.05. All of the subsequent code inside the brackets “{}” is the R code defining

what the function does.
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When calling the function GamesHowell, one can specify alpha or not; if not, the default

value of 0.05 will be used. The other parameters y and T represent the column of response val-

ues and the corresponding column of treatment levels, respectively. In Table 5.13, the function call

GamesHowell(y=trout.data$Hemo, T=trout.data$Sulfa, alpha=0.05) explic-

itly indicates that the column trout.data$Hemo contains the response values (y in the function)

and the column trout.data$Sulfa contains the treatment levels (T in the function code). If one is

explicit, using y=, T=, and alpha=, then the parameters may be entered in any order. Otherwise, they

must be entered in the same order (y,T,alpha) as they are listed in the definition of the function.

For example, the function call GamesHowell(trout.data$Hemo, trout.data$Sulfa,

0.05) also works, but not if the parameters were entered in any other order.

This code makes use of the R functions tapply and combn. Given data for a completely ran-

domized design, the function tapply(y,T,fn) applies any specified R function fn separately to

the subset of the observations y corresponding to each trtmt level. For example, given observations

y and corresponding treatment levels T for a completely randomized design, the statement ybar =

tapply(y,T,mean) applies the function mean to compute the mean yi. of y for each level of T,

saving these as ybar = (y1., . . . , yv.) but as a column. Similarly, tapply is used to compute the

column r of replication numbers ri and the column s2 of treatment sample variances s2
i .

Having v treatments, the function combn(v,2) returns the
(
v
2

)
= v(v − 1)/2 combinations

(i, s) of the integers 1, . . . , v taken two at a time as the columns of a matrix, providing the treat-

ment pairs for pairwise comparisons. For each combination or treatment pair (i, s), the function

combn(v,2,function(is),-diff(ybar[is])) computes the negative difference of the i th

and sth elements of the column ybar, yielding the column estimate of estimates yi. − ys.. The

column stde of standard errors of the estimates is obtained similarly from the columns r and s2.

Other functions used include ptukey and qtukey, pertaining to the Studentized range distribu-

tion, (Table A.8). In particular, ptukey(x,v,df,lower.tail=F), which provides the upper-tail

probability P(X > x) of the range X of v Studentized variates each involving df degrees of freedom,

is used to compute p-values. Likewise, qtukey(α,v,df,lower.tail=F), which provides the

upper-α quantile of the same distribution, is used to obtain the critical coefficients for the simultaneous

confidence intervals.

An R function can return one object, via the return function. In this case, the function returns one

list consisting of two objects: (i) header, containing a description of the statistical procedure con-

ducted; and (ii)results, an R data.frame containing the numerical results. This returned information,

automatically displayed when the function finishes executing, is shown at the bottom of Table 5.13.

Exercises

1. Meat cooking experiment, continued

Check the assumptions on the one-way analysis of variance model (3.3.1) for the meat cooking

experiment, which was introduced in Exercise 14 of Chap. 3. The data were given in Table 3.14.

(the order of collection of observations is not available).

2. Soap experiment, continued

Check the assumptions on the one-way analysis of variance model (3.3.1) for the soap experiment,

which was introduced in Sect. 2.5.1. The data are reproduced in Table 5.15 (the order of collection

of observations is not available).

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 5.15 Weight loss for the soap experiment

Soap Weight loss yi. s2
i

1 −0.30 −0.10 −0.14 0.40 −0.0350 0.09157

2 2.63 2.61 2.41 3.15 2.7000 0.09986

3 1.72 2.07 2.17 2.01 1.9925 0.03736

Table 5.16 Melting times for margarine in seconds

Brand Times yi. si

1 167, 171, 178, 175, 184, 176, 185, 172, 178, 178 176.4 5.56

2 231, 233, 236, 252, 233, 225, 241, 248, 239, 248 238.6 8.66

3 176, 168, 171, 172, 178, 176, 169, 164, 169, 171 171.4 4.27

4 201, 199, 196, 211, 209, 223, 209, 219, 212, 210 208.9 8.45

3. Margarine experiment (Amy L. Phelps, 1987)

The data in Table 5.16 are the melting times in seconds for three different brands of margarine

(coded 1–3) and one brand of butter (coded 4). The butter was used for comparison purposes. The

sizes and shapes of the initial margarine/butter pats were as similar as possible, and these were

melted one by one in a clean frying pan over a constant heat.

(a) Check the equal-variance assumption on model (3.3.1) for these data. If a transformation is

required, choose the best transformation of the form (5.6.3), and recheck the assumptions.

(b) Using the transformed data, compute a 95% confidence interval comparing the average melting

times for the margarines with the average melting time for the butter.

(c) Repeat part (b) using the untransformed data and Satterthwaite’s approximation for unequal

variances. Compare the results with those of part (b).

(d) For this set of data, which analysis do you prefer? Why?

4. Reaction time experiment, continued

The reaction time pilot experiment was described in Exercise 4 of Chap. 4. The experimenters were

interested in the different effects on the reaction time of the aural and visual cues and also in the

different effects of the elapsed time between the cue and the stimulus. There were six treatment

combinations:
1 = aural, 5 seconds 4 = visual, 5 seconds

2 = aural, 10 seconds 5 = visual, 10 seconds

3 = aural, 15 seconds 6 = visual, 15 seconds

The data are reproduced, together with their order of observation, in Table 5.17. The pilot experiment

employed a single subject. Of concern to the experimenters was the possibility that the subject

may show signs of fatigue. Consequently, fixed rest periods were enforced between every pair of

observations.

(a) Check whether or not the assumptions on the one-way analysis of variance model (3.3.1) are

approximately satisfied for these data. Pay particular attention to the experimenter’s concerns

about fatigue.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 5.17 Reaction times (in seconds) for the reaction time experiment

Time order 1 2 3 4 5 6

Coded treatment 6 6 2 6 2 5

Reaction time 0.256 0.281 0.167 0.258 0.182 0.283

Time order 7 8 9 10 11 12

Coded treatment 4 5 1 1 5 2

Reaction time 0.257 0.235 0.204 0.170 0.260 0.187

Time order 13 14 15 16 17 18

Coded treatment 3 4 4 3 3 1

Reaction time 0.202 0.279 0.269 0.198 0.236 0.181

(b) Suggest a way to design the experiment using more than one subject. (Hint: consider using

subjects as blocks in the experiment).

5. Catalyst experiment

H. Smith, in the 1969 volume of Journal of Quality Technology, described an experiment that inves-

tigated the effect of four reagents and three catalysts on the production rate in a catalyst plant. He

coded the reagents as A, B, C , and D, and the catalysts as X , Y , and Z , giving twelve treatment

combinations, coded as AX, AY, . . . , DZ . Two observations were taken on each treatment com-

bination, and these are shown in Table 5.18, together with the order in which the observations were

collected.

Are the assumptions on the one-way analysis of variance model (3.3.1) approximately satisfied for

these data? If not, can you suggest what needs to be done in order to be able to analyze the experiment?

6. Bicycle experiment (Debra Schomer 1987)

The bicycle experiment was run to compare the crank rates required to keep a bicycle at certain

speeds, when the bicycle was in twelfth gear on flat ground. The speeds chosen were 5, 10, 15, 20,

and 25 mph, (coded 1–5). The data are given in Table 5.19. The experimenter fitted the one-way

Table 5.18 Production rates for the catalyst experiment

Time order 1 2 3 4 5 6 7 8

Treatment CY AZ DX AY C X DZ AX C Z

Yield 9 5 12 7 13 7 4 13

Time order 9 10 11 12 13 14 15 16

Treatment BY C Z B Z DX B X C X DY B Z

Yield 13 13 7 12 4 15 12 9

Time order 17 18 19 20 21 22 23 24

Treatment B X DY AY DZ BY AX CY AZ

Yield 6 14 11 9 15 6 15 9

Source: Smith (1969). Reprinted with Permission from Journal of Quality Technology c© 1969 ASQ, www.asq.org

http://dx.doi.org/10.1007/978-3-319-52250-0_3
www.asq.org
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Table 5.19 Data for the bicycle experiment

Code Treatment (mph) Crank rates

1 5 15 19 22

2 10 32 34 27

3 15 44 47 44

4 20 59 61 61

5 25 75 73 75

analysis of variance model (3.3.1) and plotted the standardized residuals. She commented in her

report:

Note the larger spread of the data at lower speeds. This is due to the fact that in such a high gear, to maintain
such a low speed consistently for a long period of time is not only bad for the bike, it is rather difficult to do.

Thus the experimenter was not surprised to find a difference in the variances of the error variables

at different levels of the treatment factor.

(a) Plot the standardized residuals against ŷi t , compare the sample variances, and evaluate equality

of the error variances for the treatments.

(b) Choose the best transformation of the data of the form (5.6.3), and test the hypotheses that the

linear and quadratic trends in crank rates due to the different speeds are negligible, using an

overall significance level of 0.01.

(c) Repeat part (b), using the untransformed data and Satterthwaite’s approximation for unequal

variances,

(d) Discuss the relative merits of the methods applied in parts (b) and (c).

7. Dessert experiment

(P. Clingan, Y. Deng, M. Geil, J. Mesaros, and J. Whitmore, 1996)

The experimenters were interested in whether the melting rate of a frozen orange dessert would be

affected (and, in particular, slowed down) by the addition of salt and/or sugar. At this point, they

were not interested in taste testing. Six treatments were selected, as follows:

1 = 1/8 tsp salt, 1/4 cup sugar 4 = 1/4 tsp salt, 1/4 cup sugar

2 = 1/8 tsp salt, 1/2 cup sugar 5 = 1/4 tsp salt, 1/2 cup sugar

3 = 1/8 tsp salt, 3/4 cup sugar 6 = 1/4 tsp salt, 3/4 cup sugar

For each observation of each treatment, the required amount of sugar and salt was added to the

contents of a 12-ounce can of frozen orange juice together with 3 cups of water. The orange juice

mixes were frozen in ice cube trays and allocated to random positions in a freezer. After 48 hours,

the cubes were removed from the freezer, placed on half-inch mesh wire grid and allowed to melt

into a container in the laboratory (which was held at 24.4 ◦C) for 30 minutes. The percentage melting

(by weight) of the cubes are recorded in Table 5.20. The coded position on the table during melting

is also recorded.

(a) Plot the data. Does it appear that the treatments have different effects on the melting of the

frozen orange dessert?

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 5.20 Percentage melting of frozen orange cubes for the dessert experiment

Position 1 2 3 4 5 6

Treatment 2 5 5 1 4 3

% melt 12.06 9.66 7.96 9.04 10.17 7.86

Position 7 8 9 10 11 12

Treatment 4 1 3 1 2 4

% melt 8.14 9.52 4.28 8.32 10.74 5.98

Position 13 14 15 16 17 18

Treatment 2 6 6 3 6 5

% melt 9.84 7.58 6.65 9.26 8.46 12.83

(b) Check whether the assumptions on the one-way analysis of variance model (3.3.1) are satisfied

for these data. Pay particular attention to the equal-variance assumption.

(c) Use Satterthwaite’s method to compare the pairs of treatments, using individual 99% confi-

dence intervals. If doing the computations by hand, compute only the confidence intervals

corresponding to the three most disparate pairs of treatment sample means.

(d) What conclusions can you draw about the effects of the treatments on the melting of the frozen

orange dessert? If your concern was to produce frozen dessert with a long melting time, which

treatment would you recommend? What other factors should be taken into account before

production of such a dessert?

8. Wildflower experiment (Barbra Foderaro 1986)

An experiment was run to determine whether or not the germination rate of the endangered species

of Ohio plant Froelichia floridana is affected by storage temperature or storage method. The two

levels of the factor “temperature” were “spring temperature, 14–24 ◦C” and “summer temperature,

18–27 ◦C.” The two levels of the factor “storage” were “stratified” and “unstratified.” Thus, there

were four treatment combinations in total. Seeds were divided randomly into sets of 20 and the

sets assigned at random to the treatments. Each stratified set of seeds was placed in a mesh bag,

spread out to avoid overlapping, buried in two inches of moist sand, and placed in a refrigeration

unit for two weeks at 50 ◦F. The unstratified sets of seeds were kept in a paper envelope at room

temperature. After the stratification period, each set of seeds was placed on a dish with 5 ml of

distilled deionized water, and the dishes were put into one of two growth chambers for two weeks

according to their assigned level of temperature. At the end of this period, each dish was scored for

the number of germinated seeds. The resulting data are given in Table 5.21.

(a) For the original data, evaluate the constant-variance assumption on the one-way analysis of

variance model (3.3.1) both graphically and by comparing sample variances.

(b) It was noted by the experimenter that since the data were the numbers of germinated seeds

out of a total of 20 seeds, the observations Yi t should have a binomial distribution. Does the

corresponding transformation help to stabilize the variances?

(c) Plot ln(s2
i ) against ln(yi.) and discuss whether or not a power transformation of the form given

in Eq. (5.6.3) might equalize the variances.

(d) Use Scheffé’s method of multiple comparisons, in conjunction with Satterthwaite’s approxi-

mation, to construct 95% confidence intervals for all pairwise comparisons and for the two

contrasts

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 5.21 Data for the wildflower experiment

Treatment combination Number germinating yi. si

1: Spring/stratified 12 13 2 7 19 8.4 6.995

0 0 3 17 11

2: Spring/unstratified 6 2 0 2 4 2.5 3.308

1 0 10 0 0

3: Summer/stratified 6 4 5 7 6 5.0 1.633

5 7 5 2 3

4: Summer/unstratified 0 6 2 5 1 3.6 2.271

5 2 3 6 6

Table 5.22 Weights (in grams) for the spaghetti sauce experiment

Time order 1 2 3 4 5 6 7 8 9

Treatment 3 2 4 3 4 5 1 6 6

Weight 14 69 26 15 20 12 55 14 16

Time order 10 11 12 13 14 15 16 17 18

Treatment 5 1 2 4 6 3 5 2 1

Weight 16 66 64 23 17 22 18 64 53

1

2
[1, 1,−1,−1] and

1

2
[1,−1, 1,−1] ,

which compare the effects of temperature and storage methods, respectively.

9. Spaghetti sauce experiment

(K. Brewster, E. Cesmeli, J, Kosa, M. Smith, and M. Soliman 1996)

The spaghetti sauce experiment was run to compare the thicknesses of three particular brands of

spaghetti sauce, both when stirred and unstirred. The six treatments were:

1 = store brand, unstirred 2 = store brand, stirred

3 = national brand, unstirred 4 = national brand, stirred

5 = gourmet brand, unstirred 6 = gourmet brand, stirred

Part of the data collected is shown in Table 5.22. There are three observations per treatment, and the

response variable is the weight (in grams) of sauce that flowed through a colander in a given period

of time. A thicker sauce would give rise to smaller weights.

(a) Check the assumptions on the one-way analysis of variance model (3.3.1).

(b) Use Satterthwaite’s method to obtain simultaneous confidence intervals for the six preplanned

contrasts

τ1 − τ2 , τ3 − τ4 , τ5 − τ6 , τ1 − τ5 , τ1 − τ3 , τ3 − τ5 ,

Select an overall confidence level of at least 94%.

http://dx.doi.org/10.1007/978-3-319-52250-0_3


6Experiments with Two Crossed
Treatment Factors

6.1 Introduction

In this chapter, we discuss the use of completely randomized designs for experiments that involve

two crossed treatment factors. We label the treatment factors as A and B, where factor A has a levels

coded 1, 2, . . . , a, and factor B has b levels coded 1, 2, . . . , b. Factors are crossed if every combination

of levels may be observed. For experiments considered in this chapter, every level of A is observed

with every level of B, so the factors are crossed. In total, there are v = ab treatments (treatment

combinations), and these are coded as 11, 12, . . . , 1b, 21, 22, . . . , 2b, . . . , ab.

In the previous three chapters, we recoded the treatment combinations as 1, 2, . . . , v and used the

one-way analysis of variance for comparing their effects. In this chapter, we investigate the contributions

that each of the factors make individually to the response, and it is more convenient to retain the 2-digit

code ij for a treatment combination in which factor A is at level i and factor B is at level j. In Sect. 6.2.1,

we define the “interaction” of two treatment factors. Allowing for the possibility of interaction leads

one to select a “two-way complete model” to model the data (Sect. 6.4). However, if it is known in

advance that the factors do not interact, a “two-way main-effects model” would be selected (Sect. 6.5).

Estimation of contrasts, confidence intervals, and analysis of variance techniques are described for

these basic models. The calculation of sample sizes is also discussed (Sect. 6.6). The corresponding

commands for SAS and R software are described in Sects. 6.8 and 6.9, respectively.

If each of the two factors has a large number of levels, the total number of treatment combina-

tions could be quite large. When observations are costly, it may be necessary to limit the number of

observations to one per treatment combination. Analysis for this situation is discussed in Sect. 6.7.

6.2 Models and Factorial Effects

6.2.1 The Meaning of Interaction

In order to understand the meaning of the interaction between two treatment factors, it is helpful

to look at possible data sets from a hypothetical experiment. Universities have become increasingly

interested in online courses and other nontraditional modes of instruction. While an online course may

be offered for a group of students and involve interaction between the students in a common section,

consider development of a course that students take independently of one another. Suppose that a

hypothetical statistics department wishes to know to what extent student performance in an introductory

© Springer International Publishing AG 2017
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Fig. 6.1 Possible
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online course is affected by the primary presentation format (textbook reading assignments, videotaped

lectures, or interactive software) and course structure (structured, with regular deadlines throughout

the term; or unstructured, with only a deadline to finish by the end of the term).

There are two treatment factors of interest, namely “presentation format,” which has three levels,

coded 1, 2, and 3, and “course structure,” which has two levels, coded 1 and 2. Both of the treatment

factors have fixed effects, since their levels have been specifically chosen (see Sect. 2.2, p. 11, step (f)).

The students who enroll in the introductory course are the experimental units and are allocated at

random to one of the six treatment combinations in such a way that approximately equal numbers

of students are assigned to each combination of presentation format and course structure. Student

performance is to be measured by means of a computer-graded multiple-choice examination, and an

average exam score yij. for each treatment combination will be obtained, averaging over students for

each treatment combination.

There are eight different types of situations that could occur, and these are depicted in Figs. 6.1 and

6.2, where the plotted character indicates the course structure used. The plots are called interaction

plots and give an indication of how the different format–structure combinations affect the average

exam score.

In plots (a)–(d) of Fig. 6.1, the lines joining the average exam scores for the two course structures

are parallel (and sometimes coincide). In plot (b), all the presentation formats have obtained higher

exam scores with course structure 1 than with structure 2, but the presentation formats themselves look

very similar in terms of the average exam scores obtained. Thus there is an effect on the average exam

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Fig. 6.2 Possible

configurations of effects
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score of course structure (S) but no effect of presentation format (F). Below the plot this is highlighted

by the notation “F = no, S = yes.” The notation “FS = no” refers to the fact that the lines are parallel,

indicating that there is no interaction (see below). In plot (c), no difference can be seen in the average

scores obtained from the two course structures for any presentation format, although the presentation

formats themselves appear to have achieved different average scores. Thus, the presentation formats

have an effect on the average exam score, but the course structures do not (F = yes, S = no). Plot (d)

shows the type of plot that might be obtained if there is both a presentation-format effect and a course-

structure effect. The plot shows that all three presentation formats have obtained higher average exam

scores using structure 1 than using structure 2. But also, presentation format 1 has obtained higher

average scores than the other two presentation formats. The individual course-structure effects and

presentation-format effects are known as main effects.

In plots (a)–(d) of Fig. 6.2, the lines are not parallel. This means that more is needed to explain the

differences in exam scores than just course structure and presentation format effects. For example, in

plot (a), all presentation formats have obtained higher exam scores using course structure 1 than using

structure 2, but the difference is very small for presentation format 3 and very large for presentation

format 1. In plot (d), presentation format 1 has obtained higher exam scores with structure 2, while the

other two presentation formats have done better with structure 1. In all of plots (a)–(d) the presentation

formats have performed differently with the different structures. This is called an effect of interaction

between presentation format and course structure.



142 6 Experiments with Two Crossed Treatment Factors

In plot (c), the presentation formats clearly differ. Two do better with structure 1 and one with

structure 2. However, if we ignore course structures, the presentation formats appear to have achieved

very similar average exam scores overall. So, averaged over the structures, there is little difference

between them. In such a case, a standard computer analysis will declare that there is no difference

between presentation formats, which is somewhat misleading. We use the notation “FS = yes” to

denote an interaction between presentation format and Structure, and “F = no?” to highlight the fact

that a conclusion of no difference between presentation formats should be interpreted with caution in

the presence of interaction. In general, if there is an interaction between two treatment factors, then it

may not be sensible to examine either of the main effects separately. Instead, it will often be preferable

to compare the effects of the treatment combinations themselves.

While interaction plots are extremely helpful in interpreting the analysis of an experiment, they give

no indication of the size of the experimental error. Sometimes a perceived interaction in the plot will

not be distinguishable from error variability in the analysis of variance. On the other hand, if the error

variability is very small, then an interaction effect may be statistically significant in the analysis, even

if it appears negligible in the plot.

6.2.2 Models for Two Treatment Factors

If we use the two-digit codes ij for the treatment combinations in the one-way analysis of variance

model (3.3.1), we obtain the model

Yijt = μ + τij + ǫijt ,

ǫijt ∼ N(0,σ2) ,

ǫijt
′s independent ,

t = 1, . . . , rij; i = 1, . . . , a; j = 1, . . . , b,

(6.2.1)

where i and j are the levels of A and B, respectively. This model is known as the cell-means model. The

“cell” refers to the cell of a table whose rows represent the levels of A and whose columns represent

the levels of B.

Since the interaction plot arising from a two-factor experiment could be similar to any of the plots

of Figs. 6.1 and 6.2, it is often useful to model the effect on the response of treatment combination ij

to be the sum of the individual effects of the two factors, together with their interaction; that is,

τij = αi + βj + (αβ)ij.

Here, αi is the effect (positive or negative) on the response due to the fact that the ith level of factor

A is observed, and βj is the effect (positive or negative) on the response due to the fact that the jth

level of factor B is observed, and (αβ)ij is the extra effect (positive or negative) on the response of

observing levels i and j of factors A and B together. The corresponding model, which we call the

two-way complete model, or the two-way analysis of variance model, is as follows:

Yijt = μ + αi + βj + (αβ)ij + ǫijt ,

ǫijt ∼ N(0,σ2) ,

ǫijt
′s are mutually independent ,

t = 1, . . . , rij; i = 1, . . . , a; j = 1, . . . , b.

(6.2.2)

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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The phrase “two-way” refers to the fact that there are two primary sources of variation, namely, the

two treatment factors. Model (6.2.2) is equivalent to model (6.2.1), since all we have done is to express

the effect of the treatment combination in terms of its constituent parts.

Occasionally, an experimenter has sufficient knowledge about the two treatment factors being stud-

ied to state with reasonable certainty that the factors do not interact and that an interaction plot similar

to one of the plots of Fig. 6.1 will occur. This knowledge may be gleaned from previous similar exper-

iments or from scientific facts about the treatment factors. If this is so, then the interaction term can be

dropped from model (6.2.2), which then becomes

Yijt = μ + αi + βj + ǫijt ,

ǫijt ∼ N(0,σ2) ,

ǫijt
′s are mutually independent ,

t = 1, . . . , rij; i = 1, . . . , a; j = 1, . . . , b .

(6.2.3)

Model (6.2.3) is a “submodel” of the two-way complete model and is called a two-way main-effects

model, or two-way additive model, since the effect on the response of treatment combination ij is

modeled as the sum of the individual effects of the two factors. If an additive model is used when the

factors really do interact, then inferences on main effects can be very misleading. Consequently, if the

experimenter does not have reasonable knowledge about the interaction, then the two-way complete

model (6.2.2) or the equivalent cell-means model (6.2.1) should be used.

6.2.3 Checking the Assumptions on the Model

The assumptions implicit in both the two-way complete model (6.2.2) and the two-way main-effects

model (6.2.3) are that the error random variables have equal variances, are mutually independent, and

are normally distributed. The strategy and methods for checking the error assumptions are the same as

those in Chap. 5. The standardized residuals are calculated as

zijt = (yijt − ŷijt)/
√

ssE/(n − 1)

with

ŷijt = τ̂ij = α̂i + β̂j + (α̂β)ij

or

ŷijt = τ̂ij = α̂i + β̂j ,

depending upon which model is selected, where the “hat” denotes a least squares estimate. The residuals

are plotted against

(i) the order of observation to check independence,

(ii) the levels of each factor and ŷijt to check for outliers and for equality of variances,

(iii) the normal scores to check the normality assumption.

When the main-effects model is selected, interaction plots of the data, such as those in Figs. 6.2 and 6.1,

can be used to check the assumption of no interaction. An alternative way to check for interaction is to

plot the standardized residuals against the levels of one of the factors with the plotted labels being the

levels of the second factor. An example of such a plot is shown in Fig. 6.3. (For details of the original

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Fig. 6.3 Residual plot for

the temperature experiment
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experiment, see Exercise 17.9.1, p. 650.) If the main-effects model had represented the data well, then

the residuals would have been randomly scattered around zero. However, a pattern can be seen that

is reminiscent of the interaction plot (b) of Fig. 6.2 suggesting that a two-way complete model would

have been a much better description of the data. If the model is changed based on the data, subsequent

stated confidence levels and significance levels will be inaccurate, and analyses must be interpreted

with caution.

If there is some doubt about the equality of the variances, the rule of thumb s2
max/s2

min < 3 can be

employed, where s2
max is the maximum of the variances of the data values within the cells, and s2

min is

the minimum (see Sect. 5.6.1). In a two-way layout, however, there may not be sufficient observations

per cell to allow this calculation to be made. Nevertheless, we can at least check that the error variances

are the same for each level of any given factor by employing the rule of thumb for the variances of the

nonstandardized residuals calculated at each level of the factor.

6.3 Contrasts

6.3.1 Contrasts for Main Effects and Interactions

Since the cell-means model (6.2.1) is equivalent to the one-way analysis of variance model, we know

that all contrasts in the treatment effects τij are estimable (cf. Sect. 3.4.1, p. 34). Contrasts of interest

for a cell-means model are typically of three main types: treatment contrasts, interaction contrasts, and

main-effect contrasts.

Treatment contrasts �i�jdijτij are no different from the types of contrasts described in Chap. 4. For

example, τij −τsh is a pairwise difference between treatment combinations ij and sh. All the confidence

interval methods of Chap. 4 are directly applicable.

Interaction contrasts are the contrasts that we use in order to measure whether or not the lines on

the interaction plots (cf. Figs. 6.1 and 6.2) are parallel. An example of an interaction contrast is

(τsh − τ(s+1)h) − (τsq − τ(s+1)q) . (6.3.4)

We can verify that this is, indeed, an interaction contrast by using the equivalent two-way complete

model notation with τij = αi + βj + (αβ)ij. Substituting this into (6.3.4) gives the contrast

(
(αβ)sh − (αβ)(s+1)h

)
−

(
(αβ)sq − (αβ)(s+1)q

)
, (6.3.5)

http://dx.doi.org/10.1007/978-3-319-52250-0_17
http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_4
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which is a function of interaction parameters only. Interaction contrasts are always of the form

∑

i

∑

j

dijτij =
∑

i

∑

j

dij(αβ)ij , (6.3.6)

where ∑

i

dij = 0 for each j and
∑

j

dij = 0 for each i .

Some, but not all, interaction contrasts have coefficients dij = cikj. For example, if we take cs = kh = 1

and cs+1 = kq = −1 and all other ci and kj zero, then, setting dij = cikj in (6.3.6), we obtain the

coefficients in contrast (6.3.5).

If the interaction effect is very small, then the lines on an interaction plot are almost parallel (as in

plots (a)–(d) of Fig. 6.1). We can then compare the average effects of the different levels of A (averaging

over the levels of B). Thus, contrasts of the form �ciτ i., with �ci = 0, would be of interest. However,

if there is an interaction (as in plot (c) of Fig. 6.2), such an average may make little sense. This becomes

obvious when we use the two-way complete model formulation, since a main effect contrast in A is

∑

i

ciτ i. =
∑

i

ci(αi + (αβ)i.) (6.3.7)

where (αβ)i. = 1
b

∑
j(αβ)ij, and we can see clearly that we have averaged over any interaction effect

that might be present. We will often write

α∗
i = αi + (αβ)i. and β∗

j = βj + (αβ).j

for convenience. A contrast in the main effect of A for the two-way complete model is then written as

�ciα
∗
i (�ci = 0), and a contrast in the main effect of B is

∑

j

kjτ .j =
∑

j

kj(βj + (αβ).j) =
∑

j

kjβ
∗
j , (6.3.8)

where �kj = 0 and (αβ).j = 1
a

∑
i(αβ)ij.

Sometimes, it is of interest to compare the effects of the levels of one factor separately at each level

of the other factor. Consider a variation on the hypothetical experiment in Sect. 6.2.1. Suppose the

hypothetical statistics department also wishes to study the effects on student learning of two pedago-

gies (traditional lecture, and discovery-based learning) for three instructors teaching an introductory

statistics course. Unless the department wants all instructors (factor A, say) to use the same pedagogy

(factor B, say) in teaching the course, a natural objective might be to choose a best pedagogy for each

instructor separately. If comparison of the effects of levels of factor B for each level of factor A is

required, then contrasts of the form

∑

j

cjτij , with
∑

j

cj = 0 for each i = 1, 2, . . . , a ,

are of interest. We call such contrasts simple contrasts in the levels of B. As a special case, we have

the simple pairwise differences of factor B:
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τih − τij, for each i = 1, . . . , a .

These are a subset of the pairwise comparison contrasts. Simple contrasts and simple pairwise differ-

ences of factor A are defined in an analogous way.

When it is known in advance of the experiment that factors A and B do not interact, the two-way

main-effects model (6.2.3) would normally be used. In this model, there is no interaction term, so

τij = αi + βj. The main-effects contrasts for A and B are respectively of the form

∑
ciτ i. =

∑
ciαi and

∑
kjτ .j =

∑
kjβj,

with
∑

ci = 0 and
∑

kj = 0.

6.3.2 Writing Contrasts as Coefficient Lists

Instead of writing out a contrast explicitly, it is sometimes sufficient, and more convenient, to list the

contrast coefficients only. For the two-way complete model, we have a choice. We can refer to contrasts

as either a list of coefficients of the parameters α∗
i ,β

∗
j , and (αβ)ij or as a list of coefficients of the τij’s.

This is illustrated in the following example.

Example 6.3.1 Battery experiment, continued

The four treatment combinations in the battery experiment of Sect. 2.5.2, p. 24, involved two treatment

factors, “duty” and “brand,” each having two levels (1 for alkaline and 2 for heavy duty; 1 for name

brand and 2 for store brand), giving treatment combinations 11, 12, 21, and 22. (These were coded in

previous examples as 1, 2, 3, and 4, respectively.) There were r = 4 observations on each treatment

combination.

The interaction plot in Fig. 6.4 shows a possible interaction between the two factors, since the dotted

lines on the plot are not close to parallel. However, we should remember that we cannot be certain

whether the nonparallel lines are due to an interaction or to inherent variability in the data, and we will

need to investigate the cause in more detail later.

The interaction is measured by the contrast

τ11 − τ12 − τ21 + τ22 = (αβ)11 − (αβ)12 − (αβ)21 + (αβ)22 ,

Fig. 6.4 Plot of average

life per unit cost against

“Duty” level i by “Brand”

level j for the battery

experiment
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http://dx.doi.org/10.1007/978-3-319-52250-0_2
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which can be written in terms of the coefficient list [ 1,−1,−1, 1 ].
The contrast that compares the average lifetimes of heavy duty and alkaline batteries (averaged

across brands) is

τ2. − τ1. = 1

2
(τ21 + τ22) − 1

2
(τ11 + τ12) = α∗

2 − α∗
1 .

This has coefficient list [−1, 1 ] in terms of the effects α∗
1, α∗

2 of the levels of duty, but coefficient list
1
2
[−1,−1, 1, 1 ] in terms of the effects τ11, τ12, τ21, τ22 of the treatment combinations. Similarly,

the contrast that compares the average life of store brand with that of name brand (averaged over duty)

has coefficient list [−1, 1 ] in terms of the effects β∗
j of brand, but coefficient list 1

2
[−1, 1,−1, 1 ] in

terms of the τij’s.

Since the main-effect contrasts each have divisor 2, the interaction contrast is often divided by 2

also. This has the effect that the least squares estimators of all three contrasts have the same variances

(see Example 6.4.1), and their magnitudes are more directly comparable. An alternative way to achieve

equal variances is to normalize the contrasts (see Sect. 4.2), in which case all three contrasts would all

be divided by

√
�c2

i /r. �

Contrast coefficients are often listed as columns in a table. For example, the contrast coefficients of

the τij’s for the main effect and interaction contrasts of Example 6.3.1 are written as below, with ±1’s

in the body of the table, and the constants listed as divisors in the last row.

ij A B AB

11 −1 −1 1

12 −1 1 −1

21 1 −1 −1

22 1 1 1

Divisor 2 2 2

The benefit of this representation is that we can see easily that each AB interaction coefficient can be

obtained by multiplying the corresponding A and B main-effect coefficients. Most of the interaction

contrasts that we shall use have this product form. We will mention the exceptions when they arise.

Example 6.3.2 Trend contrasts

Suppose that the two factors, A and B, have a = 3 and b = 6 equally spaced quantitative levels,

respectively, and that the sample sizes are equal. From Table A.2, we see that AL, the linear trend

contrast for A, has contrast coefficient list [−1, 0, 1] in terms of the α∗
i ’s, and AQ, the quadratic trend

contrast for A, has contrast coefficient list [ 1,−2, 1 ]; that is

AL = −α∗
1 + α∗

3 ,

AQ = α∗
1 − 2α∗

2 + α∗
3 .

Similarly, in terms of the β∗
j ’s, the coefficient lists for the linear and quadratic trends in the effects of the

six levels of B are also obtained from Table A.2 as [−5,−3,−1, 1, 3, 5 ] and [ 5,−1,−4,−4,−1, 5 ],
respectively; that is,

BL = −5β∗
1 − 3β∗

2 − β∗
3 + β∗

4 + 3β∗
5 + 5β∗

6 ,

BQ = 5β∗
1 − β∗

2 − 4β∗
3 − 4β∗

4 − β∗
5 + 5β∗

6 .

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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Now,

α∗
i = τ i., giving �iciα

∗
i = �ici

(
1

6
�jτij

)
= 1

6
�i�jciτij ,

and

β∗
j = τ .j, giving �jkjβ

∗
j = �jkj

(
1

3
�iτij

)
= 1

3
�i�jkjτij ,

and we can write all of the above trends in terms of contrasts in τij, as shown in the columns of Table 6.1.

Contrast coefficients are also listed for cubic, quartic, and quintic trends for B. If we wish to compare

the A and B trends on the same scale, we can normalize the contrasts (see Sect. 4.2).

In order to model a three-dimensional surface, we need to know not only how the response is affected

by the levels of each factor averaged over the levels of the other factor, but also how the response changes

as the levels of A and B change together. The linearA×linearB trend (ALBL) measures whether or not

the linear trend in A changes in a linear fashion as the levels of B are increased, and vice versa. This is an

interaction contrast whose coefficients are of the form dij = cikj, where ci are the contrast coefficients

for A, and kj are the contrast coefficients for B. The ALBL contrast coefficients are shown in Table 6.1,

and it can be verified that they are obtained by multiplying together corresponding main-effect linear

trend coefficients in the same row. Coefficients for the linearA×quinticB (ALBqn) contrast is also shown

for use later in this chapter. �

Table 6.1 Trend contrasts when A and B have 3 and 6 equally spaced levels, respectively

ij AL AQ BL BQ BC Bqr Bqn ALBL ALBqn

11 −1 1 −5 5 −5 1 −1 5 1

12 −1 1 −3 −1 7 −3 5 3 −5

13 −1 1 −1 −4 4 2 −10 1 10

14 −1 1 1 −4 −4 2 10 −1 −10

15 −1 1 3 −1 −7 −3 −5 −3 5

16 −1 1 5 5 5 1 1 −5 −1

21 0 −2 −5 5 −5 1 −1 0 0

22 0 −2 −3 −1 7 −3 5 0 0

23 0 −2 −1 −4 4 2 −10 0 0

24 0 −2 1 −4 −4 2 10 0 0

25 0 −2 3 −1 −7 −3 −5 0 0

26 0 −2 5 5 5 1 1 0 0

31 1 1 −5 5 −5 1 −1 −5 −1

32 1 1 −3 −1 7 −3 5 −3 5

33 1 1 −1 −4 4 2 −10 −1 −10

34 1 1 1 −4 −4 2 10 1 10

35 1 1 3 −1 −7 −3 −5 3 −5

36 1 1 5 5 5 1 1 5 1

Divisor 6 6 3 3 3 3 3 1 1

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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6.4 Analysis of the Two-Way Complete Model

In the analysis of an experiment with two treatment factors that possibly interact, we may proceed with

the analysis in two equivalent ways. We may use the cell-means model (6.2.1) together with all the

analysis techniques of Chaps. 3 and 4, or we may use the two-way complete model (6.2.2) and isolate

the contributions to the response made by each of the two factors and their interaction separately.

A sensible strategy is to start with the two-way complete model and test a hypothesis of no interaction.

If the hypothesis is not rejected, we may then continue with the analysis by examining the main effects

under the same two-way complete model. We would not change to the two-way main-effects model,

since this is not an equivalent model. However, if the hypothesis of no interaction is rejected, then we

would normally prefer to change to the equivalent cell-means model and examine differences in the

effects of the treatment combinations. We would also use the cell-means model when the objective of

the experiment is to find the best treatment combination.

6.4.1 Least Squares Estimators for the Two-Way Complete Model

As in Sect. 3.4.3, p. 35, the least squares estimator of μ + τij is Y ij., so the least squares estimators

of the parameters in the cell-means model (6.2.1) and the equivalent two-way complete model (6.2.2)

are

μ̂ + τ̂ij = μ̂ + α̂i + β̂j + (α̂β)ij = Y ij. ,

and the corresponding variance is σ2/rij. Any interaction contrast of the form ��dijτij (with �idij = 0

and �jdij = 0) has least squares estimator and associated variance equal to

∑

i

∑

j

dijY ij. and σ2
∑

i

∑

j

(
d2

ij

rij

)
.

In particular, the least squares estimator of the interaction contrast

(τsh − τuh) − (τsq − τuq)

is

Y sh. − Yuh. − Y sq. + Yuq. (6.4.9)

with variance

σ2

(
1

rsh

+ 1

ruh

+ 1

rsq

+ 1

ruq

)
. (6.4.10)

The least squares estimators of main-effect contrasts �ciα
∗
i and �kjβ

∗
j are

∑

i

ciα̂
∗
i =

∑

i

ci

⎛
⎝1

b

∑

j

Y ij.

⎞
⎠ and

∑

j

kjβ̂
∗
j =

∑

j

kj

(
1

a

∑

i

Y ij.

)
(6.4.11)

with variances

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_3


150 6 Experiments with Two Crossed Treatment Factors

Var(�ciα̂
∗
i ) = σ2

⎛
⎝∑

i

∑

j

c2
i

b2rij

⎞
⎠ and Var(�kjβ̂

∗
j ) = σ2

⎛
⎝∑

i

∑

j

k2
j

a2rij

⎞
⎠ , (6.4.12)

respectively. If the sample sizes are equal, the least squares estimators of
∑

ciα
∗
i and

∑
kjβ

∗
j reduce

to ∑

i

ciα̂
∗
i =

∑

i

ciY i.. and
∑

j

kjβ̂
∗
j =

∑

j

kjY .j., (6.4.13)

where Y i.. =
∑

j

∑
t Yijt/br and Y .j. =

∑
i

∑
t Yijt/ar. Thus, for equal sample sizes,

α̂∗
i − α̂∗

s = Y i.. − Y s.. and β̂∗
j − β̂∗

q = Y .j. − Y .q. (6.4.14)

with associated variances 2σ2/(br) and 2σ2/(ar), respectively.

Example 6.4.1 Battery experiment, continued

The four treatment combinations in the battery experiment of Sect. 2.5.2, p. 24, involved two treatment

factors, “duty” and “brand,” each having two levels (1 for alkaline and 2 for heavy duty; 1 for name

brand and 2 for store brand), giving treatment combinations 11, 12, 21, and 22. There were r = 4

observations on each treatment combination. The observed average lifetimes per unit cost for the

treatment combinations were

y11. = 570.75, y12. = 860.50, y21. = 433.00, y22. = 496.25.

The interaction contrast

1

2
(τ11 − τ12 − τ21 + τ22) = 1

2
((αβ)11 − (αβ)12 − (αβ)21 + (αβ)22)

has least squares estimate
1

2
(y11. − y12. − y21. + y22.) = −113.25 ,

with associated variance

σ2
(∑∑

d2
ij/r

)
= σ2

(
(
1

2
)2 + (−1

2
)2 + (−1

2
)2 + (

1

2
)2

)
/4 = σ2/4 .

The duty contrast,

α∗
1 − α∗

2 = (α1 + (αβ)1.) − (α2 + (αβ)2.) = 1

2
(τ11 + τ12 − τ21 − τ22) ,

has least squares estimate y1.. − y2.. = 251.00 and associated variance σ2/4. The brand contrast,

β∗
1 − β∗

2 = (β1 + (αβ).1) − (β2 + (αβ).2) = 1

2
(τ11 − τ12 + τ21 − τ22) ,

has least squares estimate y.1. − y.2. = −176.50 and associated variance σ2/4. �

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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6.4.2 Estimation of σ
2 for the Two-Way Complete Model

Since the two-way complete model (6.2.2) is equivalent to the cell-means model (6.2.1), an unbiased

estimate of σ2 is the same as that for the one-way analysis of variance model, apart from an extra

subscript j. Thus, the error sum of squares ssE can be obtained from (3.4.4) or (3.4.5), p. 39, that is,

ssE =
∑

i

∑

j

∑

t

(yijt − yij.)
2 (6.4.15)

=
∑

i

∑

j

∑

t

y2
ijt −

∑

i

∑

j

rijy
2
ij. (6.4.16)

An unbiased estimate for σ2 is obtained as msE = ssE/(n − v), with v = ab. An upper 100(1 − α)%

confidence bound for σ2 is given by (3.4.9), p. 40, that is,

σ2 ≤ ssE

χ2
n−ab,1−α

. (6.4.17)

Example 6.4.2 Reaction time experiment, continued

The reaction time pilot experiment, run in 1996 by Liming Cai, Tong Li, Nishant, and Andre van der

Kouwe, was described in Exercise 4 of Chap. 4. The experiment was run to compare the speed of

response of a human subject to audio and visual stimuli. A personal computer was used to present a

“stimulus” to a subject, and the time that the subject took to press a key in response was monitored.

The subject was warned that the stimulus was forthcoming by means of an auditory or a visual cue.

The two treatment factors were “Cue Stimulus” at two levels, “auditory” and “visual” (Factor A, coded

1, 2), and “Cue Time” at three levels, 5, 10, and 15 seconds between cue and stimulus (Factor B,

coded 1, 2, 3), giving a total of v = 6 treatment combinations (coded 11, 12, 13, 21, 22, 23). Three

observations were taken on each treatment combination for a single subject. The reaction times are

shown in Table 6.2. It can be verified that
∑ ∑ ∑

y2
ijt = 0.96519. Using (6.4.16) and the sums in

Table 6.2, the sum of squares for error is

ssE =
∑

i

∑

j

∑

t

y2
ijt − 3

∑

i

∑

j

y2
ij.

= 0.96519 − 3(0.32057) = 0.00347 ,

Table 6.2 Data (in seconds) for the reaction time experiment

A: Cue stimulus B: Cue time Treatment combination Reaction time yijt Sums yij.

1 1 11 0.204 0.170 0.181 0.555

1 2 12 0.167 0.182 0.187 0.536

1 3 13 0.202 0.198 0.236 0.636

2 1 21 0.257 0.279 0.269 0.805

2 2 22 0.283 0.235 0.260 0.778

2 3 23 0.256 0.281 0.258 0.795

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
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and an unbiased estimate ofσ2 is msE = ssE/(18−6) = 0.000289 seconds2. An upper 95% confidence

bound for σ2 is
ssE

χ2
12,.95

= 0.00347

5.226
= 0.000664 seconds2 ,

and taking square roots, an upper 95% confidence bound for σ is 0.0257 seconds. �

6.4.3 Multiple Comparisons for the Complete Model

In outlining the analysis at step (g) of the checklist of Chap. 2, the experimenter should specify which

treatment contrasts are of interest, together with overall error rates for hypothesis tests and overall con-

fidence levels for confidence intervals. If the two-way complete model has been selected, comparison

of treatment combinations, comparison of main effects of A, and comparison of main effects of B may

all be of interest. A possibility in outlining the analysis is to select error rates of α1,α2, and α3 for the

three sets of inferences. Then, by the Bonferroni method, the experimentwise simultaneous error rate is

at most α1 +α2 +α3, and the experimentwise confidence level is at least 100(1 −α1 −α2 −α3)%. If

interaction contrasts are also of interest, then the overall α-level can be divided into four parts instead

of three.

Comparing Treatment Combinations

When comparison of treatment combinations is of most interest, the cell-means model (6.2.1) is used.

The formulae for the Bonferroni, Scheffé, Tukey, and Dunnett methods can all be used in the same

way as was done in Chap. 4, but with ssE given by (6.4.16) and with v = ab.

The best treatment combination can be found using Tukey’s method of multiple comparisons. The

best treatment combination may not coincide with the apparent best levels of A and B separately.

For example, in Fig. 6.2(d), p. 141, the apparent best treatment combination occurs with presentation

format 2 and structure 1, whereas the best presentation format, on average, appears to be number 3.

Comparing Main Effects

Main-effect contrasts compare the effects of the levels of one factor averaging over the levels of the

other factor and may not be of interest if the two factors interact. If main-effect contrasts are to be

examined, then the Bonferroni, Scheffé, Tukey, and Dunnett methods can be used for each factor

separately. The general formula is equivalent to (4.4.20), p. 83. For factor A and equal sample sizes

the formula is

∑

i

ciτ i. =
∑

i

ciα
∗
i ∈

⎛
⎝∑

i

ciyi.. ± w

√
msE

∑

i

c2
i /br

⎞
⎠ , (6.4.18)

where the critical coefficient w for each of the four methods is, respectively,

wB = tn−ab,α/2m ; wS =
√

(a − 1)Fa−1,n−ab,α ;

wT = qa,n−ab,α/
√

2 ; wD2 = |t|(0.5)

a−1,n−ab,α .

The general formula for a confidence interval for a contrast in factor B is

∑

j

kjτ .j =
∑

j

kjβ
∗
j ∈

⎛
⎝∑

j

kjy.j. ± w

√
msE

∑

j

k2
j /(ar)

⎞
⎠ (6.4.19)

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_4
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Fig. 6.5 Average times for

the reaction time

experiment

with critical coefficients as above but interchanging a and b. The error variance estimate is msE =
ssE/(n − ab), where ssE is obtained from (6.4.16).

For unequal sample sizes, the Bonferroni and Scheffé methods can be used, but the least squares

estimates and variances must be replaced by (6.4.11) and (6.4.12), respectively. It has not yet been

proved that the other two methods retain an overall confidence level of at least 100(1−α)% for unequal

sample sizes, although this is widely believed to be the case for Tukey’s method.

Example 6.4.3 Reaction time experiment, continued

Suppose the preplanned analysis for the reaction time experiment of Example 6.4.2 (p. 151) had been

to use the two-way complete model and to test the null hypothesis of no interaction. If the hypothesis

were to be rejected, then the plan was to use Tukey’s method at level 99% for the pairwise comparisons

of the treatment combinations. Otherwise, Tukey’s method would be used at level 99% for the pairwise

comparison of the levels of B (cue time), and a single 99% confidence interval would be obtained for

comparing the two levels of A (cue stimulus). Then the experimentwise confidence level for the three

sets of intervals would have been at least 97%.

After looking at the data plotted in Fig. 6.5, the experimenters might decide that comparison of the

levels of cue stimulus (averaged over cue time) is actually the only comparison of interest. However,

the experimentwise confidence level remains at least 97%, because two other sets of intervals were

planned ahead of time and only became uninteresting after the data were examined.

The sample mean weights for the two cue stimuli (averaged over cue times) are

y1.. = 0.1919, y2.. = 0.2642.

The mean square for error was calculated in Example 6.4.2 to be msE = 0.000289. The formula for

a 99% confidence interval for the comparison of a = 2 treatments and br = 9 observations on each

treatment is obtained from (6.4.18) with w = wB = t18−6,0.005 = 3.055, giving

α∗
2 − α∗

1 ∈
(

y2.. − y1.. ± wB

√
msE (1/br + 1/br)

)

= 0.0723 ± (3.055)
√

0.000289(2/9) = (0.0478, 0.0968) .

Thus, at an experimentwise confidence level of at least 97%, we can conclude that the average reaction

time with an auditory cue is between 0.0478 and 0.0968 seconds faster than with a visual cue. �



154 6 Experiments with Two Crossed Treatment Factors

Multiple Comparisons When Variances are Unequal

When the variances of the error variables are unequal, and no transformation can be found to remedy

the problem, Satterthwaite’s approximation, introduced in Sect. 5.6.3 (p. 115), can be used. This is

illustrated in Example 6.4.4.

Example 6.4.4 Bleach experiment

The bleach experiment was run by Annie Autret in 1986 to study the effect of different bleach con-

centrations (factor A) and the effect of the type of stain (factor B) on the speed of stain removal from a

piece of cloth. The bleach concentration was to be observed at levels 3, 5, and 7 teaspoonfuls of bleach

per cup of water (coded 1, 2, 3), and three types of stain (blue ink, jam, tomato sauce; coded 1, 2, 3)

were of interest, giving v = 9 treatment combinations in total. The experimenter calculated that she

needed r = 5 observations per treatment combination in order to be able to detect, with probability

0.9, at significance level 0.05, a difference of 5 min in the time of stain removal between the levels of

either treatment factor.

The data are shown in Table 6.3 together with the sample mean and standard deviation for each

treatment combination. The maximum sample standard deviation is about 8.9 times the size of the

minimum sample standard deviation, so the ratio of the maximum to the minimum variance is about

80, and a transformation of the data should be contemplated. The reader can verify, using the technique

described in Sect. 5.6.2, that a plot of ln(s2
ij) against ln(yij.) is not linear, so no transformation of the

form h(yijt) = y
1−(q/2)

ijt will adequately equalize the error variances.

An alternative is to apply Satterthwaite’s approximation (Sect. 5.6.3, p. 115). The plan of the analysis

was to use Tukey’s method with an error rate of 0.01 for each of the main-effect comparisons and for

the pairwise differences of the treatment combinations, giving an experimentwise confidence level of

at least 97%. For the main effect of B, for example, a pairwise comparison of levels u and h of factor

B is of the form

β∗
u − β∗

h = τ .u − τ .h = 1

3
(τ1u + τ2u + τ3u − τ1h − τ2h − τ3h) ,

which has least squares estimate

β̂∗
u − β̂∗

h = y.u. − y.h. = 1

3

(
y1u. + y2u. + y3u. − y1h. − y2h. − y3h.

)
.

Table 6.3 Data for the bleach experiment, with treatment factors “concentration” (A) and “stain type” (B)

ij Time for stain removal (in seconds) yij. sij

11 3600 3920 3340 3173 2452 3297.0 550.27

12 495 236 515 573 555 474.8 137.04

13 733 525 793 1026 510 717.4 212.85

21 2029 2271 2156 2493 2805 2350.8 305.94

22 428 432 335 288 376 371.8 61.60

23 880 759 1138 780 1625 1036.4 361.91

31 3660 4105 4545 3569 3342 3844.2 479.85

32 410 225 437 350 140 312.4 126.32

33 539 1354 347 584 781 721.0 386.02

http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_5
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If s2
ij denotes the sample variance of the data for treatment combination ij, the estimated variance of

this estimator, as in (5.6.4), p. 115, is

V̂ar
(
β̂∗

u − β̂∗
h

)
=

∑

i

∑

j

d2
ij

s2
ij

rij

= 1

9 × 5
(s2

1u + s2
2u + s2

3u + s2
1h + s2

2h + s2
3h),

and since r = 5, the approximate number of degrees of freedom for error is

df =
(s2

1u + s2
2u + s2

3u + s2
1h

+ s2
2h

+ s2
3h

)2

(s4
1u/4) + (s4

2u/4) + (s4
3u/4) + (s4

1h
/4) + (s4

2h
/4) + (s4

3h
/4)

after canceling the factor r2 = 25 in the numerator and denominator.

For Tukey’s method of pairwise comparisons for factor B with b = 3 levels, the minimum significant

difference is

msd = wT

√
V̂ar

(
β̂∗

u − β̂∗
h

)
,

with wT = q3,df,.01/
√

2. For measurements in seconds, we have the following values:

(u, h) df q3,df,0.01 V̂ar
(
β̂∗

u − β̂∗
h

)
msd y.u. − y.h.

(1, 2) 11.5 5.09 14,780.6 437.57 2,777.67

(1, 3) 18.6 4.68 21,153.5 481.31 2,339.07

(3, 2) 12.6 4.99 8,084.7 317.26 438.60

The set of 99% simultaneous Tukey confidence intervals for pairwise differences is then

β∗
1 − β∗

2 ∈ (2777.67 ± 437.57) = (2340.10, 3215.24) ,

β∗
1 − β∗

3 ∈ (1857.76, 2820.38) , β∗
3 − β∗

2 ∈ (121.34, 755.86) .

Since none of the intervals contains zero, we can state that all pairs of levels of B (stain types) have

different effects on the speed of stain removal, averaged over the three concentrations of bleach. With

experimentwise confidence level at least 97%, the mean time to remove blue ink (level 1) is between

1857 and 2820 seconds longer than that for tomato sauce (level 3), and the mean time to remove tomato

sauce is between 121 and 755 seconds longer than that for jam (level 2). �

6.4.4 Analysis of Variance for the Complete Model

There are three standard hypotheses that are usually examined when the two-way complete model

is used. The first hypothesis is that the interaction between treatment factors A and B is negligible;

that is,

HAB
0 : {(αβ)ij − (αβ)iq − (αβ)sj + (αβ)sq = 0 for all i �= s, j �= q} ,

which occurs when the interaction plots show parallel lines. Notice that if all of the contrasts (αβ)ij −
(αβ)iq − (αβ)sj + (αβ)sq are zero, then their averages over s and q are also zero. This leads to an

equivalent way to write HAB
0 as

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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HAB
0 : {(αβ)ij − (αβ)i. − (αβ).j + (αβ).. = 0 for all ij} .

In this form, it appears that HAB
0 is based on ab estimable contrasts, but in fact, some of them are

redundant, since the ab contrasts add to zero over the subscript i = 1, 2, . . . , a and also over the

subscript j = 1, 2, . . . , b. Consequently, HAB
0 is actually based on (a − 1)(b − 1) estimable contrasts,

and the test is based on (a − 1)(b − 1) degrees of freedom.

The other two standard hypotheses are the main-effect hypotheses

HA
0 : {α∗

1 = α∗
2 = . . . = α∗

a} and HB
0 : {β∗

1 = β∗
2 = . . . = β∗

b } ,

where α∗
i = αi + (αβ)i. and β∗

j = βj + (αβ).j. However, these main-effect hypotheses may not be of

interest if there is a sizable interaction. Each of the main-effect hypotheses can be rephrased in terms

of estimable contrasts in the parameters, and so can be tested. As in Chap. 3, the tests will be based on

(a − 1) and (b − 1) degrees of freedom, respectively.

When the sample sizes are unequal, there are no neat algebraic formulae for the decision rules of

the hypothesis tests. Therefore, we will obtain the tests for equal sample sizes and postpone discussion

of the unequal sample size case to Sects. 6.8 and 6.9, where analysis will be done by computer.

Testing Interactions—Equal Sample Sizes

Since tests for main effects may not be relevant if the two factors interact, the hypothesis of negligible

interaction should be tested first. As in Sect. 3.5.1, p. 41, in order to test

HAB
0 : {(αβ)ij − (αβ)i. − (αβ).j + (αβ).. = 0 for all ij}

against the alternative hypothesis HAB
A :{the interaction is not negligible}, we compare the sum of

squares for error ssE under the two-way complete model (6.2.2) with the sum of squares for error

ssEAB
0 under the reduced model obtained when HAB

0 is true. The difference

ssAB = ssEAB
0 − ssE

is called the sum of squares for the interaction AB, and the test rejects HAB
0 in favor of HAB

A if ssAB

is large relative to ssE.

We can rewrite the two-way complete model as

yijt = μ + αi + βj + (αβ)ij + ǫijt

= μ∗ + α∗
i + β∗

j + [(αβ)ij − (αβ)i. − (αβ).j + (αβ)..] + ǫijt ,

where μ∗ is the constant μ − (αβ)... So, when HAB
0 is true, the reduced model is

yijt = μ∗ + α∗
i + β∗

j + ǫijt ,

which has the same form as the two-way main-effects model.

We will show in Sect. 6.5.1 that the least squares estimate of μ+αi +βj for the two-way main-effects

model is yi.. + y.j. − y..., for equal sample sizes. Similarly, the least squares estimate of μ∗ + α∗
i + β∗

j

in the above reduced model is also yi.. + y.j. − y.... Hence, the sum of squares for error for the reduced

model is

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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ssEAB
0 =

∑

i

∑

j

∑

t

(
yijt − μ̂∗ − α̂∗

i − β̂∗
j

)2

=
∑

i

∑

j

∑

t

(yijt − yi.. − y.j. + y...)
2 .

Adding and subtracting a term yij. to this expression, we have

ssEAB
0 =

∑

i

∑

j

∑

t

(
(yijt − yij.) + (yij. − yi.. − y.j. + y...)

)2

=
∑

i

∑

j

∑

t

(yijt − yij.)
2 +

∑

i

∑

j

∑

t

(yij. − yi. − y.j. + y...)
2 .

But the first term is just ssE given in (6.4.15). So, for equal sample sizes,

ssAB = ssEAB
0 − ssE

= r
∑

i

∑

j

(yij. − yi. − y.j. + y...)
2 (6.4.20)

= r
∑

i

∑

j

y2
ij. − br

∑

i

y2
i. − ar

∑

j

y2
.j. + abry2

... .

It can be shown that when HAB
0 is true, the corresponding random variable SS(AB)/σ2 has a chi-

squared distribution with (a − 1)(b − 1) degrees of freedom. Also, SSE/σ2 ∼ χ2
n−ab

and SSE can be

shown to be independent of SS(AB). So, when HAB
0 is true,

SS(AB)/(a − 1)(b − 1)σ2

SSE/(n − ab)σ2
= MS(AB)

MSE
∼ F(a−1)(b−1),n−ab .

We reject HAB
0 for large values of the ratio msAB/msE. Thus, the rule for testing the hypothesis HAB

0

against the alternative hypothesis that the interaction is not negligible is

reject HAB
0 if

msAB

msE
> F(a−1)(b−1),n−ab,α , (6.4.21)

where msAB = ssAB/(a − 1)(b − 1), msE = ssE/(n − ab), ssAB is given in (6.4.20), and ssE is

ssE =
∑

i

∑

j

∑

t

y2
ijt −

∑

i

∑

j

ry2
ij. .

If HAB
0 is rejected, it is often preferable to use the equivalent cell-means model and look at contrasts

in the treatment combinations. If HAB
0 is not rejected, then tests and contrasts for main effects are

usually of interest, and the two-way complete model is retained. (We do not change to the inequivalent

main-effects model.)

Testing Main Effects of A—Equal Sample Sizes

In testing the hypothesis that factor A has no effect on the response, one can either test the hypothesis

that the levels of A (averaged over the levels of B) have the same average effect on the response, that is,
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HA
0 : {α∗

1 = α∗
2 = · · · = α∗

a} ,

or one can test the hypothesis that the response depends only on the level of B, that is

HA+AB
0 : {HA

0 and HAB
0 are both true} .

The traditional test, which is produced automatically by many computer packages, is a test of the

former, and the sum of squares for error ssE under the two-way complete model is compared with the

sum of squares for error ssEA
0 under the reduced model

Yijt = μ∗∗ + β∗
j +

(
(αβ)ij − (αβ)i. − (αβ).j + (αβ)..

)
+ ǫijt .

It is, perhaps, more intuitively appealing to test HA+AB
0 rather than HA

0 , since the corresponding reduced

model is

Yijt = μ∗ + β∗
j + ǫijt ,

suggesting that A has no effect on the response whatsoever.

In this book, we take the view that the main effect of A would not be tested unless the hypothesis

of no interaction were first accepted. If it is true that there is no interaction, then the two hypotheses

and corresponding reduced models are the same, and the results of the two tests should be similar.

Consequently, we will derive the test of the standard hypothesis HA
0 .

It can be shown that if the sample sizes are equal, the least squares estimate of E[Yijt] for the reduced

model under HA
0 is

yij. − yi.. + y... ,

and so the sum of squares for error for the reduced model is

ssEA
0 =

∑

i

∑

j

∑

t

(yijt − yij. + yi.. − y...)
2 .

Taking the terms in pairs and expanding the terms in parentheses, we obtain

ssEA
0 =

a∑

i=1

b∑

j=1

r∑

t=1

(yijt − yij.)
2 − br

a∑

i=1

(yi.. − y...)
2 .

Since the first term is the formula (6.4.15) for ssE, the sum of squares for treatment factor A is

ssA = ssEA
0 − ssE = br

a∑

i=1

(yi.. − y...)
2 = br

a∑

i=1

y2
i.. − abry2

... . (6.4.22)

Notice that this formula for ssA is similar to the formula (3.5.12), p. 43, for ssT used to test the

hypothesis H0:{τ1 = τ2 = · · · = τa} in the one-way analysis of variance.

We write SSA for the random variable corresponding to ssA. It can be shown that if HA
0 is true,

SSA/σ2 has a chi-squared distribution with a − 1 degrees of freedom, and that SSA and SSE are

independent. So, writing MSA = SSA/(a − 1), we have that MSA/MSE has an F-distribution when

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 6.4 Two-way ANOVA, crossed fixed effects with interaction

Source of Variation Degrees of Freedom Sum of Squares Mean Square Ratio

Factor A a − 1 ssA ssA
a−1

msA
msE

Factor B b − 1 ssB ssB
b−1

msB
msE

AB (a − 1)(b − 1) ssAB ssAB
(a−1)(b−1)

msAB
msE

Error n − ab ssE ssE
n−ab

Total n − 1 sstot

Computational formulae for equal sample sizes

ssE =
∑

i

∑
j

∑
t y2

ijt ssA = br
∑

i y2
i.. − ny2

...

− r
∑

i

∑
j y2

ij. ssB = ar
∑

j y2
.j. − ny2

...

sstot =
∑

i

∑
j

∑
t y2

ijt − ny2
... ssAB = r

∑
i

∑
j y2

ij. − br
∑

i y2
i..

n = abr − ar
∑

j y2
.j. + ny2

...

HA
0 is true, and the rule for testing HA

0 : {α∗
1 = · · · = α∗

a} against HA
A : {not all of the α∗

i ’s are equal} is

reject HA
0 if

msA

msE
> Fa−1,n−ab,α , (6.4.23)

where msA = ssA/(a − 1) and msE = ssE/(n − ab).

Testing Main Effects of B—Equal Sample Sizes

Analogous to the test for main effects of A, we can show that the rule for testing HB
0 : {β∗

1 = β∗
2 =

· · · = β∗
b
} against HB

A : {not all of the β∗
j ’s are equal} is

reject HB
0 if

msB

msE
> Fb−1,n−ab,α , (6.4.24)

where msB = ssB/(b − 1), msE = ssE/(n − ab), and

ssB = ar
∑

j

(y.j. − y...)
2 = ar

∑

j

y2
.j. − abry2

... . (6.4.25)

Analysis of Variance Table

The tests of the three hypotheses are summarized in a two-way analysis of variance table, shown in

Table 6.4. The computational formulae are given for equal sample sizes. The last line of the table is

sstot =
∑

i

∑
j

∑
t(yijt − y...)

2, which is the total sum of squares similar to (3.5.16). It can be verified

that

ssA + ssB + ssAB + ssE = sstot .

When the sample sizes are not equal, the formulae for ssA, ssB, and ssAB are more complicated,

the corresponding random variables SSA, SSB, and SS(AB) are not independent, and

ssA + ssB + ssAB + ssE �= sstot .

The analysis of experiments with unequal sample sizes will be discussed in Sects. 6.8 and 6.9 using

the software packages SAS and R, respectively.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Example 6.4.5 Reaction time experiment, continued

The reaction time experiment was described in Example 6.4.2, p. 151. There were a = 2 levels of cue

stimulus and b = 3 levels of cue time, and r = 3 observations per treatment combination. Using the

data in Table 6.2, we have

sstot =
∑

i

∑

j

∑

t

y2
ijt − abry2

... = 0.96519 − 0.93617 = 0.02902 ,

ssA = br
∑

i

y2
i.. − abry2

... = 9(0.19182 + 0.26422) − 0.93617 = 0.02354 ,

ssB = ar
∑

j

y2
.j. − abry2

... = 6(0.22672 + 0.21902 + 0.23852) − 0.93617 = 0.00116

ssAB = r
∑

i

∑

j

y2
ij. − br

∑

i

y2
i.. − ar

∑

j

y2
.j. + abry2

...

= 0.96172 − 0.95971 − 0.93733 + 0.93617 = 0.00085 ,

and in Example 6.4.2, ssE was calculated to be 0.00347. It can be seen that sstot = ssA+ssB+ssAB+
ssE. The analysis of variance table is shown in Table 6.5. The mean squares are the sums of squares

divided by their degrees of freedom.

There are three hypotheses to be tested. If the Type I error probability α is selected to be 0.01 for

each test, then the probability of incorrectly rejecting at least one hypothesis when it is true is at most

0.03. The interaction plots in Fig. 6.5, p. 153, suggest that there is no interaction between cue stimulus

(A) and cue time (B). To test this hypothesis, we obtain from the analysis of variance table

msAB/msE = 0.00043/0.00029 = 1.46 .

which is less than F2,12,.01 = 6.93. Therefore, at individual significance level α = 0.01, there is not

sufficient evidence to reject the null hypothesis HAB
0 that the interaction is negligible. This agrees with

the interaction plot.

Now consider the main effects. Looking at Fig. 6.5, if we average over cue stimulus, there does

not appear to be much difference in the effect of cue time. If we average over cue time, then auditory

cue stimulus (level 1) appears to produce a shorter reaction time than a visual cue stimulus (level

2). From the analysis of variance table, msA/msE = 0.02354/0.00029 = 81.38. This is larger than

F1,12,.01 = 9.33, so we reject HA
0 :{α∗

1 = α∗
2}, and we would conclude that there is a difference in cue

stimulus averaged over the cue times. On the other hand, msB/msE = 0.00058/0.00029 = 2.0, which

Table 6.5 Two-way ANOVA for the reaction time experiment

Source of Variation Degrees of Freedom Sum of Squares Mean Square Ratio p-value

Cue stimulus 1 0.02354 0.02354 81.38 0.0001

Cue time 2 0.00116 0.00058 2.00 0.1778

Interaction 2 0.00085 0.00043 1.46 0.2701

Error 12 0.00347 0.00029

Total 17 0.02902
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is less than F2,12,.01 = 6.93. Consequently, we do not reject HB
0 : {β∗

1 = β∗
2 = β∗

3 } and conclude that

there is no evidence for a difference in the effects of the cue times averaged over the two cue stimuli.

If the analysis were done by a computer program, the p-values in Table 6.5 would be printed. We

would reject any hypothesis whose corresponding p-value is less than the selected individual α∗ level.

In this example, we selected α∗ = 0.01, and we would fail to reject HAB
0 and HB

0 , but we would reject

HA
0 , as in the hand calculations.

This was a pilot experiment, and since the experimenters already believed that cue stimulus and

cue time really do not interact, they selected the two-way main-effects model in planning the main

experiment. �

6.5 Analysis of the Two-Way Main-Effects Model

6.5.1 Least Squares Estimators for the Main-Effects Model

The two-way main-effects model (6.2.3) is

Yijt = μ + αi + βj + ǫijt ,

ǫijt ∼ N(0,σ2) ,

ǫijt
′s are mutually independent ,

t = 1, . . . , rij; i = 1, . . . , a; j = 1, . . . , b.

This model is a submodel of the two-way complete model (6.2.2) in the sense that it can only

describe situations similar to those depicted in plots (a)–(d) of Fig. 6.1 and cannot describe plots (a)–

(d) of Fig. 6.2. When the sample sizes are unequal, the least squares estimators of the parameters in the

main-effects model are not easy to obtain, and calculations are best left to a computer (see Sects. 6.8

and 6.9). In the optional subsection below, we show that when the sample sizes are all equal to r, the

least squares estimator of E[Yijt] = μ + αi + βj is

μ̂ + α̂i + β̂j = Y i.. + Y .j. − Y ... . (6.5.26)

The least squares estimator for the estimable main-effect contrast
∑

i ciαi with
∑

i ci = 0 is then

∑

i

ciα̂i =
∑

i

ci(μ̂ + α̂i + β̂j) =
∑

i

ci

(
Y i.. + Y .j. − Y ...

)

=
∑

i

ciY i.. ,

which has variance

Var

(∑

i

ciα̂i

)
= Var

(∑

i

ciY i..

)
= σ2

br

∑

i

c2
i . (6.5.27)

For example, αp − αs, the pairwise comparison of levels p and s of A, has least squares estimator and

associated variance

α̂p − α̂s = Yp.. − Y s.. with Var(Yp.. − Y s..) = 2σ2

br
.
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These are exactly the same formulas as for the two-way complete model and similar to those for

the one-way model. Likewise for B, a main-effect contrast
∑

kjβj with
∑

j kj = 0 has least squares

estimator and associated variance

∑

j

kjβ̂j =
∑

j

kjY .j. and Var

⎛
⎝∑

j

kjY .j.

⎞
⎠ = σ2

ar

∑

j

k2
j , (6.5.28)

and the least squares estimator and associated variance for the pairwise difference βh − βq is

β̂h − β̂q = Y .h. − Y .q. with Var(Y .h. − Y .q.) = 2σ2

ar
.

Example 6.5.1 Nail varnish experiment

An experiment on the efficacy of nail varnish solvent in removing nail varnish from cloth was run by

Pascale Quester in 1986. Two different brands of solvent (factor A) and three different brands of nail

varnish (factor B) were investigated. One drop of nail varnish was applied to a piece of cloth (dropped

from the applicator 20 cm above the cloth). The cloth was immersed in a bowl of solvent and the time

measured (in minutes) until the varnish completely dissolved. There were six treatment combinations

11, 12, 13, 21, 22, 23, where the first digit represents the brand of solvent and the second digit represents

the brand of nail varnish used in the experiment. The design was a completely randomized design with

r = 5 observations on each of the six treatment combinations. The data are listed in Table 6.6 in the

order in which they were collected.

The experimenter had run a pilot experiment to estimate the error variance σ2 and to check that the

experimental procedure was satisfactory. The pilot experiment indicated that the interaction between

nail varnish and solvent was negligible. The similarity of the chemical composition of the varnishes and

solvents, and the verification from the pilot experiment, suggest that the main-effects model (6.2.3)

will be a satisfactory model for the main experiment. The data from the main experiment give the

interaction plots in Fig. 6.6. Although the lines are not quite parallel, the selected main-effects model

would not be a severely incorrect representation of the data.

Using the data in Table 6.6, the average dissolving time (in minutes) for the two brands of solvent are

Table 6.6 Data (minutes) for the nail varnish experiment

Solvent 2 1 1 2 2 2 1 2

Varnish 3 3 3 3 2 2 2 2

Time 32.50 30.20 27.25 24.25 34.42 26.00 22.50 31.08

Solvent 1 2 1 1 2 1 2 2

Varnish 2 1 1 1 1 3 3 2

Time 25.17 29.17 27.58 28.75 31.75 29.75 30.75 29.17

Solvent 1 1 2 1 2 2 1 2

Varnish 2 1 2 2 1 3 3 1

Time 27.75 25.83 24.75 21.50 32.08 29.50 24.50 28.50

Solvent 2 1 1 2 1 1

Varnish 3 3 1 1 1 2

Time 28.75 22.75 29.25 31.25 22.08 25.00
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Fig. 6.6 Average

dissolving times for the

nail varnish experiment

y1.. = 25.9907 and y2.. = 29.5947 .

So the least squares estimate of the difference in the dissolving times for the two solvents is

α̂1 − α̂2 = y1.. − y2.. = −3.6040 ,

and the variance of the estimator is 2σ2/(rb) = 2σ2/15. A difference of 3.6 minutes seems quite

substantial, but this needs to be compared with the experimental error via a confidence interval to see

whether such a difference could have occurred by chance (see Examples 6.5.2 and 6.5.3).

The average dissolving times for the three brands of nail varnish are

y.1. = 28.624, y.2. = 26.734, and y.3. = 28.020 ,

and the least squares estimates of the pairwise comparisons are

β̂1 − β̂2 = 1.890 , β̂1 − β̂3 = 0.604 , and β̂2 − β̂3 = −1.286 ,

each with associated variance 2σ2/10. Since levels 1 and 2 of the nail varnish represented French

brands, while level 3 represented an American brand, the difference of averages contrast

1

2
(β1 + β2) − β3

would also be of interest. The least squares estimate of this contrast is

1

2
(β̂1 + β̂2) − β̂3 = 1

2
(y.1. + y.2.) − y.3. = − 0.341 ,

with associated variance 6σ2/40. �

Deriving Least Squares Estimators for Equal Sample Sizes (Optional)

We now sketch the derivation (using calculus) of the least squares estimators for the parameters of

the two-way main-effects model (6.2.3), when the sample sizes are all equal to r. A reader without

knowledge of calculus may jump to Sect. 6.5.2, p. 165.
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As in Sect. 3.4.3, the least squares estimates of the parameters in a model are those estimates that

give the minimum value of the sum of squares of the estimated errors. For the two-way main-effects

model (6.2.3), the sum of squared errors is

a∑

i=1

b∑

j=1

r∑

t=1

e2
ijt =

a∑

i=1

b∑

j=1

r∑

t=1

(
yijt − (μ + αi + βj)

)2
.

The least squares estimates are obtained by differentiating the sum of squared errors with respect to

each of the parameters μ, αi (i = 1, . . . , a), and βj (j = 1, . . . , b) in turn and setting the derivatives

equal to zero. The resulting set of normal equations is as follows.

y... − abrμ̂ − br
∑

i

α̂i − ar
∑

j

β̂j = 0, (6.5.29)

yi.. − brμ̂ − brα̂i − r
∑

j

β̂j = 0 , i = 1, . . . , a, (6.5.30)

y.j. − arμ̂ − r
∑

i

α̂i − arβ̂j = 0, j = 1, . . . , b. (6.5.31)

There are 1 + a + b normal equations in 1 + a + b unknowns. However, the equations are not all

distinct (linearly independent), since the sum of the a equations listed in (6.5.30) is equal to the sum

of the b equations listed in (6.5.31), which is equal to (6.5.29). Consequently, there are at most, and,

in fact, exactly, 1 + a + b − 2 distinct equations, and two extra equations are needed in order to obtain

a solution. Many computer packages, including the SAS software, use the extra equations α̂a = 0 and

β̂b = 0, while the R package uses the extra equations α̂1 = 0 and β̂1 = 0. However, when working by

hand, it is easier to use the equations
∑

i α̂i = 0 and
∑

j β̂j = 0, in which case (6.5.29)–(6.5.31) give

the following least squares solutions:

μ̂ = y... , (6.5.32)

α̂i = yi.. − y... , i = 1, . . . , a ,

β̂j = y.j. − y... , j = 1, . . . , b .

Then the least squares estimate of μ + αi + βj is

μ̂ + α̂i + β̂j = yi.. + y.j. − y... , i = 1, . . . , a, j = 1, . . . , b.

Deriving Least Squares Estimators for Unequal Sample Sizes (Optional)

If the sample sizes are not equal, then the normal equations for the two-way main-effects model become

y... − nμ̂ −
a∑

p=1

rp.α̂p −
b∑

q=1

r.qβ̂q = 0, (6.5.33)

yi.. − ri.μ̂ − ri.α̂i −
b∑

q=1

riqβ̂q = 0 , i = 1, . . . , a, (6.5.34)

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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y.j. − r.jμ̂ −
a∑

p=1

rpjα̂p − r.jβ̂j = 0, j = 1, . . . , b, (6.5.35)

where n =
∑

i

∑
j rij, rp. =

∑
j rpj, and r.q =

∑
i riq. As in the equal sample size case, the normal

equations represent a + b − 1 distinct equations in 1 + a + b unknowns, and two extra equations are

needed to obtain a particular solution. Looking at (6.5.33), a sensible choice might be
∑

p rp.α̂p = 0

and
∑

q r.qβ̂q = 0. Then μ̂ = y... as in the equal sample size case. However, obtaining solutions for

the α̂i’s and β̂j’s is not so easy. One can solve for β̂j in (6.5.35) and substitute this into (6.5.34), which

gives the following equations in the α̂i’s:

α̂i −
b∑

q=1

riq

r.qri.

a∑

p=1

rpqα̂p = yi.. −
b∑

q=1

riq

r.qri.

y.q , for i = 1, . . . , a. (6.5.36)

Equations in the β̂j’s can be obtained similarly. Algebraic expressions for the individual parameter

estimates are generally complicated, and we will leave the unequal sample size case to a computer

analysis (Sects. 6.8 and 6.9).

6.5.2 Estimation of σ
2 in the Main-Effects Model

The minimum value of the sum of squares of the estimated errors for the two-way main-effects model

is

ssE =
a∑

i=1

b∑

j=1

r∑

t=1

(yijt − μ̂ − α̂i − β̂j)
2 (6.5.37)

=
a∑

i=1

b∑

j=1

r∑

t=1

(yijt − yi.. − y.j. + y...)
2 .

Expanding the terms in parentheses in (6.5.37) yields the following formula useful for direct hand

calculation of ssE:

ssE =
∑

i

∑

j

∑

t

y2
ijt − br

∑

i

y2
i.. − ar

∑

j

y2
.j. + abry2

... (6.5.38)

Now, ssE is the observed value of

SSE =
∑

i

∑

j

∑

t

(Yijt − Y i.. − Y .j. + Y ...)
2 .

In Exercise 19, the reader will be asked to prove, for the equal sample size case, that

E[SSE] = (n − a − b + 1)σ2 ,

where n = abr, so an unbiased estimator of σ2 is



166 6 Experiments with Two Crossed Treatment Factors

MSE = SSE/(n − a − b + 1) .

It can be shown that SSE/σ2 has a chi-squared distribution with (n − a − b + 1) degrees of freedom.

An upper 100(1 − α)% confidence bound for σ2 is therefore given by

σ2 ≤ ssE

χ2
n−a−b+1,1−α

.

Example 6.5.2 Nail varnish experiment, continued

The data for the nail varnish experiment are given in Table 6.6 of Example 6.5.1, p. 162, and a = 2,

b = 3, r = 5, n = 30. It can be verified that

∑

i

∑

j

∑

t

y2
ijt = 23, 505.7976, y... = 27.7927 ,

and

y1.. = 25.9907, y2.. = 29.5947,

y.1. = 28.624, y.2. = 26.734, y.3. = 28.020.

Thus, from (6.5.38),

ssE = 23, 505.7976 − 23, 270.3857 − 23, 191.6053 + 23, 172.9696

= 216.7762 ,

and an unbiased estimate of σ2 is

msE = 216.7762/(30 − 2 − 3 + 1) = 8.3375 minutes2 .

A 95% upper confidence bound for σ2 is

ssE

χ2
26,.95

= 216.7762

15.3791
= 14.096 minutes2 ,

and taking square roots, a 95% upper confidence limit for σ is 3.7544 minutes. �

6.5.3 Multiple Comparisons for the Main-Effects Model

When the sample sizes are equal, the Bonferroni, Scheffé, Tukey, and Dunnett methods described in

Sect. 4.4 can all be used for obtaining simultaneous confidence intervals for sets of contrasts comparing

the levels of A or of B. A set of 100(1−α)% simultaneous confidence intervals for contrasts comparing

the levels of factor A is of the form (4.4.20), which for the two-way model becomes

∑
ciαi ∈

(∑
ciyi.. ± w

√
msE

∑
c2

i /br

)
, (6.5.39)

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_4
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where the critical coefficients for the various methods are, respectively,

wB = tn−a−b+1,α/2m ; wS =
√

(a − 1)Fa−1,n−a−b+1,α ;

wT = qa,n−a−b+1,α/
√

2 ; wD2 = |t|(0.5)

a−1,n−a−b+1,α .

Similarly, a set of 100(1 − α)% confidence intervals for contrasts comparing the levels of factor B is

of the form
∑

kjβj ∈
(∑

kjy.j. ± w

√
msE

∑
k2

j /ar

)
, (6.5.40)

and the critical coefficients are as above after interchanging a and b.

We can also obtain confidence intervals for the treatment means μ+αi +βj using the least squares

estimators Y i.. + Y .j. − Y ..., each of which has a normal distribution and variance σ2(a + b − 1)/(abr).

We obtain a set of 100(1 − α)% simultaneous confidence intervals for the ab treatment means as

μ + αi + βj ∈
{

(yi.. + y.j. − y...) ± w

√
msE

(
a + b − 1

abr

)}
, (6.5.41)

with critical coefficient

wBM = tα/(2ab),(n−a−b+1) or wSM =
√

(a + b − 1)Fa+b−1,n−a−b+1,α

for the Bonferroni and Scheffé methods, respectively.

When confidence intervals are calculated for treatment means and for contrasts in the main effects

of factors A and B, an experimentwise confidence level should be calculated. For example, if intervals

for contrasts for factor A have overall confidence level 100(1 − α1)%, and intervals for B have overall

confidence level 100(1 − α2)%, and intervals for means have overall confidence level 100(1 − α3)%,

the experimentwise confidence level for all the intervals combined is at least 100(1−(α1+α2+α3))%.

Alternatively, wSM could be used in (6.5.39) and (6.5.41), and the overall level for all three sets of

intervals together would be 100(1 − α)%.

Example 6.5.3 Nail varnish experiment, continued

The least squares estimates for the differences in the effects of the two nail varnish solvents and for

the pairwise differences in the effects of the three nail varnishes were calculated in Example 6.5.1,

p. 162. From Table 6.8, msE = 8.3375 with error degrees of freedom n − a − b + 1 = 26. There is

only m = 1 contrast for factor A, and a simple 99% confidence interval of the form (6.5.39) can be

used to give

α2 − α1 ∈
(

y2.. − y1.. ± tn−a−b+1,α/2

√
msE(2/br)

)

=
(

3.6040 ± t26,0.005

√
(8.3375/15)

)
.

From Table A.4, t26,0.005 = 2.779, so a 99% confidence interval for α2 − α1 is

1.5321 ≤ α2 − α1 ≤ 5.6759 .
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The confidence interval indicates that solvent 2 takes between 1.5 and 5.7 minutes longer, on average,

in dissolving the three nail varnishes than does solvent 1.

To compare the nail varnishes in terms of their speed of dissolving, confidence intervals are required

for the three pairwise comparisons β1 − β2, β1 − β3, and β2 − β3. If an overall confidence level of

99% is required, Tukey’s method gives confidence intervals of the form

βj − βp ∈
(

y.j. − y.p. ± (qb,df,0.01/
√

2)
√

msE(2/(ar))
)

.

From Table A.8, q3,26,0.01 = 4.54. Using the least squares estimates computed in Example 6.5.1, p.

162, and msE = 8.3375 with n − a − b + 1 = 26 as above, the minimum significant difference

is msd = (4.54/
√

2)
√

8.3375(2/10) = 4.145. A set of 99% confidence intervals for the pairwise

comparisons for factor B is

β1 − β2 ∈ (1.890 ± 4.145) = (−2.255, 6.035) ,

β1 − β3 ∈ (−3.541, 4.749) , β2 − β3 ∈ (−5.431, 2.859) .

Each of these intervals includes zero, indicating insufficient evidence to conclude a difference in the

speed at which the nail varnishes dissolve. The overall confidence level for the four intervals for factors A

and B together is at least 98%. Bonferroni’s method could have been used instead for all four intervals. To

have obtained an overall level of at least 98%, we could have set α∗ = α/m = 0.02/4 = 0.005 for each

of the four intervals. The critical coefficient in (6.5.39) would then have been wB = t0.0025,26 = 3.067.

So the Bonferroni method would have given a longer interval for α1 − α2 but shorter intervals for

βj − βp. �

6.5.4 Unequal Variances

When the variances of the error variables are unequal and no equalizing transformation can be found,

Satterthwaite’s approximation can be used. Since the approximation uses the sample variances of the

observations for each treatment combination individually, and since the least squares estimates of the

main-effect contrasts are the same whether or not interaction terms are included in the model, the

procedure is exactly the same as that illustrated for the bleach experiment in Example 6.4.4, p. 154.

6.5.5 Analysis of Variance for Equal Sample Sizes

Testing Main Effects of B—Equal Sample Sizes

The hypothesis that the levels of B all have the same effect on the response is HB
0 : {β1 = β2 = · · ·

= βb}, which can be written in terms of estimable contrasts as HB
0 :{βj −β. = 0, for all j = 1, . . . , b}.

To obtain a test of HB
0 against the alternative hypothesis HB

A : { at least two of the βj’s differ}, the sum

of squares for error for the two-way main-effects model is compared with the sum of squares for error

for the reduced model

Yijt = μ + αi + ǫijt . (6.5.42)

This is identical to the one-way analysis of variance model (3.3.1) with μ replaced by μ∗ = μ+β. and

with br observations on the ith level of treatment factor A. Thus ssEB
0 is the same as the sum of squares

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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for error in a one-way analysis of variance, and can be obtained from (3.4.4), p. 39, by replacing the

subscript t by the pair of subscripts jt, yielding

ssEB
0 =

∑

i

∑

j

∑

t

(yijt − yi..)
2 . (6.5.43)

The sum of squares for testing HB
0 is ssEB

0 − ssE, where ssE was derived in (6.5.37), p. 165. So,

ssB =
a∑

i=1

b∑

j=1

r∑

t=1

(yijt − yi..)
2 −

a∑

i=1

b∑

j=1

r∑

t=1

(
(yijt − yi..) − (y.j. − y...)

)2

= ar
∑

j

(y.j. − y...)
2

= ar
∑

j

y2
.j. − abry2

... . (6.5.44)

Notice that the formula for ssB is identical to the formula (6.4.25) for testing the equivalent main-effect

hypothesis in the two-way complete model. It can be shown that when HB
0 is true, the corresponding

random variable SSB/σ2 has a chi-squared distribution with (b − 1) degrees of freedom, and SSB and

SSE are independent. Therefore, when HB
0 is true,

SSB/(b − 1)σ2

SSE/(n − a − b + 1)σ2
= MSB

MSE
∼ Fb−1,n−a−b+1 ,

and the decision rule for testing HB
0 against HB

A is

reject HB
0 if

msB

msE
> Fb−1,n−a−b+1,α . (6.5.45)

Testing Main Effects of A—Equal Sample Sizes

A similar rule is obtained for testing HA
0 : {α1 = α2 = · · · = αa} against the alternative hypothesis

HA
A : {at least two of the αi’s differ}. The decision rule is

reject HA
0 if

msA

msE
> Fa−1,n−a−b+1,α , (6.5.46)

where msA = ssA/(a − 1), and

ssA = br
∑

i

(yi.. − y...)
2 = br

∑

i

y2
i.. − abry2

... . (6.5.47)

similar to the formula (6.4.22) for testing the equivalent hypothesis in the two-way complete model.

Analysis of Variance Table

The information for testing HA
0 and HB

0 is summarized in the analysis of variance table shown in

Table 6.7. When sample sizes are equal, ssE = sstot− ssA− ssB. When the sample sizes are not equal,

the formulae for the sums of squares are complicated, and the analysis should be done by computer

(Sects. 6.8 and 6.9).

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 6.7 Two-Way ANOVA, negligible interaction, equal sample sizes

Source of Variation Degrees of Freedom Sum of Squares Mean Square Ratio

Factor A a − 1 ssA ssA
a−1

msA
msE

Factor B b − 1 ssB ssB
b−1

msB
msE

Error n − a − b + 1 ssE ssE
n−a−b+1

Total n − 1 sstot

Computational Formulae for Equal Sample Sizes

ssA = br
∑

i y2
i.. − ny2

... ssB = ar
∑

j y2
.j. − ny2

...

sstot =
∑

i

∑
j

∑
t y2

ijt − ny2
... ssE = sstot − ssA − ssB

n = abr

Table 6.8 Analysis of variance for the nail varnish experiment

Source of Variation Degrees of Freedom Sum of Squares Mean Square Ratio p-value

Solvent 1 97.4161 97.4161 11.68 0.0021

Varnish 2 18.6357 9.3178 1.12 0.3423

Error 26 216.7761 8.3375

Total 29 332.8279

Example 6.5.4 Nail varnish experiment, continued

The analysis of variance table for the nail varnish experiment of Example 6.5.1, p. 162, is given in

Table 6.8. The experimenter selected the Type I error probability as 0.05 for testing each of HA
0 and HB

0 ,

giving an overall error rate of at most 0.1. The ratio msA/msE = 11.68 is larger than F1,26,0.05 ≈ 4.0,

and therefore, the null hypothesis can be rejected. It can be concluded at individual significance level

0.05 that there is a difference in dissolving times for the two solvents.

The ratio msB/msE = 1.12 is smaller than F2,26,0.05 ≈ 3.15. Therefore, the null hypothesis HB
0

cannot be rejected at individual significance level 0.05, and it is not possible to conclude that there is

a difference in dissolving time among the three varnishes. �

6.5.6 Model Building

In some experiments, the primary objective is to find a model that gives an adequate representation

of the experimental data. Such experiments are called experiments for model building. If there are

two crossed, fixed treatment factors, it is legitimate to use the two-way complete model (6.2.2) as a

preliminary model. Then, if HAB
0 fails to be rejected, the two-way main effects model (6.2.3) can be

accepted as a reasonable model to represent the same type of experimental data in future experiments.

Note that it is not legitimate to adopt the two-way main effects model and to use the corresponding

analysis of variance table, Table 6.7, to test further hypotheses or calculate confidence intervals using

the same set of data. If this is done, the model is changed based on the data, and the quoted significance

levels and confidence levels associated with further inferences will not be correct. Model building

should be regarded as a completely different exercise from confidence interval calculation. They should

be done using different experimental data.
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6.6 Calculating Sample Sizes

In Chaps. 3 and 4, we showed two methods of calculating sample sizes. The method of Sect. 3.6 aims to

achieve a specified power of a hypothesis test, and the method of Sect. 4.5 aims to achieve a specified

length of a confidence interval. Both of these techniques rely on knowledge of the largest likely value

of σ2 or msE and can also be used for the two-way complete model.

Alternatively, sample sizes can be calculated to ensure that confidence intervals for main-effect

contrasts are no longer than a stated size, using the formulae (6.4.18) and (6.4.19) or, for the two-way

main-effects model, the formulae (6.5.39) and (6.5.40).

Similarly, the method of Sect. 3.6 for choosing the sample size to achieve the required power of

a hypothesis test can be used for each factor separately, with the modification that the sample size

calculation is based on

r = 2aσ2φ2/(b�2
A) (6.6.48)

for factor A and

r = 2bσ2φ2/(a�2
B)

for factor B, where �A is the smallest difference in the αi’s (or α∗
i ’s) and �B is the smallest difference

in the βj’s (or β∗
j ’s) that are of interest. The calculation procedure is identical to that in Sect. 3.6, except

that the error degrees of freedom are ν2 = n−v for the complete model and ν2 = n−a−b+1 for the

main-effects model (with n = abr), and the numerator degrees of freedom are ν1 = a − 1 for factor A

and ν1 = b − 1 for factor B.

If several different calculations are done and the calculated values of r differ, then the largest value

should be selected.

6.7 Small Experiments

6.7.1 One Observation Per Cell

When observations are extremely time-consuming or expensive to collect, an experiment may be

designed to have r = 1 observation on each treatment combination. Such experiments are called

experiments with one observation per cell or single replicate experiments. Since the ability to choose

the sample sizes is lost, it should be recognized that confidence intervals may be wide and hypothesis

tests not very powerful.

If it is known in advance that the interaction between the two treatment factors is negligible, then

the experiment can be analyzed using the two-way main-effects model (6.2.3). If this information is

not available, then the two-way complete model (6.2.2) needs to be used. However, there is a problem.

Under the two-way complete model, the number of degrees of freedom for error is ab(r − 1). If r = 1,

then this number is zero, and σ2 cannot be estimated.

Thus, a single replicate experiment with a possible interaction between the two factors can be

analyzed only if one of the following is true:

(i) σ2 is known in advance.

(ii) The interaction is expected to be of a certain form that can be modeled with fewer than (a−1)(b−1)

degrees of freedom.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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(iii) The number of treatment combinations is large, and only a few contrasts are likely to be nonneg-

ligible (effect sparsity).

If σ2 is known in advance, formulae for confidence intervals would be based on the normal distribution,

and hypothesis tests would be based on the chi-squared distribution. However, this situation is unlikely

to occur, and we will not pursue it. The third case tends to occur when the experiment involves a large

number of treatment factors and will be discussed in detail in Chap. 7. Here, we look at the second

situation and consider two methods of analysis, the first based on orthogonal contrasts, and the second

known as Tukey’s test for additivity.

6.7.2 Analysis Based on Orthogonal Contrasts

Two estimable contrasts are called orthogonal contrasts if and only if their least squares estimators

are uncorrelated or, equivalently, have zero covariance. For the moment, we recode the treatment

combinations to obtain a single-digit code, as we did in Chap. 3. Two contrasts �ciτi and �ksτs are

orthogonal if and only if

0 = Cov

(
v∑

i=1

ciY i.,

v∑

s=1

ksY s.

)
=

v∑

i=1

v∑

s=1

ciksCov(Y i., Y s.)

=
∑

i

cikiCov(Y i., Y i.) +
∑

i

∑

s �=i

ciksCov(Y i., Y s.)

=
∑

i

cikiVar(Y i.) + 0

= σ2
∑

i

ciki/ri .

In the above calculation Cov(Y i., Y s.) is zero when s �= i, because all the Yit’s are independent of each

other in the cell-means model. Thus, two contrasts �ciτi and �kiτi are orthogonal if and only if

∑

i

ciki/ri = 0 . (6.7.49)

If the sample sizes are equal, then this reduces to

∑

i

ciki = 0 .

Changing back to two subscripts, we have that two contrasts ��dijτij and ��hijτij are orthogonal if

and only if
a∑

i=1

b∑

j=1

dijhij/rij = 0 , (6.7.50)

or, for equal sample sizes, the contrasts are orthogonal if and only if

http://dx.doi.org/10.1007/978-3-319-52250-0_7
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 6.9 Three orthogonal contrasts for the battery experiment

Contrast Coefficients
∑

ciyi.

∑
c2

i /ri ssc

Duty 1
2
[ 1, 1, −1,−1] 251.00 1

4
252,004.00

Brand 1
2
[ 1, −1, 1, −1] −176.50 1

4
124,609.00

Interaction 1
2
[ 1, −1, −1, 1] −113.25 1

4
51,302.25

a∑

i=1

b∑

j=1

dijhij = 0 . (6.7.51)

For equal sample sizes, the trend contrasts provide an illustration of orthogonal contrasts. For

example, it can be verified that any pair of trend contrasts in Table 6.1, p. 148, satisfy (6.7.51). For the

models considered in this book, the contrast estimators are normally distributed, so orthogonality of

contrasts implies that their least squares estimators are independent.

For v treatments, or treatment combinations, a set of v −1 orthogonal contrasts is called a complete

set of orthogonal contrasts. It is not possible to find more than v − 1 contrasts that are mutually

orthogonal. We write the sum of squares for the qth orthogonal contrast in a complete set as sscq,

where

sscq = (��cijyij.)
2/(��c2

ij/rij)

is the square of the normalized contrast estimator (see Sect. 4.3.3, p. 77). The sum of squares for

treatments, ssT, can be partitioned into the sums of squares for the v − 1 orthogonal contrasts in a

complete set; that is,

ssT = ssc1 + ssc2 + · · · + sscv−1 . (6.7.52)

Example 6.7.1 Battery experiment, continued

Main effect and interaction contrasts for the battery experiment were examined in Example 6.3.1, p.

146 and, following that example, were written as columns in a table. Since the sample sizes are all

equal, we need only check that (6.7.51) holds by multiplying corresponding coefficients for any two

contrasts and adding their products. The duty, brand, and interaction contrasts form a complete set of

v − 1 = 3 orthogonal contrasts.

The sums of squares for the three contrasts are shown in Table 6.9. It can be verified that they add

to the treatment sum of squares ssT = 427,915.25 that was calculated in Example 3.5.1, p. 44. �

We can use the same idea to split the interaction sum of squares ssAB into independent pieces. For

the two-way complete model (6.2.2) with r = 1 observation per cell, the sum of squares for testing

the null hypothesis that a particular interaction contrast, say
∑

i

∑
j dij(αβ)ij (with

∑
i dij = 0 and∑

j dij = 0), is negligible, against the alternative hypothesis that the contrast is not negligible, is

ssc =
(
∑

i

∑
j dijyij)

2

∑
i

∑
j d2

ij

. (6.7.53)

The interaction has (a−1)(b−1) degrees of freedom. Consequently, there are (a−1)(b−1) orthogonal

interaction contrasts in a complete set, and their corresponding sums of squares add to ssAB, that is,

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 6.10 Two-way ANOVA, one observation per cell, e negligible interaction contrasts, and m = (a − 1)(b − 1) − e

interaction degrees of freedom

Source of variation Degrees of freedom Sum of squares Mean square

Factor A a − 1 ssA msA

Factor B b − 1 ssB msB

Interaction m ssABm msAB

Error e ssE msE

Total ab − 1 sstot

ssAB =
(a−1)(b−1)∑

h=1

ssch ,

where ssch is the sum of squares for the hth such contrast.

Suppose it is known in advance that e specific orthogonal interaction contrasts are likely to be

negligible. Then the sums of squares for these e negligible contrasts can be pooled together to obtain

an estimate of error variance, based on e degrees of freedom,

ssE =
e∑

h=1

ssch and msE = ssE/e .

The sums of squares for the remaining interaction contrasts can be used to test the contrasts individually

or added together to obtain an interaction sum of squares

ssABm =
(a−1)(b−1)∑

h=e+1

ssch .

Then the decision rule for testing the hypothesis HAB
0 :{the interaction AB is negligible} against the

alternative hypothesis that the interaction is not negligible is

reject HAB
0 if

ssABm/m

ssE/e
> Fm,e,α ,

where m = (a − 1)(b − 1) − e. Likewise, the main effect test statistics have denominator ssE/e and

error degrees of freedom df = e. The tests are summarized in Table 6.10, which shows a modified

form of the analysis of variance table for the two-way complete model. A worked example is given in

Sect. 6.7.4.

To save calculating the sums of squares for all of the contrasts, the error sum of squares is usually

obtained by subtraction, that is,

ssE = sstot − ssA − ssB − ssABm .

The above technique is most often used when the factors are quantitative, since higher-order inter-

action trends are often likely to be negligible. The information about the interaction effects must be

known prior to running the experiment. If this information is not available, then one of the techniques

discussed in Sect. 7.5 must be used instead.

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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6.7.3 Tukey’s Test for Additivity

Tukey’s test for additivity uses only one degree of freedom to measure the interaction. It tests the null

hypothesis H
γ
0 :{(αβ)ij = γαiβj for all i, j} against the alternative hypothesis that the interaction

is not of this form. The test is appropriate only if the size of the interaction effect is expected to

increase proportionally to each of the main effects, and it is not designed to measure any other form

of interaction. The test requires that the normality assumption be well satisfied. The decision rule is

reject H
γ
0 if

ssAB∗

ssE/e
> F1,e,α , (6.7.54)

where

ssAB∗ =
ab

[∑
i

∑
j yijyi.y.j − (ssA + ssB + aby2

..)y..

]2

(ssA)(ssB)

and

ssE = sstot − ssA − ssB − ssAB∗ .

The analysis of variance table is as in Table 6.10 with m = 1 and with e = (a − 1)(b − 1) − 1.

Table 6.11 Data for the air velocity experiment, with factors Rib Height (A) and Reynolds Number (B)

Reynolds Number, j

i 1 2 3 4 5 6 yi.

Rib 1 −24 −23 1 8 29 23 2.333

Height 2 33 28 45 57 74 80 52.833

3 37 79 79 95 101 111 83.667

y.j 15.333 28.00 41.667 53.333 68.000 71.333 46.278 = y..

Source Willke (1962). Copyright c©1962 Blackwell Publishers. Reprinted with permission

Fig. 6.7 Data for the air

velocity experiment
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6.7.4 A Real Experiment—Air Velocity Experiment

The data given in Table 6.11, and plotted in Fig. 6.7, form part of an experiment described by D. Wilkie

in the 1962 issue of Applied Statistics (volume 11, pages 184–195). The experiment was designed

to examine the position of maximum velocity of air blown down the space between a roughened rod

and a smooth pipe surrounding it. The treatment factors were the height of ribs on the roughened

rod (factor A) at equally spaced heights 0.010, 0.015, and 0.020 inches (coded 1, 2, 3) and Reynolds

number (factor B) at six levels (coded 1–6) equally spaced logarithmically over the range 4.8–5.3. The

responses were measured as y = (d − 1.4) × 103, where d is the distance in inches from the center of

the rod.

Figure 6.7 shows very little interaction between the factors. However, prior to the experiment, the

investigators had thought that the factors would interact to some extent. They wanted to use the set

of orthogonal polynomial trend contrasts for the AB interaction and were reasonably sure that the

contrasts AQBqr, ALBqn, AQBqn would be negligible. Thus the sum of squares for these three contrasts

could be used to estimate σ2 with 3 degrees of freedom. We are using “L, Q, C, qr, qn” as shorthand

notation for linear, quadratic, cubic, quartic, and quintic contrasts, respectively. The coefficients for

these three orthogonal polynomial trend contrasts can be obtained by multiplying the corresponding

main-effect coefficients shown in Table 6.1, p. 148. The coefficients for ALBqn are shown in the table

as an example. Also shown are the contrast coefficients for the linearA×linearB contrast, ALBL. These

are

[ 5, 3, 1,−1,−3,−5, 0, 0, 0, 0, 0, 0,−5,−3,−1, 1, 3, 5] .

The estimate of ALBL is then

Table 6.12 Analysis of variance for the air velocity experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Rib height (A) 2 20232.111

AL 1 19845.333 19845.333 338.77 0.0003

AQ 1 386.778 386.778 6.60 0.0825

Reynolds number (B) 5 7386.944

BL 1 7262.976 7262.976 123.98 0.0016

BQ 1 65.016 65.016 1.11 0.3695

BC 1 36.296 36.296 0.62 0.4887

Bqr 1 13.762 13.762 0.23 0.6611

Bqn 1 8.894 8.894 0.15 0.7228

Interaction (AB) 7 616.817

ALBL 1 20.829 20.829 0.36 0.5930

ALBQ 1 47.149 47.149 0.80 0.4358

ALBC 1 265.225 265.225 4.53 0.1233

ALBqr 1 33.018 33.018 0.56 0.5073

AQBL 1 15.238 15.238 0.26 0.6452

AQBQ 1 170.335 170.335 2.91 0.1867

AQBC 1 65.023 65.023 1.11 0.3694

Error 3 175.739 58.580

Total 17 28411.611
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��dijyij = 5(−24) + 3(−23) + · · · + 3(101) + 5(111) = 54 .

Now,

��d2
ij = (52 + 32 + · · · + 32 + 52) = 140 ,

so the corresponding sum of squares is

ss(ALBL) = 542

140
= 20.829 .

The sums of squares for the other contrasts are computed similarly, and the error sum of squares is

calculated as the sum of the sums of squares of the three negligible contrasts. The analysis of variance

table is given in Table 6.12.

The hypotheses that the individual contrasts are zero can be tested using Scheffé’s procedure or

Bonferroni’s procedure. If Bonferroni’s procedure is used, each of the 14 hypotheses should be tested

at a very small α-level. Taking α = 0.005, so that the overall level is at most 0.07, we have F1,3,0.005 =
55.6, and only the linear A and linear B contrasts appear to be significantly different from zero. The

plot of the data shown in Fig. 6.7 supports this conclusion.

6.8 Using SAS Software

Table 6.13 contains a sample SAS program for analysis of the two-way complete model (6.2.2). For

illustration, we use the data of the reaction time experiment shown in Table 4.4, p. 101, but with

the last four observati ons missing, so that r11 = r21 = 2, r12 = r22 = r23 = 3, r13 = 1. In

the data input lines, the levels of each of the two treatment factors A and B are shown together

with the response, the order in which the observations were collected, and the treatment factor level

TRTMT. A two-digit code for each treatment combination TC is easily generated by the statement

TC = 10*A + B following the INPUT statement. This way of coding the treatment combinations

works well for all applications except for drawing plots withTC on one axis. Such a plot would not show

numeric codes 11, 12, …, 23 as equally spaced. In the statement TC = PUT(10* A + B, 2.),

the function PUT converts the created variable from numeric to character.

6.8.1 Analysis of Variance

The GLM procedure in Table 6.13 is used to generate the analysis of variance table, to estimate and

to test contrasts, and for multiple comparisons. As in the one-way analysis of variance, the treatment

factors must be declared as class variables using a CLASS statement. The two-way complete model is

represented as

MODEL Y = A B A*B;

with the main effects listed in either order, but before the interaction. The two-way main-effects

model (6.2.3) would be represented as

MODEL Y = A B;

The program also shows the cell-means model (6.2.1) in a second GLM procedure, using

MODEL Y = TC;

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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Table 6.13 SAS program to illustrate aspects of analysis of a two-way complete model (reaction time experiment)

DATA RTIME;

INPUT ORDER TRTMT A B Y;

TC = PUT(10*A + B, 2.); * create TC as a character variable for plots;

LINES;

1 6 2 3 0.256

2 6 2 3 0.281

: : : : :

14 4 2 1 0.279

;

PROC GLM;

CLASS A B;

MODEL Y = A B A*B;

LSMEANS A / PDIFF CL ALPHA=0.01;

LSMEANS B / PDIFF = ALL CL ADJUST = TUKEY ALPHA = 0.01;

CONTRAST ’11-13-21+23’ A*B 1 0 -1 -1 0 1;

CONTRAST ’B1-B2’ B 1 -1 0;

ESTIMATE ’B1-B2’ B 1 -1 0;

ESTIMATE ’B1-B3’ B 1 0 -1;

ESTIMATE ’B2-B3’ B 0 1 -1;

PROC GLM;

CLASS TC;

MODEL Y = TC;

LSMEANS TC / PDIFF = ALL CL ADJUST = TUKEY ALPHA = 0.01;

LSMEANS TC / PDIFF = CONTROL CL ADJUST = DUNNETT ALPHA = 0.01;

LSMEANS TC / PDIFF = CONTROLL CL ADJUST = DUNNETT ALPHA = 0.01;

LSMEANS TC / PDIFF = CONTROLU CL ADJUST = DUNNETT ALPHA = 0.01;

CONTRAST ’11-13-21+23’ TC 1 0 -1 -1 0 1;

CONTRAST ’B1-B2’ TC 1 -1 0 1 -1 0;

The output from the first GLM procedure is shown in Fig. 6.8. The analysis of variance table is

organized differently from that in Table 6.4, p. 159. The five “model” degrees of freedom are the

treatment degrees of freedom corresponding to the six treatment combinations. Information concerning

main effects and interactions is provided underneath the table under the heading “Type I” and “Type

III” sums of squares.

The Type III sums of squares are the values ssA, ssB, and ssAB and are used for hypothesis testing

whether or not the sample sizes are equal. They are calculated by comparing the sum of squares for

error in the full and reduced models as in Sect. 6.4.4. The sums of squares listed in the output are

always in the same order as the effects in the MODEL statement, but the hypothesis of no interaction

should be tested first.

The Type I sum of squares for an effect is the additional variation in the data that is explained by

adding that effect to a model containing the previously listed sources of variation. For example, in the

program output, the Type I sum of squares for A is the reduction in the error sum of squares that is

achieved by adding the effect of factor A to a model containing only an intercept term. The reduction in

the error sum of squares is equivalent to the extra variation in the data that is explained by adding A to

the model. Here, the “full model” contains A and the intercept, while the “reduced model” contains only
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Fig. 6.8 Some output for

the SAS program for a

two-way complete model

with unequal sample sizes,

using data from the

reaction time experiment

Table 4.4, p. 101, omitting

the last 4 observations

the intercept. The Type I sum of squares for B is the additional variation in the data that is explained by

adding the effect of factor B to a model that already contains the intercept and the effect of A (so that

the “full model” contains A, B and the intercept, while the “reduced model” contains only the A and

the intercept). The Type I sums of squares (also known as sequential sums of squares) depend upon

the order in which the effects are listed in the MODEL statement. Type I sums of squares are used for

model building, not for hypothesis testing under an assumed model. Consequently, we will use only

the Type III sums of squares.

The Type I and Type III sums of squares are identical when the sample sizes are equal, since

the factorial effects are then estimated independently of one another. But when the sample sizes are

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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unequal, as in the illustrated data set, the Type I and Type III sums of squares differ. In the absence of

a sophisticated computer package, each Type I and Type III sum of squares can be calculated as the

difference of the error sums of squares obtained from two analysis of variance tables, one for the full

model and one for the reduced model.

6.8.2 Contrasts and Multiple Comparisons

In the first GLM procedure in Table 6.13, the two-way complete model is used, and the coefficient lists

are entered for each factor separately, rather than for the treatment combinations. The first CONTRAST

statement is used to test the hypothesis that the interaction contrast (αβ)11−(αβ)13−(αβ)21+(αβ)23 is

negligible, and the secondCONTRAST statement is used to test the hypothesis that β∗
1 −β∗

2 is negligible.

These same contrasts are entered as coefficient lists for the treatment combinations in the second GLM

procedure. In either case, the contrast sum of squares is as shown under Contrast SS in Fig. 6.8,

and the p-value for the test is as shown under Pr > F.

The statement

LSMEANS A / PDIFF CL ALPHA = 0.01;

of the first GLM procedure causes generation of a 99% confidence interval for the main effect of A

pairwise comparison, α∗
1 − α∗

2, comparing the effects of A averaged over the levels of B, as well as an

individual 99% confidence interval for each of the A means μ + αi + β. + (αβ)i..

The statement

LSMEANS B / PDIFF = ALL CL ADJUST = TUKEY ALPHA = 0.01;

of the first GLM procedure causes generation of Tukey’s simultaneous 99% confidence intervals, com-

paring pairwise the main effects of the three levels of B, each averaged over the levels of A. The option

PDIFF = ALL requests p-values for all pairwise comparisons, the option CL asks for the compar-

isons to be displayed as confidence intervals, and the option ADJUST = TUKEY when coupled with

PDIFF = ALL requests Tukey’s method for the pairwise comparisons. The output for the reaction

time experiment, shown in Fig. 6.9, includes not only the confidence intervals for pairwise compar-

isons, but also p-values for simultaneous hypothesis tests using the Tukey method. Also given are

individual 99% confidence intervals for the B means μ + α. + βj + (αβ).j. Because sample sizes are

unequal, these least squares means are not simply the corresponding treatment sample means. If CL is

omitted, then only the simultaneous tests and intervals for means are printed. The request TUKEY can

be replaced by BON or SCHEFFE as appropriate.

In the second GLM procedure in Table 6.13, the cell-means model is used, with a treatment effect

τij associated with each treatment combination ij. The corresponding LSMEANS statements illustrate

multiple comparisons of the effects τij of the six treatment combinations, the first LSMEANS statement

generating Tukey’s method for all pairwise comparisons, and the remaining LSMEANS statement

generating Dunnett’s method for comparing all treatments with a control. To generate Dunnett’s method,

the option PDIFF = ALL is replaced by the option PDIFF = CONTROL for two-sided confidence

intervals, and by the option PDIFF = CONTROLL or PDIFF = CONTROLU for upper or lower

confidence bounds on the treatment-versus-control differences, as follows:

LSMEANS TC / PDIFF = CONTROL CL ADJUST = DUNNETT ALPHA = 0.01;

LSMEANS TC / PDIFF = CONTROLL CL ADJUST = DUNNETT ALPHA = 0.01;

LSMEANS TC / PDIFF = CONTROLU CL ADJUST = DUNNETT ALPHA = 0.01;
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Fig. 6.9 LSMEANS

output for a two-way

complete model with

unequal sample sizes

(reaction time experiment)

Figure 6.10 contains the output for the third set of simultaneous confidence intervals—namely, cor-

responding to the CONTROLU option. This set gives lower bounds for the treatment-minus-control

comparisons, corresponding to upper-tailed inferences. The treatments are renumbered by SAS in

numerical order. In our program, in Table 6.13, we have requested the treatment-versus-control con-

trasts be done for the treatment combinations 11, 12, 13, 21, 22, 23. SAS recodes these as 1–6, and

treatment 1 (our treatment combination 11), as the lowest treatment combination, is taken as the

control by default. One could specify treatment combination 23 as the control, for example, via the

option PDIFF = CONTROL(’23’). We have shown only the simultaneous confidence intervals,

but simultaneous tests are also given by SAS software.

We remind the reader that for unequal sample sizes, it has not yet been proved that the overall

confidence levels achieved by the Tukey and Dunnett methods are at least as great as those stated,

except in some special cases such as the one-way layout.

An alternative method of obtaining simultaneous confidence intervals for pairwise comparisons

can be obtained from the output of the ESTIMATE statement for each contrast. The corresponding
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Fig. 6.10 Dunnett’s lower

bound output for a

two-way complete model

with unequal sample sizes

(reaction time experiment)

confidence intervals are of the form

Estimate± w (Std Error of Estimate) ,

where w is the critical coefficient given in (6.4.18) for the complete model and in (6.5.39) for the

main-effects model.

6.8.3 Plots

Residual plots for checking the error assumptions on the model are generated in the same way as shown

in Chap. 5. If the two-way main-effects model (6.2.3) is used, the assumption of additivity should also

be checked. For this purpose it is useful to plot the standardized residuals against the level of one

factor, using the levels of the other factor for plotting labels (see, for example, Fig. 6.3, p. 144, for the

temperature experiment). A plot of the standardized residuals z against the levels of factor A using the

labels of factor B can be generated using the following SAS program lines:

PROC SGPLOT;

SCATTER X = A Y = Z / GROUP = B;

An interaction plot can be obtained by adding the following statements to the end of the program

in Table 6.13:

PROC SORT DATA = RTIME; BY A B;

PROC MEANS DATA = RTIME NOPRINT MEAN VAR; BY A B;

VAR Y;

OUTPUT OUT = RTIME2 MEAN = AV_Y VAR = VAR_Y;

PROC PRINT;

VAR A B AV_Y VAR_Y;

PROC SGPLOT;

SERIES X = A Y = AV_Y / GROUP = B;

The PROC PRINT statement following PROC MEANS also gives the information about the vari-

ances that would be needed to check the rule of thumb that s2
max/s2

min ≤ 3.

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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In order to check for equal error variances, the residuals or the observations may be plotted against

the treatment combinations using the following SAS code:

PROC SGPLOT;

SCATTER X = TC Y = Z; *or Y = Y for observations;

If the treatment combination codes were created as TC = 10*A + B, they will not be equally spaced

along the axis, since the codes 11, 12, 13, 21, 22, 23 when regarded as 2-digit numbers are not equally

spaced. A simple solution to this problem, as shown in Table 6.13, is to convert the variable TC from

numeric to character via the statement

TC = PUT(10*A + B, 2.);

A plot of the residuals or the observations against the character variable TC will show the character

variable codes evenly spaced along the axis.

When there are not sufficient observations to be able to check equality of error variances for all the

cells, the standardized residuals should be plotted against the levels of each factor. The rule of thumb

may be checked for the levels of each factor by comparing the maximum and minimum variances

of the (nonstandardized) residuals. This is done for factor A by the following lines after creation of

RTIME data set as in Table 6.13.

PROC GLM;

CLASS TC;

MODEL Y = TC;

OUTPUT OUT = RESIDS RESIDUAL = E;

PROC SORT DATA = RESIDS; BY A;

PROC MEANS DATA = RESIDS NOPRINT VAR; BY A;

VAR E;

OUTPUT OUT = RTIME2 VAR = VAR_E;

PROC PRINT;

VAR A VAR_E;

6.8.4 One Observation Per Cell

In order to split the interaction sum of squares into parts corresponding to negligible and nonnegligible

orthogonal contrasts, we can enter the data in the usual manner and obtain the sums of squares for all of

the contrasts via CONTRAST statements in the procedure PROC GLM. The analysis of variance table

can then be constructed with the error sum of squares being the sum of the contrast sums of squares

for the negligible contrasts. It is possible, however, to achieve this in a more direct way, as follows.

First, enter the contrast coefficients as part of the input data as shown in Table 6.14 for the air velocity

experiment. In the air velocity experiment, factor A had a = 3 levels and factor B had b = 6 levels.

The main-effect trend contrast coefficients are entered via the INPUT statement line by line directly

from Table 6.1, p. 148, and the interaction trend contrast coefficients are obtained by multiplication

following the INPUT statement. In the PROC GLM statement, the CLASS designation is omitted. If it

were included, then Aln, for example, would be interpreted as one factor with three coded levels −1,

0, 1, and Aqd as a second factor with two coded levels 1, −2, and so on. The model is fitted using those

contrasts that have not been declared to be negligible. The error sum of squares will be based on the

three omitted contrasts AlnBqn, AqdBqr, and AqdBqn, and the resulting analysis of variance table

will be equivalent to that in Table 6.12, p. 176.

It is not necessary to input the levels of A and B separately as we have done in columns 2 and 3 of

the data, but these would be needed if plots of the data were required.
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Table 6.14 Fitting a model in terms of contrasts (air velocity experiment)

DATA AIR;

INPUT Y A B Aln Aqd Bln Bqd Bcb Bqr Bqn;

AlnBln = Aln*Bln;

AlnBqd = Aln*Bqd;

AlnBcb = Aln*Bcb;

AlnBqr = Aln*Bqr;

AqdBln = Aqd*Bln;

AqdBqd = Aqd*Bqd;

AqdBcb = Aqd*Bcb;

LINES;

-24 1 1 -1 1 -5 5 -5 1 -1

-23 1 2 -1 1 -3 -1 7 -3 5

1 1 3 -1 1 -1 -4 4 2 -10

8 1 4 -1 1 1 -4 -4 2 10

29 1 5 -1 1 3 -1 -7 -3 -5

23 1 6 -1 1 5 5 5 1 1

33 2 1 0 -2 -5 5 -5 1 -1

28 2 2 0 -2 -3 -1 7 -3 5

45 2 3 0 -2 -1 -4 4 2 -10

57 2 4 0 -2 1 -4 -4 2 10

74 2 5 0 -2 3 -1 -7 -3 -5

80 2 6 0 -2 5 5 5 1 1

37 3 1 1 1 -5 5 -5 1 -1

79 3 2 1 1 -3 -1 7 -3 5

79 3 3 1 1 -1 -4 4 2 -10

95 3 4 1 1 1 -4 -4 2 10

101 3 5 1 1 3 -1 -7 -3 -5

111 3 6 1 1 5 5 5 1 1

;

PROC PRINT;

PROC GLM; * omit the class statement;

MODEL Y = Aln Aqd Bln Bqd Bcb Bqr Bqn AlnBln AlnBqd

AlnBcb AlnBqr AqdBln AqdBqd AqdBcb;

6.9 Using R Software

Table 6.15 contains a sample R program for analysis of the two-way complete model (6.2.2). For

illustration, we use the data of the reaction time experiment shown in Table 4.4, p. 101, but with the

last four observations missing, so that r11 = r21 = 2, r12 = r22 = r23 = 3, r13 = 1. The data file

includes the levels of each of the two treatment factors A and B, as well as the response, the order in

which the observations were collected, and treatment factor levels 1–6. A more descriptive two-digit

code for each treatment combination TC = 10*A + B is easily generated and added to the data set

react.data, along with factor variables fTC, fA, and fB, by the statement

react.data = within(react.data,

{TC = 10*A + B; fTC = factor(TC); fA = factor(A); fB = factor(B)})

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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Table 6.15 R program to illustrate aspects of analysis of a two-way complete model (reaction time experiment)

react.data = read.table("data/reaction.time.txt", header=T)

react.data = head(react.data, 14) # Keep first 14 observations

head(react.data, 3)

Order Trtmt A B y

1 1 6 2 3 0.256

2 2 6 2 3 0.281

3 3 2 1 2 0.167

# Create trtmt combo vbl TC and factors fTC, fA, and fB within data set

react.data = within(react.data,

{TC = 10*A + B; fTC = factor(TC); fA = factor(A); fB = factor(B)})

summary(react.data[,c("fA","fB","fTC","y")])

# ANOVA

options(contrasts = c("contr.sum", "contr.poly"))

modelAB = aov(y ˜ fA + fB + fA:fB, data = react.data)

anova(modelAB) # Type I ANOVA

drop1(modelAB, ˜., test = "F") # Type III ANOVA

modelTC = aov(y ˜ fTC, data = react.data)

anova(modelTC) # Model F-test

# Contrasts: estimates, CIs, tests

library(lsmeans)

# Main-effect-of-B contrast: B1-B2

lsmB = lsmeans(modelAB, ˜ fB)

summary(contrast(lsmB, list(B12=c( 1,-1, 0))), infer=c(T,T))

# AB-interaction contrast: AB11-AB13-AB21+AB23

lsmAB = lsmeans(modelAB, ˜ fB:fA) # Using "fB:fA" yields AB lex order

lsmAB # Display to see order of AB combos for contrast coefficients

summary(contrast(lsmAB, list(AB=c( 1 ,0,-1,-1, 0, 1))), infer=c(T,T))

# Multiple comparisons: B

confint(lsmB, level=0.99) # lsmeans for B and 99% CIs

# Tukey’s method

summary(contrast(lsmB, method="pairwise", adjust="tukey"),

infer=c(T,T), level=0.99)

# Dunnett’s method

summary(contrast(lsmB, method="trt.vs.ctrl", adj="mvt", ref=1),

infer=c(T,T), level=0.99)

This way of coding the treatment combinations works well for all applications except for drawing plots

with TC on one axis. Such a plot would not show codes 11, 12, and 21 as equally spaced. An alternative

way of creating the treatment combinations axis for plots will be given in Sect. 6.9.3.
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Table 6.16 Analysis of variance output for the R program for a two-way complete model with unequal sample sizes

(reaction time experiment)

> # ANOVA

> options(contrasts = c("contr.sum", "contr.poly"))

> modelAB = aov(y ˜ fA + fB + fA:fB, data = react.data)

> anova(modelAB) # Type I ANOVA

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

fA 1 0.02102 0.02102 65.28 0.000041

fB 2 0.00033 0.00017 0.52 0.61

fA:fB 2 0.00018 0.00009 0.28 0.76

Residuals 8 0.00258 0.00032

> drop1(modelAB, ˜., test = "F") # Type III ANOVA

Single term deletions

Model:

y ˜ fA + fB + fA:fB

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 0.00258 -108.4

fA 1 0.01683 0.01940 -82.1 52.27 0.00009

fB 2 0.00046 0.00303 -110.1 0.71 0.52

fA:fB 2 0.00018 0.00276 -111.5 0.28 0.76

> modelTC = aov(y ˜ fTC, data = react.data)

> anova(modelTC) # Model F-test

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

fTC 5 0.02153 0.00431 13.4 0.001

Residuals 8 0.00258 0.00032

6.9.1 Analysis of Variance

Referring to the R program in Table 6.15, the block of code under the comment “ANOVA” generates

the analysis of variance output as shown in Table 6.16. As in the one-way analysis of variance, the

treatment factors must be factor variables to be modeled as qualitative variables. The statements

modelAB = aov(y ˜ fA + fB + fA:fB, data = react.data)

modelTC = aov(y ˜ fTC, data = react.data)

fit the two-way complete model (6.2.2) and the cell-means model (6.2.1), respectively, saving the

results as modelAB and modelTC. In the first model, the main effects may be listed in either order,
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but before the interaction effects fA:fB. Equivalently, the model could be specified as y ˜ fA*fB,

since fA*fB indicates inclusion of all main effects and interactions involving the factors fA and fB.

The two-way main-effects model (6.2.3) would be represented as y ˜ fA + fB.

Using the saved information from the fitted models, the three statements

anova(modelAB)

drop1(modelAB, ˜., test ="F")

anova(modelTC)

respectively generate the “Type I ANOVA” shown at the top of Table 6.16, the “Type III

ANOVA” shown in the middle of the table, and the “Model F-test” shown at the bottom of the

table. In the first and last portion of the table, “Residuals” is synonymous with error. Totals for the

degrees of freedom and sum of squares are not provided. For technical reasons, the statement

options(contrasts = c("contr.sum","contr.poly"))

must be executed prior to fitting the two-way complete model for all Type III sum of squares to be

correct. (This option imposes common sum-to-zero constraints on the least squares estimates of the

treatment factors effects, so each α̂i estimates a main effect of A contrast, each β̂j estimates a main

effect of B contrast, and each (̂αiβj) estimates an AB-interaction contrast.)

In the “Type III ANOVA” given in the middle of Table 6.16, the (Type III) sums of squares are

the values ssA, ssB, and ssAB and are used for hypothesis testing whether or not the sample sizes are

equal. Each is calculated by comparing the sum of squares for error in the full and reduced models as

in Sect. 6.4.4, where each reduced model is obtained by dropping the corresponding term from the full

model—the two-way complete model in this case. The hypothesis of no interaction should be tested

first, even though its sum of squares is listed last in the output. For each effect, its listed F value

may be computed from its listed sum of squares and degrees of freedom, and from the mean square

for residuals listed in the analysis of variance table at either the top and bottom of Table 6.16. The

corresponding p-value is listed under “Pr(>F)”. (The reader may ignore the RSS and AIC columns.)

The sums of squares listed in the “Type I ANOVA” shown at the top of Table 6.16 are Type I

sum of squares, or sequential sum of squares. For each effect, this is the additional variation in the data

that is explained by adding that effect to a model containing the previously listed sources of variation.

Type I sum of squares are discussed in more detail in Sect. 6.8.1. They are used for model building,

not for hypothesis testing under an assumed model. Consequently, we will use only the Type III sums

of squares. That said, the Type I and Type III sums of squares are identical when the sample sizes are

equal, since the factorial effects are then estimated independently of one another. When the Type I and

III analyses are the same, it seems preferable to use the cleaner Type I analysis of variance table as

shown at the top of Table 6.16.

Finally, under “Model F-test” at the bottom of Table 6.16, an analysis of variance table is

provided for testing model significance.

6.9.2 Contrasts and Multiple Comparisons

Information on individual contrasts is generated by coupling the summary and contrast functions

of the lsmeans package, as was illustrated in Chap. 4. After loading the lsmeans package, the

statements

lsmB = lsmeans(modelAB, ˜ fB)

summary(contrast(lsmB, list(B12=c( 1,-1, 0))), infer=c(T,T))

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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Table 6.17 Contrasts output for the R program for a two-way complete model with unequal sample sizes (reaction time

experiment)

> # Main-effect-of-B contrast: B1-B2

> lsmB = lsmeans(modelAB, ˜ fB)

> summary(contrast(lsmB, list(B12=c( 1,-1, 0))), infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value

B12 0.0085 0.011582 8 -0.018207 0.035207 0.734 0.4839

Results are averaged over the levels of: fA

Confidence level used: 0.95

> # AB-interaction contrast: AB11-AB13-AB21+AB23

> lsmAB = lsmeans(modelAB, ˜ fB:fA) # Using "fB:fA" yields AB lex order

> lsmAB # Display to see order of AB combos for contrast coefficients

fB fA lsmean SE df lower.CL upper.CL

1 1 0.18700 0.012687 8 0.15774 0.21626

2 1 0.17867 0.010359 8 0.15478 0.20255

3 1 0.20200 0.017942 8 0.16063 0.24337

1 2 0.26800 0.012687 8 0.23874 0.29726

2 2 0.25933 0.010359 8 0.23545 0.28322

3 2 0.26500 0.010359 8 0.24111 0.28889

Confidence level used: 0.95

> summary(contrast(lsmAB, list(AB=c( 1 ,0,-1,-1, 0, 1))), infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value

AB -0.018 0.027407 8 -0.0812 0.0452 -0.657 0.5298

Confidence level used: 0.95

in Table 6.15 generate information for the main effect of B contrast β∗
1 −β∗

2 , comparing the effects of B

averaged over the levels of A, using the two-way complete model previously fit and saved asmodelAB.

The following statements generate analogous information for the interaction contrast (αβ)11−(αβ)13−
(αβ)21 + (αβ)23.

lsmAB = lsmeans(modelAB, ˜ fB:fA)

summary(contrast(lsmAB, list(AB=c( 1 ,0,-1,-1, 0, 1))), infer=c(T,T))

Using fB:fA rather than fA:fB yields least squares means in the standard lexicographical order, as

can be seen by displaying lsmAB, and the contrast coefficients must be in the corresponding order.

These statements and their output are shown in Table 6.17.

Multiple comparisons procedures are also implemented using functions of the lsmeans package,

as illustrated for levels of B by sample code at the bottom of Table 6.15. The statements

lsmB = lsmeans(modelAB, ˜ fB)

confint(lsmB, level = 0.99)



6.9 Using R Software 189

Table 6.18 Multiple comparisons output for a two-way complete model with unequal sample sizes (reaction time

experiment)

> # Multiple comparisons: B

> confint(lsmB, level=0.99) # lsmeans for B and 99% CIs

fB lsmean SE df lower.CL upper.CL

1 0.2275 0.0089710 8 0.19740 0.25760

2 0.2190 0.0073248 8 0.19442 0.24358

3 0.2335 0.0103588 8 0.19874 0.26826

Results are averaged over the levels of: fA

Confidence level used: 0.99

> # Tukey’s method

> summary(contrast(lsmB, method="pairwise", adjust="tukey"),

+ infer=c(T,T), level=0.99)

contrast estimate SE df lower.CL upper.CL t.ratio p.value

1 - 2 0.0085 0.011582 8 -0.037650 0.054650 0.734 0.7512

1 - 3 -0.0060 0.013703 8 -0.060606 0.048606 -0.438 0.9010

2 - 3 -0.0145 0.012687 8 -0.065055 0.036055 -1.143 0.5166

Results are averaged over the levels of: fA

Confidence level used: 0.99

Confidence-level adjustment: tukey method for a family of 3 estimates

P value adjustment: tukey method for a family of 3 tests

in turn (i) compute least squares estimates of the means μ + βj + α. + (αβ).j and related information,

saving this information as lsmB; and (ii) display the least squares estimates, standard errors, degrees

of freedom, and individual 99% confidence intervals shown at the top of Table 6.18. Because sample

sizes are unequal, these least squares means are not simply the corresponding treatment sample means.

The statement

summary(contrast(lsmB, method = "pairwise", adjust = "tukey"),

infer = c(T, T), level = 0.99)

applies Tukey’s method, comparing pairwise the main effects of the three levels of B, each averaged

over the levels of A. The contrast function coupled with the options method="pairwise" and

adjust="tukey" requests tests including p-values for all pairwise comparisons via Tukey’s method.

Other adjustment options for pairwise comparisons include "Scheffe" for Scheffé’s method,

"Bonf" for the Bonferroni method, and "none" for individual inferences. The summary func-

tion with its infer=c(T,T) and level=0.99 options requests Tukey’s 99% confidence intervals.

Specifically, the option infer=c(T,T) indicates “true” for confidence intervals and tests, respec-

tively. The above statement and the corresponding output are shown in the bottom of Table 6.18.

Implementation of Dunnett’s method for all treatment-versus-control comparisons is similar and

illustrated by the following statement

summary(contrast(lsmB, method="trt.vs.ctrl", adj="mvt", ref=1),

infer=c(T,T), level=0.99)
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Table 6.19 Dunnett’s lower band for a two-way complete model with unequal sample sizes (reaction time experiment)

> # Dunnett’s method comparing cell means

> lsmTC = lsmeans(modelTC, ˜ fTC)

> summary(contrast(lsmTC, method="trt.vs.ctrl", adj="mvt"),

+ infer=c(T,T), level=0.99, side=">")

contrast estimate SE df lower.CL upper.CL t.ratio p.value

12 - 11 -0.0083333 0.016379 8 -0.070333 Inf -0.509 0.9351

13 - 11 0.0150000 0.021974 8 -0.068181 Inf 0.683 0.5629

21 - 11 0.0810000 0.017942 8 0.013083 Inf 4.515 0.0037

22 - 11 0.0723333 0.016379 8 0.010334 Inf 4.416 0.0042

23 - 11 0.0780000 0.016379 8 0.016000 Inf 4.762 0.0025

Confidence level used: 0.99

Confidence-level adjustment: mvt method for 5 estimates

P value adjustment: mvt method for 5 tests

P values are right-tailed

from the bottom of Table 6.15. The option method="trt.vs.ctrl" yields all treatment-versus-

control comparisons. Here, other levels of B are compared to the first level, which happens to be "1",

averaging over levels of A. Available options include the following, as discussed in Sect. 4.7.2. Dunnett’s

method uses (simulation based) critical values from the multivariate t-distribution, corresponding

to adjust="mvt", but the default option adjust="dunnettx" provides an approximation of

Dunnett’s method for two-sided confidence intervals that runs faster and dependably (but is appropriate

only applicable when the contrast estimates have pairwise correlations of 0.5). The first level of a factor

is the control by default, corresponding to reference level 1 (ref=1), but one could, for example, specify

the second level as the control by the syntaxref=2. Also,"two-sided" is the default for confidence

intervals and tests, but one can specify side="<" for the one-sided alternative HA : τi < τ1 and the

corresponding upper confidence bound for τi − τ1, or side=">" for the alternative HA : τi > τ1 and

the corresponding lower confidence bound for τi − τ1.

Multiple comparisons of all treatments may be obtained using the cell-means model, as illustrated

for Dunnett’s method by the following code, reproduced with corresponding output in Table 6.19.

lsmTC = lsmeans(modelTC, ˜ fTC)

summary(contrast(lsmTC, method="trt.vs.ctrl", adj="mvt"),

infer=c(T,T), level=0.99, side=">")

The same could be accomplished using lsmAB instead of lsmTC. Note that the default control here

is "11", which is the first level of fTC.

We remind the reader that for unequal sample sizes, it has not yet been proved that the overall

confidence levels achieved by the Tukey and Dunnett methods are at least as great as those stated,

except in some special cases such as the one-way layout.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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6.9.3 Plots

Residual plots for checking the error assumptions on the model are generated in the same way as shown

in Chap. 5. If the two-way main-effects model (6.2.3) is used, the assumption of additivity should also

be checked. For this purpose it is useful to plot the standardized residuals against the level of one

factor, using the levels of the other factor for plotting labels (see, for example, Fig. 6.3, p. 144, for the

temperature experiment). A plot of the standardized residuals z against the levels of factor A using the

labels of factor B can be generated using the following R program lines:

plot(z ˜ A, data=react.data, xaxt="n", type="n") # Suppress x-axis, pts

axis(1, at=seq(1,2,1)) # Add x-axis with tick marks from 1 to 2 by 1

text(z ˜ A, B, cex=0.75, data=react.data) # Plot z vs A using B label

mtext("B=1,2,3", side=3, adj=1, line=1) # Margin text, top-rt, line 1

abline(h=0) # Horizontal line at zero

An interaction plot of treatment means ȳij. versus levels of factor A using the labels of factor B can

be generated by adding the following statement to the end of the program in Table 6.15.

interaction.plot(x.factor = react.data$fA, trace.factor = react.data$fB,

response = react.data$y, type ="b",

xlab ="A", trace.label ="B", ylab ="Mean of y")

The option type="b" plots both points and lines.

In order to check for equal error variances, the residuals or observations could be plotted against

the treatment combinations using the following R code:

plot(modelAB$res ˜ react.data$TC, xlab ="AB", ylab ="Residual")

plot(react.data$y ˜ react.data$TC, xlab ="AB", ylab ="y")

However, since the treatment combination codes TC = 10*A + B are numeric as originally created

in Table 6.13, they will not be equally spaced along the axis, since the codes 11, 12, 13, 21, 22, 23

when regarded as 2-digit numbers are not equally spaced. One solution to this problem is to plot the

residuals or the observations against the treatment variable Trtmt, since its levels 1–6 are equally

spaced, but replace each of the labels 1–6 with the corresponding treatment combination label. This is

accomplished by the following code.

plot(modelAB$res ˜ react.data$Trtmt, xaxt="n", xlab="AB", ylab="Residual")

axis(1, at = react.data$Trtmt, labels = react.data$fTC)

plot(react.data$y ˜ react.data$Trtmt, xaxt="n", xlab="AB", ylab="y")

axis(1, at = react.data$Trtmt, labels = react.data$fTC)

In the first plot statement, for example, the residuals are plotted against Trtmt, which has equally

spaced levels 1–6, but the x-axis is suppressed by the option xaxt="n". The axis statement is then

used to create an x-axis, still with tick marks at the equally-spaced Trtmt levels 1–6, but using the

treatment combination labels 11, 12,…, 23 of fTC.

When there are not sufficient observations to be able to check equality of error variances for all the

cells, the standardized residuals should be plotted against the levels of each factor. The rule of thumb

may be checked for the levels of each factor by comparing the maximum and minimum variances of

the (nonstandardized) residuals. The sample variance of the residuals may be computed by level of A,

for example, by augmenting the statements in Table 6.15 with the following by command.

by(modelAB$res, react.data$A, var)

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Table 6.20 Fitting a model in terms of contrasts (air velocity experiment)

air.data = read.table("data/air.velocity.contrasts.txt", header=T)

air.data

y A B Aln Aqd Bln Bqd Bcb Bqr Bqn

1 -24 1 1 -1 1 -5 5 -5 1 -1

2 -23 1 2 -1 1 -3 -1 7 -3 5

3 1 1 3 -1 1 -1 -4 4 2 -10

4 8 1 4 -1 1 1 -4 -4 2 10

5 29 1 5 -1 1 3 -1 -7 -3 -5

6 23 1 6 -1 1 5 5 5 1 1

7 33 2 1 0 -2 -5 5 -5 1 -1

8 28 2 2 0 -2 -3 -1 7 -3 5

9 45 2 3 0 -2 -1 -4 4 2 -10

10 57 2 4 0 -2 1 -4 -4 2 10

11 74 2 5 0 -2 3 -1 -7 -3 -5

12 80 2 6 0 -2 5 5 5 1 1

13 37 3 1 1 1 -5 5 -5 1 -1

14 79 3 2 1 1 -3 -1 7 -3 5

15 79 3 3 1 1 -1 -4 4 2 -10

16 95 3 4 1 1 1 -4 -4 2 10

17 101 3 5 1 1 3 -1 -7 -3 -5

18 111 3 6 1 1 5 5 5 1 1

# Fit linear regression model, save as model1

model1 = lm(y ˜ Aln + Aqd + Bln + Bqd + Bcb + Bqr + Bqn

+ Aln:Bln + Aln:Bqd + Aln:Bcb + Aln:Bqr

+ Aqd:Bln + Aqd:Bqd + Aqd:Bcb, data=air.data)

# ANOVA

anova(model1)

6.9.4 One Observation Per Cell

In this section we present a direct way to split the interaction sum of squares into parts corresponding to

negligible and nonnegligible orthogonal contrasts. The R program in Table 6.20 illustrates the method,

using the data of the air velocity experiment.

First, the main effect contrast coefficients from Table 6.1, p. 148, are entered as part of the data, as

is evident from the displayed data in Table 6.20. In the air velocity experiment, factor A had a = 3

levels and factor B had b = 6 levels.

The lm statement in Table 6.20 fits a linear model, including as predictors those contrasts that have

not been declared to be negligible. For example, Aln and Bln terms contain the coefficients of the

A-linear and B-linear contrasts, respectively, and the term Aln:Bln contains the coefficients of the

A-linear-by-B-linear interaction trend contrast, which R obtains by multiplication of the corresponding

Aln and Bln contrast coefficients. The results are saved as model1.

Intentionally, none of the predictor variables in the model are factor variables. If they were factor

variables, then Aln would be interpreted as one factor with three coded levels −1, 0, 1, and Aqd as a

second factor with two coded levels 1, −2, and so on. The error sum of squares will be based on the
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Table 6.21 Data (beats per 15 seconds) for the weight lifting experiment

A 2 1 1 1 2 2 1 2 1 2 1

B 2 1 3 1 2 3 3 2 2 2 1

Rate 31 27 37 28 32 32 35 30 32 31 27

A 2 1 1 1 2 1 1 2 2 2 2

B 2 3 3 2 1 1 3 1 3 3 3

Rate 34 33 34 31 26 25 35 24 33 31 36

A 1 1 1 1 1 1 1 1 2 1 2

B 3 1 1 2 1 2 2 3 3 2 1

Rate 36 27 30 33 29 32 34 37 32 34 27

A 2 1 1 2 2 1 1 2 2 1 2

B 2 1 3 1 2 1 2 1 2 1 3

Rate 31 27 38 27 30 29 34 25 34 28 34

A 2 1 2 1 1 2 1 1 2 2 2

B 2 1 3 2 2 1 3 2 1 1 1

Rate 31 30 34 35 34 24 35 31 27 26 25

A 2 2 2 1 2 2 2 2 2 1 1

B 2 3 1 2 1 2 3 3 3 3 3

Rate 32 35 24 33 23 30 34 32 33 37 38

three omitted contrasts Aln:Bqn, Aqd:Bqr, and Aqd:Bqn, and the resulting analysis of variance

table generated by the anova(model1) statement will be equivalent to that in Table 6.12, p. 176.

It is not necessary to input the levels of A and B separately as we have done in columns 2 and 3 of

the data, but these would be needed if plots of the data were required.

Exercises

1. Under what circumstances should the two-way main effects model (6.2.3) be used rather than the

two-way complete model (6.2.2)? Discuss the interpretation of main effects in each model.

2. Verify that (τij − τ i. − τ .j + τ ..) is an interaction contrast for the two-way complete model. Write

down the list of contrast coefficients in terms of the τij’s when factor A has a = 3 levels and factor

B has b = 4 levels.

3. Consider the functions {α∗
1 − α∗

2} and {(αβ)11 − (αβ)21 − (αβ)12 + (αβ)22} under the two-way

complete model (6.2.2).

(a) Verify that the functions are estimable contrasts.

(b) Discuss the meaning of each of these contrasts for plot (d) of Fig. 6.1, p. 140, and for plot (g) of

Fig. 6.2, p. 141.

(c) If a = b = 3, give the list of contrast coefficients for each contrast, first for the parameters

involved in the contrast, and then in terms of the parameters τij of the equivalent cell-means

model.
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4. Show that when the parentheses is expanded in formula (6.4.15) for ssE on p. 151, the computational

formula (6.4.16) is obtained.

5. Weight Lifting Experiment (Gary Mirka 1986)

The experimenter was interested in the effect on pulse rate (heart rate) of lifting different weights

with legs either straight or bent (factor A, coded 1, 2). The selected weights were 50 lb, 75 lb,

100 lb (factor B, coded 1, 2, 3). He expected to see a higher pulse rate when heavier weights were

lifted. He also expected that lifting with legs bent would result in a higher pulse rate than lifting

with legs straight.

(a) Write out a detailed checklist for running an experiment similar to this. In the calculation of the

number of observations needed, either run your own pilot experiment or use the information that

for a single subject in the above study, the error sum of squares was ssE = 130.909 bpfs2 based

on df = 60 error degrees of freedom (where bpfs is beats per 15 seconds).

(b) The data collected for a single subject by the above experimenter are shown in Table 6.21 in

the order collected. The experimenter wanted to use a two-way complete model. Check the

assumptions on this model, paying particular attention to the facts that (i) these are count data

and may not be approximately normally distributed, and (ii) the measurements were made in

groups of ten at a time in order to reduce the fatigue of the subject.

(c) Taking account of your answer to part (a), analyze the experiment, especially noting any trends

in the response.

6. Battery experiment, continued

Consider the battery experiment introduced in Sect. 2.5.2, p. 24, for which a = b = 2 and r = 4.

Suppose it is of interest to calculate confidence intervals for the four simple effects τ11 −τ12, τ21 −
τ22, τ11 − τ21, τ12 − τ22, with an overall confidence level of 95%.

(a) Determine whether the Tukey or Bonferroni method of multiple comparisons would provide

shorter confidence intervals.

(b) Apply the better method from part (a) and comment on the results. (The data give y11. = 570.75,

y12. = 860.50, y21. = 433.00, and y22. = 496.25 minutes per unit cost and msE = 2, 367.71.)

(c) Discuss the practical meaning of the contrasts estimated in (b) and explain what you have learned

from the confidence intervals.

7. Weld strength experiment

The data shown in Table 6.22 are a subset of the data given by Anderson and McLean (1974)

and show the strength of a weld in a steel bar. Two factors of interest were gage bar setting (the

distance the weld die travels during the automatic weld cycle) and time of welding (total time of the

automatic weld cycle). Assume that the levels of both factors were selected to be equally spaced.

(a) Using the cell-means model (6.2.1) for these data, test the hypothesis that there is no difference

in the effects of the treatment combinations on weld strength against the alternative hypothesis

that at least two treatment combinations have different effects.

(b) Suppose the experimenters had planned to calculate confidence intervals for all pairwise com-

parisons between the treatment combinations, and also to look at the confidence interval for the

difference between gage bar setting 3 and the average of the other two. Write down the contrasts

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 6.22 Strength of weld

Time of welding (j)

i 1 2 3 4 5

Gage 1 10, 12 13, 17 21, 30 18, 16 17, 21

bar 2 15, 19 14, 12 30, 38 15, 11 14, 12

setting 3 10, 8 12, 9 10, 5 14, 15 19, 11

Source Reprinted from Anderson and McLean (1974), pp. 62–63, by courtesy of Marcel Dekker, Inc

in terms of the parameters τij of the cell-means model, and suggest a strategy for calculating all

intervals at overall level “at least 98%.”

(c) Consider the intervals in part (b). Give the formulae and calculate the actual interval for τ13 −τ15

(the difference in the true mean strengths at the 3rd and 5th times of welding for the first gage

bar setting), and explain what this interval tells you. Also calculate the actual interval for the

difference between gage bar setting 3 and the average of the other two, and explain what this

interval tells you.

(d) Calculate an upper 90% confidence limit for σ2.

(e) If the experimenters were to repeat this experiment and needed the pairwise comparison intervals

in (b) to be of width at most 8, how many observations should they take on each treatment

combination? How many observations is this in total?

8. Weld strength experiment, continued

For the experiment described in Exercise 7, use the two-way complete model instead of the equiv-

alent cell means model.

(a) Test the hypothesis of no interaction between gage bar setting and time of weld and state your

conclusion.

(b) Draw an interaction plot for the two factors Gage bar setting and Time of welding. Does your

interaction plot support the conclusion of your hypothesis test? Explain.

(c) In view of your answer to part (b), is it sensible to investigate the differences between the effects

of gage bar setting? Why or why not? Indicate on your plot what would be compared.

(d) Regardless of your answer to (c), suppose the experimenters had decided to look at the linear

trend in the effect of gage bar settings. Test the hypothesis that the linear trend in gage setting is

negligible (against the alternative hypothesis that it is not negligible).

9. Sample size calculation

An experiment is to be run to examine three levels of factor A and four levels of factor B, using the

two-way complete model (6.2.2). Determine the required sample size if the error variance σ2 is

expected to be less than 15 and simultaneous 99% confidence intervals for pairwise comparisons

between treatment combinations should have length at most 10 to be useful.

10. Bleach experiment, continued

Use the data of the bleach experiment of Example 6.4.4, on p. 154.

(a) Evaluate the effectiveness of a variance-equalizing transformation.

(b) Apply Satterthwaite’s approximation to obtain 99% confidence intervals for the pairwise com-

parisons of the main effects of factor A using Tukey’s method of multiple comparisons.
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11. Bleach experiment, continued

The experimenter calculated that she needed r = 5 observations per treatment combination in order

to be able to detect a difference in the effect of the levels of either treatment factor of 5 minutes (300

seconds) with probability 0.9 at significance level 0.05. Verify that her calculations were correct.

She obtained a mean squared error of 43220.8 in her pilot experiment.

12. Memory experiment (James Bost 1987)

The memory experiment was planned in order to examine the effects of external distractions on

short-term memory and also to examine whether some types of words were easier to memorize

than others. Consequently, the experiment involved two treatment factors, “word type” and “type

of distraction.” The experimenter selected three levels for each factor. The levels of “word type”

were

Level 1 (fruit): words representing fruits and vegetables commonly consumed;

Level 2 (nouns): words selected at random from Webster’s pocket dictionary, representing tangi-

ble (i.e., visualizable) items;

Level 3 (mixed): words of any description selected at random from Webster’s pocket dictionary.

A list of 30 words was prepared for each level of the treatment factor, and the list was not altered

throughout the experiment.

The levels of “type of distraction” were

Level 1 : No distraction other than usual background noise;

Level 2 : Constant distraction, supplied by a regular banging of a metal spoon on a metal pan;

Level 3 : Changing distraction, which included vocal, music, banging and motor noise, and vary-

ing lighting.

The response variable was the number of words remembered (by a randomly selected subject) for

a given treatment combination. The response variable is likely to have approximately a binomial

distribution, with variance 30p(1 − p) where p is the probability that a subject remembers a given

word and 30 is the number of words on the list. It is unlikely that p is constant for all treatment

combinations or for all subjects. However, since np(1 − p) is less than 30(0.5)(0.5) = 7.5, a

reasonable guess for the variance σ2 is that it is less than 7.5.

The experimenter wanted to reject each of the main-effect hypotheses HA
0 :{the memorization rate

for the three word lists is the same} and HB
0 :{the three types of distraction have the same effect on

memorization} with probability 0.9 if there was a difference of four words in memorization rates

between any two word lists or any two distractions (that is �A = �B = 4), using a significance

level of α = 0.05. Calculate the number of subjects that are needed if each subject is to be assigned

to just one treatment combination and measured just once.

13. Memory experiment, continued

(a) Write out a checklist for the memory experiment of Exercise 12. Discuss how you would obtain

the subjects and how applicable the experiment would be to the general population.

(b) Consider the possibility of using each subject more than once (i.e., consider the use of a blocking

factor). Discuss whether or not an assumption of independent observations is likely to be valid.

14. Memory experiment, continued

The data for the memory experiment of Exercise 12 are shown in Table 6.23 with three observations

per treatment combination.
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Table 6.23 Data and standardized residuals for the memory experiment

Distraction

Word list None Constant Changing

Fruit 20 14 24 15 22 17 17 13 12

0.27 −2.16 1.89 −1.21 1.62 −0.40 1.21 −0.40 −0.81

Nouns 19 14 19 12 11 14 12 15 8

0.67 −1.35 0.67 −0.13 −0.54 0.67 0.13 1.35 −1.48

Mixed 11 12 15 8 8 9 12 7 10

−0.67 −0.27 0.94 −0.13 −0.13 0.27 0.94 −1.08 0.13

(a) The experimenter intended to use the two-way complete model. Check the assumptions on the

model for the given data, especially the equal-variance assumption.

(b) Analyze the experiment. A transformation of the data or use of the Satterthwaite approximation

may be necessary.

15. Ink experiment

Teaching associates who give classes in computer labs at the Ohio State University are required

to write on white boards with “dry markers” rather than on chalk boards with chalk. The ink

from these dry markers can stain rather badly, and an experiment was planned by M. Chambers,

Y.-W. Chen, E. Kurali and R. Vengurlekar in 1996 to determine which type of cloth (factor A, 1

= cotton/polyester, 2 = rayon, 3 = polyester) was most difficult to clean, and whether a detergent

plus stain remover was better than a detergent without stain remover (factor B, levels 1, 2) for

washing out such a stain.

Pieces of cloth were to be stained with 0.1 ml of dry marker ink and allowed to air dry for 24 hours.

The cloth pieces were then to be washed in a random order in the detergent to which they were

allocated. The stain remaining on a piece of cloth after washing and drying was to be compared

with a 19 point scale and scored accordingly, where 1 = black and 19 = white.

(a) Make a list of the difficulties that might be encountered in running and analyzing an experiment of

this type. Give suggestions on how these difficulties might be overcome or their effects reduced.

(b) Why should each piece of cloth be washed separately? (Hint: think about the error variability.)

(c) The results of a small pilot study run by the four experimenters are shown in Table 6.24. Plot

the data against the levels of the two treatment factors. Can you learn anything from this plot?

Which model would you select for the main experiment? Why?

(d) Calculate the number of observations that you would need to take on each treatment combination

in order to try to ensure that the lengths of confidence intervals for pairwise differences in the

effects of the levels of each of the factors were no more than 2 points (on the 19-point scale).

Table 6.24 Data for the ink experiment in the order of collection

Cloth type 3 1 3 1 2 1 2 2 2 3 3 1

Stain remover 2 2 2 2 1 1 1 2 2 1 1 1

Stain score 1 6 1 5 11 9 9 8 6 3 4 8
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Table 6.25 Data for the survival experiment (units of 10 hours)

Treatment

Poison 1 2 3 4

I 0.31 0.82 0.43 0.45

0.45 1.10 0.45 0.71

0.46 0.88 0.63 0.66

0.43 0.72 0.76 0.62

II 0.36 0.92 0.44 0.56

0.29 0.61 0.35 1.02

0.40 0.49 0.31 0.71

0.23 1.24 0.40 0.38

III 0.22 0.30 0.23 0.30

0.21 0.37 0.25 0.36

0.18 0.38 0.24 0.31

0.23 0.29 0.22 0.33

Source Box and Cox (1964). Copyright 1964 Blackwell Publishers. Reprinted with permission

16. Survival experiment (G.E.P. Box and D.R. Cox, 1964)

The data in Table 6.25 show survival times of animals to whom a poison and a treatment have been

administered. The data were presented by G. E. P. Box and D. R. Cox in an article in the Journal

of the Royal Statistical Society in 1964. There were three poisons (factor A at a = 3 levels), four

treatments (factor B at b = 4 levels), and r = 4 animals (experimental units) assigned at random to

each treatment combination.

(a) Check the assumptions on a two-way complete model for these data. If the assumptions are

satisfied, then analyze the data and discuss your conclusions.

(b) Take a reciprocal transformation (y−1) of the data. The transformed data values then represent

“rates of dying.” Check the assumptions on the model again. If the assumptions are satisfied,

then analyze the data and discuss your conclusions.

(c) Draw an interaction plot for both the original and the transformed data. Discuss the interaction

between the two factors in each of the measurement scales.

17. Use the two-way main-effects model (6.2.3) with a = b = 3.

(a) Which of the following are estimable?

(i) μ + α1 + β2 .

(ii) μ + α1 + 1
2
(β1 + β2) .

(iii) β1 − 1
3
(β2 + β3) .

(b) Show that Y i..+Y .j.−Y ... is an unbiased estimator of μ+αi+βj with variance, σ2(a+b−1)/(abr).

(c) Show that
∑

i ciY i.. is an unbiased estimator of the contrast
∑

i ciαi.

18. Meat cooking experiment, continued

The meat cooking experiment was introduced in Exercise 14 of Chap. 3, with the data given in

Table 3.14, p. 68.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 6.26 Data for the water boiling experiment, in minutes. (Order of observation is in parentheses.)

Salt (teaspoons)

Burner 0 2 4 6

Right back 7(7) 4(13) 7(24) 5(15)

8(21) 7(25) 7(34) 7(33)

7(30) 7(26) 7(41) 7(37)

Right front 4(6) 4(36) 4(1) 4(28)

4(20) 5(44) 4(14) 4(31)

4(27) 4(45) 5(18) 4(38)

Left back 6(9) 6(46) 7(8) 5(35)

7(16) 6(47) 6(12) 6(39)

6(22) 5(48) 7(43) 6(40)

Left front 9(29) 8(5) 8(3) 8(2)

9(32) 8(10) 9(19) 8(4)

9(42) 8(11) 10(23) 7(17)

(a) Using the two-way complete model, conduct an analysis of variance, testing each hypothesis

using a 1% significance level. State your conclusions.

(b) Draw an interaction plot for the two treatment factors. Does your interaction plot support the

conclusion of your hypothesis test concerning interactions? Explain.

(c) Compare the effects of the three levels of fat content pairwise, averaging over cooking methods,

using Scheffé’s method for all treatment contrasts with a 95% confidence level. Interpret the

results.

(d) Give a confidence interval for the average difference in weight after cooking between frying

and grilling 110 g hamburgers, using Scheffé’s method for all treatment contrasts with a 95%

confidence level. Interpret the results.

(e) Obtain a 95% confidence interval for comparing the effect on post-cooked weight of the low fat

content versus the average of the two higher fat contents (averaged over cooking method), using

Scheffé’s method.

(f) What is the overall confidence level of the intervals in parts (c), (d) and (e) taken together?

(g) If the contrast in part (e) had been the only contrast of interest, would your answer to part (e)

have been different? If so, show the new calculation. If not, explain why not.

19. For the two-way main-effects model (6.2.3) with equal sample sizes,

(a) verify the computational formulae for ssE given in (6.5.38),

(b) and, if SSE is the corresponding random variable, show that E[SSE] is (n − a − b + 1)σ2. [Hint:

E[X2] = Var(X) + E[X]2.]

20. An experiment is to be run to compare the two levels of factor A and to examine the pairwise

differences between the four levels of factor B, with a simultaneous confidence level of 90%. The

experimenter is confident that the two factors will not interact. Find the required sample size if the

error variance will be at most 25 and the confidence intervals should have length at most 10 to be

useful.
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21. Water boiling experiment (Kate Ellis 1986)

The experiment was run in order to examine the amount of time taken to boil a given amount of

water on the four different burners of her stove, and with 0, 2, 4, or 6 teaspoons of salt added to the

water. Thus the experiment had two treatment factors with four levels each. The experimenter ran

the experiment as a completely randomized design by taking r = 3 observations on each of the

16 treatment combinations in a random order. The data are shown in Table 6.26. The experimenter

believed that there would be no interaction between the two factors.

(a) Check the assumptions on the two-way main-effects model.

(b) Calculate a 99% set of Tukey confidence intervals for pairwise differences between the levels of

salt, and calculate separately a 99% set of intervals for pairwise differences between the levels

of burner.

(c) Test a hypothesis that there is no linear trend in the time to boil water due to the level of salt. Do

a similar test for a quadratic trend.

(d) The experimenter believed that observation number 13 was an outlier, since it has a large stan-

dardized residual and it was an observation taken late on a Friday evening. Using statistical

software, repeat the analysis in (b) removing this observation. (Tukey’s method is approximate

for nearly balanced data.) Also repeat the test in part (c) but for the linear contrast only. (The

formula for the linear contrast coefficients is given in (4.2.4) on p. 73.) Do you prefer the analysis

that uses all the data, or that which removes observation 13? Explain your choice.

22. For v = 5 and r = 4, show that the first three “orthogonal polynomial contrasts” listed in Table A.2

are mutually orthogonal. (In fact all four are.) Find a pair of orthogonal contrasts that are not

orthogonal polynomial contrasts. Can you find a third contrast that is orthogonal to each of these?

How about a fourth? (This gets progressively harder!)

23. Air velocity experiment, continued

(a) For the air velocity experiment introduced in Sect. 6.7.4 (p. 176), calculate the sum of squares

for each of the three interaction contrasts assumed to be negligible, and verify that these add to

the value ssE = 175.739, as in Table 6.12.

(b) Check the assumptions on the model by plotting the standardized residuals against the predicted

responses, the treatment factor levels, and the normal scores. State your conclusions.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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7.1 Introduction

Experiments that involve more than two treatment factors are designed and analyzed using many of

the same principles that were discussed in Chap. 6 for two-factor experiments. We continue to label the

factors with uppercase Latin letters and their numbers of levels with the corresponding lowercase letters.

An experiment that involves four factors, A, B, C , and D, having a, b, c, and d levels, respectively,

for example, is known as an “a × b × c × d factorial experiment” (read “a by b by c by d”) and has a

total of v = abcd treatment combinations.

There are several different models that may be appropriate for analyzing a factorial experiment with

several treatment factors, depending on which interactions are believed to be negligible. These models,

together with definitions of interaction between three or more factors, and estimation of contrasts,

form the topic of Sect. 7.2. General rules are given in Sect. 7.3 for writing down confidence intervals

and hypothesis tests when there are equal numbers of observations on all treatment combinations. In

Sect. 7.5, methods are investigated for analyzing small experiments where there is only one observation

per treatment combination. Finally, SAS and R commands for analyzing experiments with several

treatment factors are given in Sects. 7.6 and 7.7, respectively, and can be used for unequal sample

sizes. Problems caused by empty cells are also investigated.

7.2 Models and Factorial Effects

7.2.1 Models

One of a number of different models may be appropriate for describing the data from an experiment

with several treatment factors. The selection of a suitable model prior to the experiment depends upon

available knowledge about which factors do and do not interact. We take as an example an experiment

with three factors. Our first option is to use the cell-means model, which is similar to the one-way

analysis of variance model (3.3.1), p. 33. For example, the cell-means model for three treatment

factors is
Yi jkt = μ + τi jk + ǫi jkt ,

ǫi jkt ∼ N (0,σ2) ,

ǫi jkt ’s mutually independent ,

t = 1, . . . , ri jk; i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , c .

(7.2.1)

© Springer International Publishing AG 2017

A. Dean et al., Design and Analysis of Experiments,
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If there are more than three factors, the cell-means model has correspondingly more subscripts. As

in Chap. 6, use of this model allows all of the formulae presented in Chaps. 3 and 4 for one treatment

factor to be used to compare the effects of the treatment combinations.

Alternatively, we can model the effect on the response of treatment combination i jk to be

τi jk = αi + β j + γk + (αβ)i j + (αγ)ik + (βγ) jk + (αβγ)i jk ,

where αi , β j , γk are the effects (positive or negative) on the response of factors A, B, C at levels i , j ,

k, respectively, (αβ)i j , (αγ)ik , and (βγ) jk are the additional effects of the pairs of factors together at

the specified levels, and (αβγ)i jk is the additional effect of all three factors together at levels i, j, k.

The three sets of factorial effects are called the main-effect parameters, the two-factor interaction

parameters, and the three-factor interaction parameter, respectively. The interpretation of a three-factor

interaction is discussed in the next section. If we replace τi jk in model (7.2.1) by the main-effect and

interaction parameters, we obtain the equivalent three-way complete model; that is,

Yi jkt = μ + αi + β j + γk + (αβ)i j + (αγ)ik + (βγ) jk + (αβγ)i jk + ǫi jkt ,

ǫi jkt ∼ N (0,σ2) ,

ǫi jkt ’s mutually independent ,

t = 1, . . . , ri jk; i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , c.

(7.2.2)

This form of the model extends in an obvious way to more than three factors by including a main-effect

parameter for every factor and an interaction effect parameter for every combination of two factors,

three factors, etc.

If prior to the experiment certain interaction effects are known to be negligible, the corresponding

parameters can be removed from the complete model to give a submodel. For example, if the factors A

and B are known not to interact in a three-factor experiment, then the AB and ABC interaction effects

are negligible, so the terms (αβ)i j and (αβγ)i jk are excluded from model (7.2.2). In the extreme case,

if no factors are expected to interact, then a main-effects model (which includes no interaction terms)

can be used.

When a model includes an interaction between a specific set of m factors, then all interaction terms

involving subsets of those m factors should be included in the model. For example, a model that

includes the effect of the three-factor interaction ABC would also include the effects of the AB, AC,

and BC interactions as well as the main effects A, B, and C .

Use of a submodel, when appropriate, is advantageous, because simpler models generally yield

tighter confidence intervals and more powerful tests of hypotheses. However, if interaction terms

are removed from the model when the factors do, in fact, interact, then the resulting analysis and

conclusions may be totally incorrect.

7.2.2 The Meaning of Interaction

The same type of interaction plot as that used in Sect. 6.2.1, p. 139, can be used to evaluate interactions

between pairs of factors in an experiment involving three or more factors. The graphical evaluation

of three-factor interactions can be done by comparing separate interaction plots at the different levels

of a third factor. Such plots will be illustrated for experiments that involve only three factors, but the

methods are similar for experiments with four or more factors, except that the sample means being

plotted would be averages over the levels of all the other factors.

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Fig. 7.1 AB-interaction

plot (averaged over levels

of C)

2.0

2.5

3.0

3.5

A

y
ij .

.

1 2 3

B = 1
B = 2

The following sample means are for a hypothetical 3 × 2 × 2 experiment involving the factors A,

B, and C at 3, 2, and 2 levels, respectively.

i jk : 111 112 121 122 211 212 221 222 311 312 321 322

yi jk. : 3.0 4.0 1.5 2.5 2.5 3.5 3.0 4.0 3.0 4.0 1.5 2.5

An AB-interaction plot for these hypothetical data is shown in Fig. 7.1. As in the previous chapter, we

must remember that interaction plots give no indication of the size of the experimental error and must

be interpreted with a little caution. The lines of the plot in Fig. 7.1 are not parallel, indicating that the

factors possibly interact. For factor A, level 2 appears to be the best (highest response) on average,

but not consistently the best at each level of B. Likewise, level 1 of factor B appears to be better on

average, but not consistently better at each level of A. The perceived AB interaction is averaged over

the levels of C and may have no practical meaning if there is an ABC interaction. Consequently, the

three-factor interaction should be investigated first.

A three-factor interaction would be indicated if the interaction effect between any pair of factors

were to change as the level of the third factor changes. In Fig. 7.2, a separate AB-interaction plot is

shown for each level of factor C . Each of the two plots suggests the presence of an AB-interaction

effect, but the patterns in the two plots are the same. In other words, the factors A and B apparently

interact in the same way at each level of factor C . This indicates a negligible ABC-interaction effect.

The shift in the interaction plot as the level of C changes from one plot to the other indicates a possible

main effect of factor C . The AB interaction plot in Fig. 7.1 is the average of the two plots in Fig. 7.2,

showing the AB interaction averaged over the two levels of C .

Other three-factor interaction plots can be obtained by interchanging the roles of the factors. For

example, Fig. 7.3 contains plots of yi jk. against the levels i of A for each level j of factor B, using

the levels k of C as labels and the same hypothetical data. Lines are parallel in each plot, indicating

no AC-interaction at either level of B. Although the patterns differ from plot to plot, if there is no

AC-interaction at either of the levels of B, there is no change in the AC-interaction from one level of

B to the other. So, again the ABC-interaction effect appears to be negligible. An AC interaction plot

would show the average of the two plots in Fig. 7.3, and although the plot would again look different,

the lines would still be parallel.

To see what the plots might look like when there is an ABC-interaction present, we look at the

following second set of hypothetical data.

i jk : 111 112 121 122 211 212 221 222 311 312 321 322

yi jk. : 3.0 2.0 1.5 4.0 2.5 3.5 3.0 4.0 3.0 5.0 3.5 6.0
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Fig. 7.2 ABC-interaction plots with C as the third factor
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(a) Level 1 of B
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(b) Level 2 of B

Fig. 7.3 ABC-interaction plots with B as the third factor

Figure 7.4 shows plots of yi jk. against the level i of factor A for each level k of factor C , using the

level j of factor B as the plotting label. In each plot, corresponding lines are not all parallel, and the

pattern changes from one plot to the next. In other words, the interaction effect between factors A and

B apparently changes with the level of C , so there appears to be an ABC-interaction effect.

Four-factor interactions can be evaluated graphically by comparing the pairs of plots representing

a three-factor interaction for the different levels of a fourth factor. Clearly, higher-order interactions

are harder to envisage than those of lower order, and we would usually rely solely on the analysis of

variance table for evaluating the higher-order interactions. In general, one should examine the higher-

order interactions first, and work downwards. In many experiments, high-order interactions do tend to

be small, and lower-order interactions can then be interpreted more easily.
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(b) Level 2 of C

Fig. 7.4 ABC-interaction plots showing an ABC-interaction effect

7.2.3 Separability of Factorial Effects

In an experiment involving three factors, A, B, and C , for which it is known in advance that factor C

will not interact with factor A or B, the AC, BC, and ABC interaction effects can be excluded from

the model. Interpretation of the results of the experiment is simplified, because a specific change in

the level of factor C has the same effect on the mean response for every combination i j of levels of A

and B. Likewise, a specific change in the combination of levels of A and B has the same effect on the

mean response regardless of the level of C . If the objective is to find the best treatment combination

i jk, then the task is reduced to two smaller problems involving fewer comparisons, namely choice of

the best combination i j of levels of A and B and, separately, choice of the best level k of C .

When there is such separability of effects, the experimenter should generally avoid the temptation

to run separate experiments, one to determine the best combination i j of levels of factors A and B

and another to determine the best level k of C . A single factorial experiment involving n observations

provides the same amount of information on the A, B, C , and AB effects as would two separate

experiments—a factorial experiment for factors A and B and another experiment for factor C—each

involving n observations!

One way to determine an appropriate model for an experiment is as follows. Suppose that the

experiment involves p factors. Draw p points, labeling one point for each factor (see, for example,

Fig. 7.5 for four factors A–D). Connect each pair of factors that might conceivably interact with a line

to give a line graph. For every pair of factors that are joined by a line in the line graph, a two-factor

interaction should be included in the model. If three factors are joined by a triangle, then it may be

appropriate to include the corresponding three-factor interaction in the model as well as the three two-

factor interactions. Similarly, if four factors are joined by all six possible lines, it may be appropriate to

include the corresponding four-factor interaction as well as the three-factor and two-factor interactions.

The line graphs in Fig. 7.5 fall into two pieces. Line graph (a) represents the situation where A

and B are thought to interact, as are C and D. The model would include the AB and CD interaction

effects, in addition to all main effects. Line graph (b) represents an experiment in which it is believed

that A and B interact and also A and C and also B and C . An appropriate model would include all

main effects and the AC, AB, and BC interactions. The three-factor ABC interaction effect might also
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Fig. 7.5 Separability plots
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be included in the model depending upon the type of interaction plots expected by the experimenter.

Thus, a possible model would be

Yi jklt = μ + αi + β j + γk + δl + (αβ)i j

+ (αγ)ik + (βγ) jk + (αβγ)i jk + ǫi jklt .

7.2.4 Estimation of Factorial Contrasts

For an a × b × c factorial experiment and the three-way complete model, all treatment contrasts are

of the form
∑

i

∑

j

∑

k

hi jkτi jk with
∑

i

∑

j

∑

k

hi jk = 0 ,

and are estimable when there is at least one observation per treatment combination.

A contrast in the main effect of A is any treatment contrast for which the coefficients hi jk depend

only on the level i of A. For example, if we set hi jk equal to pi/(bc), with �pi = 0, then the contrast

���hi jkτi jk becomes

∑

i

piτ i.. =
∑

i

pi [αi + (αβ)i. + (αγ)i. + (αβγ)i..] =
∑

i

piα
∗
i .

We notice that a main-effect contrast for factor A can be interpreted only as an average over all of the

interaction effects involving A in the model and, consequently, may not be of interest if any of these

interactions are nonnegligible. The B and C main-effect contrasts are defined in similar ways.

An AB interaction contrast is any treatment contrast for which the coefficients hi jk depend only on

the combination i j of levels of A and B, say hi jk = di j/c, and for which
∑

i di j = 0 for all j and
∑

j di j = 0 for all i . An AB interaction contrast can be expressed as

∑

i

∑

j

di jτ i j. =
∑

i

∑

j

di j [(αβ)i j + (αβγ)i j.] =
∑

i

∑

j

di j (αβ)∗i j .

Thus, the AB interaction contrast can be interpreted only as an average over the ABC interaction and

may not be of interest if the ABC interaction is nonnegligible. The AC and BC interaction contrasts are

defined in similar ways.

An ABC interaction contrast is any contrast of the form
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∑

i

∑

j

∑

k

hi jkτi jk =
∑

i

∑

j

∑

k

hi jk(αβγ)i jk

for which
∑

i hi jk = 0 for all jk,
∑

j hi jk = 0 for all ik, and
∑

k hi jk = 0 for all i j . When we

investigated the interaction plot for ABC using Figs. 7.2–7.4, we compared the AB interaction at two

different levels of factor C . In other words, we looked at contrasts of the type

(τ112 − τ122 − τ212 + τ222) − (τ111 − τ121 − τ211 + τ221) .

If the levels 1 and 2 of A and B interact in the same way at each level of C , then this ABC interaction

contrast is zero. If all interaction contrasts of this type (for all levels of A, B, and C) are zero, then the

ABC interaction is negligible.

When a sub-model, rather than a complete model, is used, parameters for the negligible interactions

are removed from the above expressions. If the experiment involves more than three factors, then the

above definitions can be generalized by including the additional subscripts on hi jkτi jk and averaging

over the appropriate higher-order interactions.

As in Chap. 6, all contrasts can be represented by coefficient lists in terms of the main-effect and

interaction parameters or in terms of the treatment combination parameters. This is illustrated in the

next example.

Example 7.2.1 Coefficient lists for contrasts

Suppose that we have an experiment that involves four factors, A, B, C , and D, each to be examined

at two levels (so that a = b = c = d = 2 and v = 16). Suppose that a model that includes AB, BC,

BD, CD, and BCD interactions is expected to provide a good description of the data; that is,

Yi jklt = μ + αi + β j + γk + δl + (αβ)i j

+ (βγ) jk + (βδ) jl + (γδ)kl + (βγδ) jkl + ǫi jklt ,

ǫi jklt ∼ N (0,σ2) ,

ǫi jklt
′s are mutually independent,

t = 1, . . . , ri jkl , i = 1, 2, j = 1, 2, k = 1, 2, l = 1, 2 .

The contrast that compares the two levels of C is

τ ..2. − τ ..1. = γ∗
2 − γ∗

1 ,

where γ∗
k = γk + (βγ).k + (γδ)k. +(βγδ).k.. This contrast can be represented as a coefficient list

[−1, 1 ] in terms of the parameters γ∗
1 and γ∗

2 or as

1

8
[−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1 ]

in terms of the τi jkl . These are listed under the heading C in Table 7.1.Coefficient lists for the other

main-effect contrasts in terms of the τi jkl are also shown in Table 7.1. The treatment combinations

in the table are listed in ascending order when regarded as 4-digit numbers. The main-effect contrast

coefficients are −1 when the corresponding factor is at level 1, and the coefficients are +1 when the

corresponding factor is at level 2, although these can be interchanged if contrasts such as γ∗
1 − γ∗

2 are

http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 7.1 Contrast coefficient lists in terms of treatment combination parameters

Treatment combination A B C D AB BC BD CD BCD

1111 −1 −1 −1 −1 1 1 1 1 −1

1112 −1 −1 −1 1 1 1 −1 −1 1

1121 −1 −1 1 −1 1 −1 1 −1 1

1122 −1 −1 1 1 1 −1 −1 1 −1

1211 −1 1 −1 −1 −1 −1 −1 1 1

1212 −1 1 −1 1 −1 −1 1 −1 −1

1221 −1 1 1 −1 −1 1 −1 −1 −1

1222 −1 1 1 1 −1 1 1 1 1

2111 1 −1 −1 −1 −1 1 1 1 −1

2112 1 −1 −1 1 −1 1 −1 −1 1

2121 1 −1 1 −1 −1 −1 1 −1 1

2122 1 −1 1 1 −1 −1 −1 1 −1

2211 1 1 −1 −1 1 −1 −1 1 1

2212 1 1 −1 1 1 −1 1 −1 −1

2221 1 1 1 −1 1 1 −1 −1 −1

2222 1 1 1 1 1 1 1 1 1

Divisor 8 8 8 8 4 4 4 4 2

required rather than γ∗
2 − γ∗

1 . The divisor shown in the table is the number of observations taken on

each level of the factor.

The two-factor interaction contrast for CD is

(γδ)∗11 − (γδ)∗12 − (γδ)∗21 + (γδ)∗22 ,

where (γδ)∗kl = (γδ)kl + (βγδ).kl . This has coefficient list [ 1,−1,−1, 1 ] in terms of the interaction

parameters (γδ)∗kl but has coefficient list

1

4
[ 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1 ]

in terms of the treatment combination parameters τi jkl . The coefficients are +1 when C and D are

at the same level and −1 when they are at different levels. Notice that these coefficients can easily

be obtained by multiplying together the C and D coefficients in the same rows of Table 7.1. The

coefficient lists for some of the other interaction contrasts are also shown in the table, and it can

be verified that their coefficients are also products of the corresponding main-effect coefficients. The

divisors are the numbers of observations on each pair of levels of C and D. To obtain the same precision

(estimator variance) as a main effect contrast, the divisor would need to be changed to 8 (or all contrasts

would need to be normalized).

Contrast coefficients are also shown for the BCD interaction. These are the products of the main-

effect coefficients for B, C , and D. This contrast compares the CD interaction at the two levels of B

(or, equivalently, the BC interaction at the two levels of D, or the BD interaction at the two levels of

C). �
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7.3 Analysis—Equal Sample Sizes

For an experiment involving p factors, we can select a cell-means model or the equivalent p-way

complete model, or any of the possible submodels. When the sample sizes are equal, the formulae

for the degrees of freedom, least squares estimates, and sums of squares for testing hypotheses follow

well-defined patterns. We saw in Chap. 6 that for an experiment with two factors, we obtain similar

formulae for the least squares estimates of the contrasts
∑

ciαi in the two-way main-effects model

and
∑

ciα
∗
i in the two-way complete model. Similarly, the sum of squares for A was of the same form

in both cases. This is also true for experiments with more than two factors.

We now give a series of rules that can be applied to any complete model with equal sample sizes.

The rules are illustrated for the ABD interaction in an experiment involving four treatment factors A,

B, C , and D, with corresponding symbols α, β, γ, and δ and subscripts i , j , k, and l to represent their

effects on the response in a four-way complete model with r observations per treatment combination.

The corresponding rules for submodels are obtained by dropping the relevant interaction terms from

the complete model. When the sample sizes are not equal, the formulae are more complicated, and we

will analyze such experiments only via a computer package (see Sects. 7.6 and 7.7).

Rules for Estimation and Hypothesis Testing—Equal Sample Sizes

1. Write down the name of the main effect or interaction of interest and the corresponding numbers

of levels and subscripts.

Example: ABD; numbers of levels a, b, and d; subscripts i , j , and l.

2. The number of degrees of freedom ν for a factorial effect is the product of the “number of levels

minus one” for each of the factors included in the effect.

Example: For ABD, ν = (a − 1)(b − 1)(d − 1).

3. Multiply out the number of degrees of freedom and replace each letter with the corresponding

subscript.

Example: For ABD, df = abd − ab − ad − bd + a + b + d − 1, which gives i jl − i j − il − jl +
i + j + l − 1.

4. The sum of squares for testing the hypothesis that a main effect or an interaction is negligible is

obtained as follows. Use each group of subscripts in rule 3 as the subscripts of a term y, averaging

over all subscripts not present and keeping the same signs. Put the resulting estimate in brackets,

square it, and sum over all possible subscripts. To expand the parentheses, square each term in

the parentheses, keep the same signs, and sum over all possible subscripts.

http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Example:

ss(ABD) = rc
∑

i

∑

j

∑

l

(yi j.l. − yi j... − yi..l. − y. j.l.

+ yi.... + y. j... + y...l. − y.....)
2

= rc
∑

i

∑

j

∑

l

y2
i j.l. − rcd

∑

i

∑

j

y2
i j... − rbc

∑

i

∑

l

y2
i..l.

− rac
∑

j

∑

l

y2
. j.l. + rbcd

∑

i

y2
i.... + racd

∑

j

y2
. j...

+ rabc
∑

l

y2
...l. − rabcd y2

..... .

5. The total sum of squares sstot is the sum of all the squared deviations of the data values from their

overall mean. The total degrees of freedom is n − 1, where n is the total number of observations.

Example: sstot =
∑

i

∑

j

∑

k

∑

l

∑

t

(yi jklt − y.....)
2

=
∑

i

∑

j

∑

k

∑

l

∑

t

y2
i jklt − ny2

..... ,

n − 1 = abcdr − 1 .

6. The error sum of squares ssE is sstot minus the sums of squares for all other effects in the model.

The error degrees of freedom df is n − 1 minus the degrees of freedom for all of the effects in the

model. For a complete model, df = n −v, where v is the total number of treatment combinations.

Example:

ssE = sstot − ssA − ssB − ssC − ssD

− ss(AB) − ss(AC) − · · · − ss(BCD) − ss(ABCD) ,

df = (n − 1) − (a − 1) − (b − 1) − · · · − (a − 1)(b − 1)(c − 1)(d − 1) .

7. The mean square for an effect is the corresponding sum of squares divided by the degrees of

freedom.

Example: ms(ABD) = ss(ABD)/((a − 1)(b − 1)(d − 1)) ,

msE = ssE/df
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8. The decision rule for testing the null hypothesis that an effect is zero against the alternative

hypothesis that the effect is nonzero is

reject H0 if
ss/ν

ssE/df
=

ms

msE
> Fν,df,α ,

where ss is the sum of squares calculated in rule 4, ν is the degrees of freedom in rule 2, and

ms = ss/ν.

Example : To test HABD
0 : {the interaction ABD is negligible}

against HABD
A : {the interaction ABD is not negligible} ,

the decision rule is

reject HABD
0 if

ms(ABD)

msE
> F(a−1)(b−1)(d−1),df,α.

9. An estimable contrast for an interaction or main effect is a linear combination of the corresponding

parameters (averaged over all higher-order interactions in the model), where the coefficients add

to zero over each of the subscripts in turn.

Example: All estimable contrasts for the ABD interaction are of the form

∑

i

∑

j

∑

l

hi jl(αβδ)∗i jl

where

∑

i

hi jl = 0 for all j, l;
∑

j

hi jl = 0 for all i, l;
∑

l

hi jl = 0 for all i, j ,

and where (αβδ)∗ is the parameter representing the ABD interaction averaged over all the higher-

order interactions in the model.

10. If the sample sizes are equal, the least squares estimate of an estimable contrast in rule 9 is obtained

by replacing each parameter with y having the same subscripts and averaging over all subscripts

not present.

Example: The least squares estimate of the ABD contrast in rule 9 is

∑

i

∑

j

∑

l

hi jl (̂αβδ)∗i jl =
∑

i

∑

j

∑

l

hi jl yi j.l. .
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11. The variance of an estimable contrast for a factorial effect is obtained by adding the squared

contrast coefficients, dividing by the product of r and the numbers of levels of all factors not

present in the effect, and multiplying by σ2.

Example: Var
(

∑

i

∑

j

∑

l hi jl (̂αβδ)∗i jl

)

=
(

∑

i

∑

j

∑

l h2
i jl/(cr)

)

σ2 .

12. The “sum of squares” for testing the null hypothesis H c
0 that a contrast is zero is the square of the

normalized contrast estimate.

Example: The sum of squares for testing the null hypothesis that the contrast
∑ ∑ ∑

hi jl(αβδ)∗i jl

is zero against the alternative hypothesis that the contrast is nonzero is the square of the least

squares estimate of the normalized contrast
∑ ∑ ∑

hi jl(αβδ)∗i jl/
√

∑∑∑

h2
i jl/(cr) ; that is,

ssc =

(

∑

i

∑

j

∑

l hi jl yi j.l.

)2

∑

i

∑

j

∑

l h2
i jl/(cr)

.

13. The decision rule for testing the null hypothesis H c
0 that an estimable contrast is zero, against the

alternative hypothesis that the contrast is nonzero, is

reject H c
0 if

ssc

msE
> F1,df,α/m ,

where ssc is the square of the normalized contrast estimate, as in rule 12; msE is the error mean

square; df is the number of error degrees of freedom; α is the overall Type I error probability; and

m is the number of preplanned hypotheses being tested.

14. Simultaneous confidence intervals for contrasts in the treatment combinations can be obtained

from the general formula (4.4.20), p. 83, with the appropriate critical coefficients for the

Bonferroni, Scheffé, Tukey, and Dunnett methods.

Example: For the four-way complete model, the general formula for simultaneous 100(1 − α)%

confidence intervals for a set of contrasts of the form ����ci jklτi jkl is

����ci jklτi jkl ∈
(

����ci jkl yi jkl.±w

√

msE (����c2
i jkl/r)

)

,

where the critical coefficient, w, is

wB = tdf,α/2m ; ws =
√

(v − 1)Fv−1,df,α ;

wT = qv,df,α/
√

2 ; wD2 = |t |(0.5)
v−1,df,α ;

for the four methods, respectively, and v is the number of treatment combinations, and df is the

number of error degrees of freedom.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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15. Simultaneous confidence intervals for the true mean effects of the treatment combinations in the

complete model can be obtained from the general formula (4.3.12), p. 76, with the appropriate

critical coefficients for the Bonferroni or Scheffé methods.

Example: For the four-way complete model, the general formula for simultaneous 100(1 − α)%

confidence intervals for true mean effects of the treatment combinations μ + τi jkl is

μ + τi jkl ∈
(

yi jkl.±w
√

msE/r
)

,

where the critical coefficient, w, is

wB = tdf,α/(2v) or ws =
√

v Fv,df,α

for the Bonferroni and Scheffé methods, respectively.

16. Simultaneous 100(1 − α)% confidence intervals for contrasts in the levels of a single factor can

be obtained by modifying the formulae in rule 14. Replace v by the number of levels of the factor

of interest, and r by the number of observations on each level of the factor of interest.

Example: For the four-way complete model, the general formula for simultaneous confidence

intervals for contrasts
∑

i ciτ i... =
∑

i α∗
i in A is

∑

i

ciα
∗
i ∈

⎛

⎝

∑

i

ci yi....±w

√

√

√

√msE

(

∑

i

c2
i /(bcdr)

)

⎞

⎠ , (7.3.3)

where the critical coefficients for the five methods are, respectively,

wB = tdf,α/(2m) ; ws =
√

(a − 1)Fa−1,df,α ; wT = qa,df,α/
√

2 ;

wD1 = wH = t
(0.5)
a−1,df,α ; wD2 = |t |(0.5)

a−1,df,α ;

where df is the number of error degrees of freedom.

7.4 A Real Experiment—Popcorn–Microwave Experiment

The experiment described in this section was run by Jianjian Gong, Chongqing Yan, and Lihua Yang

in 1992 to compare brands of microwave popcorn. The details in the following checklist have been

extracted from the experimenters’ report.

The Design Checklist

(a) Define the objectives of the experiment.

The objective of the experiment was to find out which brand gives rise to the best popcorn in

terms of the proportion of popped kernels. The experiment was restricted to popcorn produced in

a microwave oven.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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(b) Identify all sources of variation.

(i) Treatment factors and their levels.

The first treatment factor was “brand.” Three levels were selected, including two national

brands (levels 1 and 2) and one local brand (level 3). These brands were the brands most

commonly used by the experimenters and their colleagues. All three brands are packaged for

household consumers in boxes of 3.5 ounce packages, and a random selection of packages

was used in this experiment.

Power of the microwave oven was identified as a possible major source of variation and was

included as a second treatment factor. Three available microwave ovens had power ratings of

500, 600, and 625 W. The experimenters used only one oven for each power level. This means

that their conclusions could be drawn only about the three ovens in the study and not about

power levels in general.

Popping time was taken as a third treatment factor. The usual instructions provided with

microwave popcorn are to microwave it until rapid popping slows to 2 to 3 seconds between

pops. Five preliminary trials using brand 3, a 600 W microwave oven, and times equally spaced

from 3 to 5 min suggested that the best time was between 4 and 5 min. Hence, time levels of

4, 4.5, and 5 min were selected for the experiment and coded 1–3, respectively.

(ii) Experimental units

The experiment was to be run sequentially over time. The treatment combinations were to be

examined in a completely random order. Consequently, the experimental units were the time

slots that were to be assigned at random to the treatment combinations.

(iii) Blocking factors, noise factors, and covariates.

Instead of randomly ordering the observations on all of the treatment combinations, it might

have been more convenient to have taken the observations oven by oven. In this case, the

experiment would have been a “split-plot design” (see Sect. 2.4.4) with ovens representing the

blocks. In this experiment, no blocking factors or covariates were identified by the experi-

menters. The effects of noise factors, such as room temperature, were thought to be negligible

and were ignored.

(c) Choose a rule by which to assign the experimental units to the treatments.

A completely randomized design was indicated. The time-slots were randomly assigned to the

brand–power–time combinations. Popcorn packages were selected at random from a large batch

purchased by the experimenters to represent each brand. Changes in quality, if any, of the packaged

popcorn over time could not be detected by this experiment.

(d) Specify measurements to be made, the experimental procedure, and the anticipated

difficulties.

A main difficulty for the experimenters was to choose the response variable. They considered

weight, volume, number, and percentage of successfully popped kernels as possible response

variables. In each case, they anticipated difficulty in consistently being able to classify kernels

as popped or not. To help control such variation or inconsistency in the measurement process, a

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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single experimenter made all measurements. For measuring weight, the experimenters needed a

more accurate scale than was available, since popcorn is very light. They decided against measuring

volume, since brands with smaller kernels would appear to give less volume, as the popcorn would

pack more easily into a measuring cylinder. The percentage, rather than number, of successfully

popped kernels for each package was selected as the response variable.

(e) Run a pilot experiment.

The experimenters ran a very small pilot experiment to check their procedure and to obtain a rough

estimate of the error variance. they collected observations on only 9 treatment combinations. Using

a three-way main-effects model, they found that the overall average popping rate was about 70%

and the error standard deviation was a little less than 10.7%. The highest popping rate occurred

when the popping time was at its middle level (4.5 min), suggesting that the range of popping times

under consideration was reasonable. Results for 600 and 625 W microwave ovens were similar,

with lower response rates for the 500 W microwave oven. However, since all possible interactions

had been ignored for this preliminary analysis, the experimenters were cautious about drawing any

conclusions from the pilot experiment.

(f) Specify the model.

For their main experiment, the experimenters selected the three-way complete model, which

includes all main effects and interactions between the three treatment factors. They assumed that

the packages selected to represent each brand would be very similar, and package variability for

each brand could be ignored.

(a) — revisited. Define the objectives of the experiment.

Having identified the treatment factors, response variables, etc., the experimenters were able to

go back to step (a) and reformalize the objectives of the experiment. They decided that the three

questions of most interest were:

• Which combination of brand, power, and time will produce the highest popping rate? (Thus,

pairwise comparisons of all treatment combinations were required.)

• Which brand of popcorn performs best overall? (Pairwise comparison of the levels of brand,

averaging over the levels of power and time, was required.)

• How do time and power affect response? (Pairwise comparison of time–power combinations,

averaging over brands, was required. Also, main-effect comparisons of power and time were

required.)

(g) Outline the analysis.

Tukey’s method of simultaneous confidence intervals for pairwise comparisons was to be used

separately at level 99% for each of the above five sets of contrasts, giving an experimentwise

confidence level of at least 95%.

(h) Calculate the number of observations that need to be taken.

The data from the pilot study suggested that 10.7% would be a reasonable guess for the error

standard deviation. This was calculated using a main-effects model rather than the three-way

complete model, but we would expect a model with more terms to reduce the estimated error
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variance, not to enlarge it. Consequently, the value msE = 10.72 was used in the sample-size

calculations. The experimenters decided that their confidence intervals for any pairwise main-

effect comparison should be no wider than 15% (that is, the half-width, or minimum significant

difference, should be less than 7.5%). Using rule 16, p. 212, for Tukey’s pairwise comparisons,

a set of 99% simultaneous confidence intervals for the pairwise differences between the brands

(factor A) is

yi... − ys...±wT

√

msE (2/(bcr)) ,

where the critical coefficient is wT = q3,27r−27,0.01/
√

2. The error degrees of freedom are calcu-

lated for a complete model as df = n − v = 27r − 27. Consequently, using 10.72 as the rough

estimate of msE, we need to solve

msd =
(

q3,27(r−1),.01/
√

2
)

√

(10.7)2(2/(9r)) ≤ 7.5 .

Trial and error shows that r = 4 is adequate. Thus a total of n = rv = 108 observations would be

needed.

(i) Review the above decisions. Revise, if necessary.

The experimenters realized that it would not be possible to collect 108 observations in the time

they had available. Since the effects of power levels of 600 and 625 W were comparable in the pilot

study, they decided to drop consideration of the 600 W microwave and to include only power levels

of 500 W (level 1) and 625 W (level 2) in the main experiment. Also, they decided to take only

r = 2 observations (instead of the calculated r = 4) on each of the v = 18 remaining treatment

combinations. The effect of this change is to widen the proposed confidence intervals. A set of 99%

simultaneous confidence intervals for pairwise comparisons in the brands using Tukey’s method

and msE=10.72 would have half-width

msd = (q3,18,.01/
√

2)

√

(10.7)2(2/(6 × 2)) = 14.5 ,

about twice as wide as in the original plan. It was important, therefore, to take extra care in running

the experiment to try to reduce the error variability.

The experiment was run, and the resulting data are shown in Table 7.2. Unfortunately, the error

variance does not seem to be much smaller than in the pilot experiment, since the mean squared error

was reduced only to (9.36)2. A plot of the standardized residuals against fitted values did not show

any pattern of unequal variances or outliers. Likewise, a plot of the standardized residuals against

the normal scores was nearly linear, giving no reason to question the model assumption of normality.

Unfortunately, the experimenters did not keep information concerning the order of observations, so

the independence assumption cannot be checked.

Data Analysis

Table 7.3 contains the analysis of variance for investigating the three-way complete model. If an overall

significance level of α ≤ 0.07 is selected, allowing each hypothesis to be tested at level α∗ = 0.01, the

only null hypothesis that would be rejected would be H T
0 :{popping time has no effect on the proportion

of popped kernels}. However, at a slightly higher significance level, the brand–time interaction also

appears to have an effect on the proportion of popped kernels.
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If the equivalent cell-means model is used, the null hypothesis of no difference between the treatment

combinations would be rejected at significance level α = 0.07. This is shown in the row of Table 7.3

labeled “Treatments.” Since the design is equireplicate, the main effects and interactions are estimated

independently, and their sums of squares add to the treatment sum of squares. The corresponding

numbers of degrees of freedom likewise add up.

Figure 7.6 shows an interaction plot for the factors “Brand” and “Time.” The plot suggests that use

of time level 2, namely 4.5 min, generally gives a higher popping rate for all three brands. Using level

2 of time, brands 1 and 2 appear to be better than brand 3. The two national brands thus appear to be

better than the local brand. Brand 1 appears to be less sensitive than brand 2 to the popping time. (We

say that brand 1 appears to be more robust to changes in popping time.) Unless this perceived difference

is due to error variability, which does not show on the plot, brand 1 is the brand to be recommended.

Having examined the analysis of variance table and Fig. 7.6, the most interesting issue seems to

be that the differences in the brands might not be the same at the different popping times. This is not

one of the comparisons that had been preplanned at step (g) of the checklist. It is usually advisable

to include in the plan of the analysis the use of Scheffé’s multiple comparisons for all contrasts that

look interesting after examining the data. If we had done this at overall 99% confidence level, then the

experimentwise error rate would have been at least 94%. Interaction contrasts and their least squares

estimates are defined in rules 9 and 10, p. 211. The interaction contrast of most interest is, perhaps,

τ1.2 − τ 1.3 − τ2.2 + τ2.3 ,

Table 7.2 Percentage yi jkl of kernels popped—popcorn–microwave experiment

Brand (i) Power ( j) Time (k)

1 2 3

1 1 73.8, 65.5 70.3, 91.0 72.7, 81.9

1 2 70.8, 75.3 78.7, 88.7 74.1, 72.1

2 1 73.7, 65.8 93.4, 76.3 45.3, 47.6

2 2 79.3, 86.5 92.2, 84.7 66.3, 45.7

3 1 62.5, 65.0 50.1, 81.5 51.4, 67.7

3 2 82.1, 74.5 71.5, 80.0 64.0, 77.0

y..1. = 72.9000 y..2. = 79.8667 y..3. = 63.8167

Table 7.3 Three-way ANOVA for the popcorn–microwave experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

B 2 331.1006 165.5503 1.89 0.1801

P 1 455.1111 455.1111 5.19 0.0351

T 2 1554.5756 777.2878 8.87 0.0021

B*P 2 196.0406 98.0203 1.12 0.3485

B*T 4 1433.8578 358.4644 4.09 0.0157

P*T 2 47.7089 23.8544 0.27 0.7648

B*P*T 4 47.3344 11.8336 0.13 0.9673

Treatments 17 4065.7289 239.1605 2.73 0.0206

Error 18 1577.8700 87.6594

Total 35 5643.5989
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Fig. 7.6 Interaction plot
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which compares the differences in brands 1 and 2 at popping times 2 and 3. This has least squares

estimate

y1.2. − y1.3. − y2.2. + y2.3. = 82.175 − 75.20 − 86.65 + 51.225 = −28.45 .

The importance of preplanning will now become apparent. Using Scheffé’s method (rule 14) at overall

level 99%, a confidence interval for this contrast is given by

∑

i

∑

k

cik yi.k. ± wS

√

√

√

√msE

(

∑

i

∑

k

c2
ik/(br)

)

= −28.45 ±
√

17F17,18,.01

√

87.6594 (4/4)

= −28.45 ± 69.69 = (−96.41, 39.52) .

Our popping rates are percentages, so our minimum significant difference is 69%. This is far too large

to give any useful information. The resulting interval gives the value of the interaction contrast as being

between −96.4% and 39.5%! Had this contrast been preplanned for at individual confidence level 99%,

we would have used the critical value wB = t18,0.005 = 2.878 instead of wS = 7.444, and we would

have obtained a minimum significant difference of about 30%, leading to the interval (−55.40,−1.50).

Although still wide, this interval would have given more information, and in particular, it would have

indicated that the interaction contrast was significantly different from zero.

The other important effect that showed up in the analysis of variance table was the effect of the

different popping times (4, 4.5, or 5 min). Comparisons of popping times did feature as one of the

preplanned sets of multiple comparisons, and consequently, we use Tukey’s method (rule 16) for

pairwise differences γk − γu at overall level 99%. The minimum significant difference is

msd = wT

√

msE �c2
k/(abr) = (q3,18,.01/

√
2)

√

(87.6594)(2/12) = 12.703 .

The average percentages of popped kernels for the three popping times are shown in Table 7.2 as

y..1. = 72.9000 , y..2. = 79.8667 , y..3. = 63.8167 ,

so the three confidence intervals are
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γ1 − γ2 ∈ (−6.9667 ± 12.7030) = (−5.736, 19.670) ,

γ1 − γ3 ∈ (9.0833 ± 12.7030) = (−3.620, 21.786) ,

γ2 − γ3 ∈ (16.0500 ± 12.7030) = (3.347, 28.753) .

We see that at an experimentwise confidence level of at least 94%, use of popping time 2 (4.5 min)

produces on average between 3.35% and 28.75% more popcorn than use of popping time 3 (5 min).

The other questions asked by the experimenters appear to be of less interest, and we will omit these.

The experimentwise confidence level is still at least 94%, even though we have chosen not to calculate

all of the preplanned intervals.

7.5 One Observation per Cell

If the complete model is used for a factorial experiment with one observation per cell, then there are no

degrees of freedom available to estimate the error variance. This problem was discussed in Sect. 6.7,

where one possible method of analysis was described. The method relies on being able to identify a

number of negligible contrasts, which are then excluded from the model. The corresponding sums of

squares and degrees of freedom are used to estimate the error variance. With this approach, confidence

intervals can be constructed and hypothesis tests conducted. An example with four treatment factors

that are believed not to interact with each other is presented in the next section.

Two alternative approaches for the identification of nonnegligible contrasts are provided in the

subsequent sections. In Sect. 7.5.2 we show an approach based on the evaluation of a half-normal

probability plot of a set of contrast estimates, and in Sect. 7.5.3 we discuss a more formalized approach.

These two approaches work well under effect sparsity, that is, when most of the treatment contrasts

under examination are negligible.

7.5.1 Analysis Assuming that Certain Interaction Effects are Negligible

For a single replicate factorial experiment, if the experimenter knows ahead of time that certain interac-

tions are negligible, then by excluding those interactions from the model, the corresponding degrees of

freedom can be used to estimate the error variance. It must be recognized, however, that if interactions

are incorrectly assumed to be negligible, then msE will be inflated, in which case the results of the

experiment may be misleading.

Table 7.4 Data for the drill advance experiment

ABC D Advance y = log(advance) ABC D Advance y = log(advance)

1111 1.68 .2253 2111 1.98 .2967

1112 2.07 .3160 2112 2.44 .3874

1121 4.98 .6972 2121 5.70 .7559

1122 7.77 .8904 2122 9.43 .9745

1211 3.28 .5159 2211 3.44 .5366

1212 4.09 .6117 2212 4.53 .6561

1221 9.97 .9987 2221 9.07 .9576

1222 11.75 1.0700 2222 16.30 1.2122

Source Applications of Statistics to Industrial Experimentation, by C. Daniel, Copyright © 1976, John Wiley & Sons,

New York. Reprinted by permission of John Wiley & Sons, Inc

http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 7.5 Analysis of variance for the drill advance experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

A 1 0.01275 0.01275 7.02 0.0226

B 1 0.25387 0.25387 139.74 0.0001

C 1 1.00550 1.00550 553.46 0.0001

D 1 0.08045 0.08045 44.28 0.0001

Error 11 0.01998 0.00182

Total 15 1.37254

Example 7.5.1 Drill advance experiment

Daniel (1976) described a single replicate 2×2×2×2 experiment to study the effects of four treatment

factors on the rate of advance of a small stone drill. The treatment factors were “load on the drill”

(A), “flow rate through the drill” (B), “speed of rotation” (C), and “type of mud used in drilling”

(D). Each factor was observed at two levels, coded 1 and 2. The author examined several different

transformations of the response and concluded that the log transform was one of the more satisfactory

ones. In the rest of our discussion, yi jkl represents the log (to the base 10) of the units of drill advance,

as was illustrated in the original paper. The data are shown in Table 7.4.

In many experiments with a number of treatment factors, experimenters are willing to believe that

some or all of the interactions are very small. Had that been the case here, the experimenter would

have used the four-way main-effects model. (Analysis of this experiment without assuming negligible

interactions is discussed in Example 7.5.2, p. 222.)

Degrees of freedom and sums of squares are given by rules 2 and 4 in Sect. 7.3. For example, the

main effect of B has b − 1 degrees of freedom and

ssB = acd
∑

i

(

y. j.. − y....
)2 = acd

∑

i

y2
. j.. − acbd y....2 .

The sums of squares for the other effects are calculated similarly and are listed in the analysis of

variance table, Table 7.5. The error sum of squares shown in Table 7.5 is the total of all the eleven

(negligible) interaction sums of squares and can be obtained by subtraction, as in rule 6, p. 210:

ssE = sstot − ssA − ssB − ssC − ssD = 0.01998 .

Similarly, the number of error degrees of freedom is the total of the 15 − 4 = 11 interaction degrees

of freedom. An estimate of σ2 is therefore msE = ssE/11 = 0.0018. Since F1,11,.01 = 9.65, the null

hypotheses of no main effects of B, C , and D would all have been rejected at overall significance level

α ≤ 0.04. Alternatively, from a computer analysis we would see that the p-values for B, C , and D are

each less than or equal to an individual significance level of α∗ = 0.01.

Confidence intervals for the m = 4 main-effect contrasts using Bonferroni’s method at an overall

level of at least 95% can be calculated from rule 16. From rules 10 and 11 on p. 211, the least squares

estimate for the contrast that compares the effects of the high and low levels of B is y.2.. − y.1.., with

variance σ2(2/8), giving the confidence interval

(

y.2.. − y.1..±wB

√

msE (2/8)

)

,
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where the critical coefficient is

wB = t11,.025/4 = t11,.00625 ≈ z + (z3 + z)/((4)(11)) ≈ 2.911 ,

from (4.4.22), p. 83, and

msd = wB

√

msE (2/8) = 2.911
√

(0.00182)/4 = 0.062 .

Now, y.2.. = 0.820, y.1.. = 0.568, so the confidence interval for the B contrast is

(0.252±0.062) ≈ (0.190, 0.314) ,

where the units are units of log drill advance. Confidence intervals for the other three main effects

comparing high with low levels can be calculated similarly as

A : 0.056 ± 0.062 = (−0.006, 0.118) ,

C : 0.501 ± 0.062 = ( 0.439, 0.563) ,

D : 0.142 ± 0.062 = ( 0.080, 0.204) .

We see that the high levels of B, C , D give a somewhat higher response in terms of log drill advance

(with overall confidence level at least 95%), whereas the interval for A includes zero. �

7.5.2 Analysis Using Half-Normal Probability Plot of Effect Estimates

For a single replicate factorial experiment, with v treatment combinations, one can find a set of v − 1

orthogonal contrasts. When these are normalized, the contrast estimators all have variance σ2. If the

assumptions of normality, equal variances, and independence of the response variables are approxi-

mately satisfied, the estimates of negligible contrasts are like independent observations from a normal

distribution with mean zero and variance σ2. If we were to plot the normalized contrast estimates

against their normal scores (in the same way that we checked for normality of the error variables in

Chap. 5), the estimates of negligible effects would tend to fall nearly on a straight line. Any contrast

for which the corresponding estimate would appear to be far from the line would be considered to be

nonnegligible. The sign of such a nonnegligible contrast could be positive or negative and this depends

upon which level of the factor is labeled as the high level and which is labeled as the low level. For

many factors (especially qualitative factors), these designations are arbitrary, and so it is common to

use a half-normal probability plot for detecting nonnegligible contrasts. This is obtained by plotting

the absolute values of the normalized contrast estimates against their half-normal scores.

Half-normal scores are percentiles of the half-normal distribution with σ = 1, corresponding to

the distribution of the absolute value of a standard normal random variable. In particular, the qth

half-normal score for m = v − 1 contrast absolute estimates is the value ξq for which

P(Z ≤ ξq) = 0.5 ∗ [1 + q/(m + 1)],

where Z is a standard normal random variable. Hence, the qth half-normal score is

ξq = �−1[0.5 ∗ (1 + q/(m + 1))] , (7.5.4)

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_5
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where � is the cumulative distribution function (cdf) of the standard normal distribution.

If the model assumptions are approximately satisfied, and if the estimated effects are all negligible,

then the half-normal plot should show points roughly on a straight line through the origin with slope

equal to σ. However, if any of the effects are large, then their estimates should stand out as relatively

large, creating a nonlinear pattern. Provided that there is effect sparsity—namely, all but a few contrast

estimates are expected to be negligible—it is not difficult to pick out the nonnegligible contrasts. We

note that it is possible to use a half-normal probability plot for non-normalized contrasts provided that

they all have the same variance, so that the line of negligible contrasts still has slope equal to the

common contrast standard deviation.

Example 7.5.2 Drill advance experiment, continued

The data for the drill advance experiment were given in Table 7.4 in Example 7.5.1. The experiment

involved treatment factors “load” (A), “flow” (B), “speed” (C), and “mud” (D) and response “log(drill

advance)” (Y ). If we have no information about which factors are likely to be negligible, we would

use the four-way complete model or the equivalent cell-means model:

Yi jkl = μ + τi jkl + ǫi jkl ,

ǫi jkl ∼ N (0,σ2) ,

ǫ′
i jkls mutually independent ,

i = 1, 2; j = 1, 2; k = 1, 2; l = 1, 2 .

The contrast coefficients for the four main effects and some of the interactions in such a cell-means

model were listed in Table 7.1, p. 208. The contrast coefficients for the interactions can be obtained

by multiplying together the corresponding main-effect coefficients. Each contrast is normalized by

dividing the coefficients by
√

�c2
i jkl/r =

√
16 rather than by the divisors of Table 7.1. For example,

the normalized BCD interaction contrast has coefficient list

1

4
[−1, 1, 1,−1, 1,−1,−1, 1,−1, 1, 1,−1, 1,−1,−1, 1 ] .

The least squares estimate of the normalized BCD interaction contrast is then

1

4
[−(0.2253) + (0.3160) + · · · − (0.9576) + (1.2122)] = −0.0300 .

The 15 normalized factorial contrast estimates are given in Table 7.6, and the half-normal probability

plot of these estimates is shown in Fig. 7.7, with the main effect estimates labeled. Observe that all the

estimates fall roughly on a straight line, except for the estimates for the main-effects of factors D, B,

and C . Hence, these three main effects appear to be nonnegligible.

In the construction of the half-normal probability plot, the contrasts must be scaled to have the

same variance, and normalization is one way to achieve this. When all factors have two levels, and

when the contrasts are written in terms of the treatment combination parameters as in Table 7.1, their

least squares estimators will all have the same variance, as long as the same divisor is used for every

contrast. A popular selection for divisor is v/2, which is the natural divisor for main-effect contrasts

comparing the average treatment combination effects at the two levels of a factor. Thus, rather than

using divisor
√

16 in Example 7.5.2, we could have used divisor v/2 = 8. If the divisor v/2 is used, the

estimators all have variance 4σ2/v. If no divisor is used, the estimators all have variance vσ2. As long

as the variances are all equal, the half-normal probability plot can be used to identify the important
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Table 7.6 Normalized contrast estimates for the drill advance experiment

Effect: A B C D

Estimate: 0.1129 0.5039 1.0027 0.2836

Effect: AB AC AD BC BD CD

Estimate: −0.0298 0.0090 0.0581 −0.0436 −0.0130 0.0852

Effect: ABC ABD ACD BCD ABCD

Estimate: 0.0090 0.0454 0.0462 −0.0300 0.0335

Fig. 7.7 Half-normal

probability plot of

normalized contrast

absolute estimates for the

drill advance experiment
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contrasts. In all other sizes of experiment, the contrast coefficients are not all ±1, and we recommend

that all contrasts be normalized so that their estimators all have variance σ2.

7.5.3 Analysis Using Confidence Intervals

In this section, an alternative to the half-normal probability plot is presented for the analysis of a

single replicate factorial experiment. As with the half-normal probability plot, we require a set of m

orthogonal contrasts and effect sparsity, and we make no assumptions as to which effects are negligible.

The procedure provides confidence intervals for the m contrasts with a simultaneous confidence level

of at least 100(1 − α)%. For the moment, we recode the treatment combinations as 1, 2, . . . , v, their

effects as τ1, τ2, . . . τv , and we generically denote each of the m contrasts by
∑

ciτi .

First, let d equal the integer part of (m + 1)/2, which is m/2 if m is even and is (m + 1)/2 if m

is odd. The method requires that there be at least d negligible effects (effect sparsity). In general, this

will be true if at least one of the factors has no effect on the response (and so does not interact with

any of the other factors) or if most of the higher-order interactions are negligible.

We take each of the m contrasts in turn. For the kth contrast
∑

ciτi , we calculate its least squares

estimate
∑

ci yi and its sum of squares ssck , using rules 10 and 12, p. 211. We then calculate

the quasi mean squared error msQk for the kth contrast by taking the average of the d smallest of

ssc1, . . . , ssck−1, ssck+1, . . . , sscm (that is, the smallest d contrast sums of squares ignoring the kth).

The Voss–Wang method gives simultaneous 100(1 − α)% confidence intervals for the m contrasts,

the confidence interval for the kth contrast being
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∑

ciτi ∈

⎛

⎝

∑

ci yi±wV

√

msQk

∑

i

c2
i

⎞

⎠ . (7.5.5)

The critical coefficients wV = vm,d,α are provided in Appendix A.11. The critical values vm,d,α were

obtained by Voss and Wang (1999) as the square root of the percentile corresponding to α in the

right-hand tail of the distribution of

V 2 = max
{

SSCk/MSQk

}

,

where the maximum is over k = 1, 2, . . . , m.

Example 7.5.3 Drill advance experiment, continued

Consider again the single replicate drill advance experiment of Examples 7.5.1 and 7.5.2 with four

factors having two levels each. We can find m = 15 orthogonal factorial contrasts, nine of which are

shown in Table 7.1, p. 208. The Voss–Wang method of simultaneous confidence intervals, described

above, is reasonably effective as long as there are at least d = 8 negligible contrasts in this set.

For an overall 95% confidence level, the critical coefficient is obtained from Appendix A.11 as

wV = v15,8,0.05 = 9.04. Selecting divisors v/2 = 8 for each contrast, we obtain the least squares

estimates in Table 7.7.

The sums of squares for the 15 contrasts are also listed in Table 7.7 in descending order. For the

contrasts corresponding to each of the seven largest sums of squares, the quasi mean squared error is

composed of the eight smallest contrast sums of squares; that is,

msQk = (0.0000808 + · · · + 0.0020571)/8 = 0.0009004 ,

and the minimum significant difference for each of these seven contrasts is

Table 7.7 Confidence interval information for the drill advance experiment

Effect ssck msQk Estimate msdk

C 1.0054957 0.0009004 0.5014 0.1356

B 0.2538674 0.0009004 0.2519 0.1356

D 0.0804469 0.0009004 0.1418 0.1356

A 0.0127483 0.0009004 0.0565 0.1356

CD 0.0072666 0.0009004 0.0426 0.1356

AD 0.0033767 0.0009004 0.0291 0.1356

ACD 0.0021374 0.0009004 0.0231 0.1356

ABD 0.0020571 0.0009105 0.0227 0.1364

BC 0.0019016 0.0009299 −0.0218 0.1378

ABCD 0.0011250 0.0010270 0.0168 0.1449

BCD 0.0008986 0.0010553 −0.0150 0.1468

AB 0.0008909 0.0010563 −0.0149 0.1469

BD 0.0001684 0.0011466 −0.0065 0.1531

ABC 0.0000812 0.0011575 0.0045 0.1538

AC 0.0000808 0.0011575 0.0045 0.1537
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msdk = v15,8,0.05

√

msQk (16/(8 × 8)) = (9.04)
√

0.0009004 × 0.25 ≈ 0.1356 .

The quasi mean squared errors for the contrasts corresponding to the eight smallest sums of squares are

modestly larger, leading to slightly larger minimum significant differences and correspondingly wider

intervals. All contrast estimates and minimum significant differences are summarized in Table 7.7.

The four largest contrast estimates in absolute value are 0.5014 for C , 0.2519 for B, 0.1418 for D,

and 0.0565 for A, giving the intervals

For C : 0.5014 ± 0.1356 = ( 0.3658, 0.6370) ,

For B : 0.2519 ± 0.1356 = ( 0.1163, 0.3875) ,

For D : 0.1418 ± 0.1356 = ( 0.0062, 0.2774) ,

For A : 0.0565 ± 0.1356 = (−0.0791, 0.1921) .

Thus, in the 95% simultaneous set, the intervals for the main-effect contrasts of C , B, and D exclude

zero and are declared to be the important effects. The intervals for A and for all of the interaction con-

trasts include zero, so we conclude that these contrasts are not significantly different from zero. Notice

that our conclusion agrees with that drawn from the half-normal probability plot. The benefit of the

Voss–Wang method is that we no longer need to guess which contrast estimates lie on the straight

line, and also that we have explicit confidence intervals for the magnitudes of the nonnegligible

contrasts. �

7.6 Using SAS Software

The analysis of experiments with three or more factors and at least one observation per cell uses the

same types of SAS commands as illustrated for two factors in Sect. 6.8. In Sect. 7.6.1, we illustrate the

additional commands needed to obtain a half-normal probability plot of the contrast estimates in the

drill advance experiment, and in Sect. 7.6.2, we illustrate computations for the Voss-Wang confidence

intervals. In Sect. 7.6.3, we show the complications that can arise when one or more cells are empty.

7.6.1 Half-Normal Probability Plots of Contrast Estimates

In Table 7.8, we show a SAS program for producing a half-normal probability plot similar to that of

Fig. 7.7, p. 223, but for the unnormalized contrast estimates of the drill advance experiment. The levels

of A, B, C , and D together with the responses ADVANCE are entered via the INPUT statement in the

first DATA statement. A log transformation is then taken so that the response Y used in the analysis is

the log of the units of drill advance. Note that the function LOG10() calculates log to the base 10,

whereas LOG() would calculate log to the base e, which is the more usual transformation. The coded

factor levels 1 and 2 are converted to contrast coefficients −0.5 and +0.5, respectively (e.g., A = A

- 1.5). These coefficients could have been entered directly via the INPUT statement, as shown in

Table 6.14, p. 184. The interaction coefficients are obtained by multiplication to also have values ±0.5

(e.g., AB = 2*A*B). The contrast coefficients are printed as columns similar to those in Table 7.1,

p. 208, but with values ±0.5.

The regression procedure, PROC REG, is used to compute regression coefficient estimates, which

are the desired contrast estimates. Though unnormalized, these estimates can be shown to have common

variance σ2/4. The option OUTEST outputs these contrast estimates to a new data set DRILL2, with

one row and many variables. Since the OUTEST option saves more variables than needed, a copy of

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 7.8 SAS program for a half-normal probability plot for the drill advance 24 experiment

DATA DRILL;

INPUT A B C D ADVANCE;

Y = LOG10(ADVANCE); * log to base 10;

* Compute contrast coefficients +/-0.5;

A = A - 1.5; B = B - 1.5; C = C - 1.5; D = D - 1.5;
AB = 2*A*B; AC = 2*A*C; AD = 2*A*D; BC = 2*B*C; BD = 2*B*D;

CD = 2*C*D;
ABC = 4*A*B*C; ABD = 4*A*B*D; ACD = 4*A*C*D; BCD = 4*B*C*D;
ABCD = 8*A*B*C*D;
LINES;
1 1 1 1 1.68
: : : : :
2 2 2 2 16.30

PROC PRINT;

* Compute coefficient estimates corresponding to each contrast,
* and output the estimates to a new data set named "drill2";
PROC REG OUTEST = DRILL2 NOPRINT;

MODEL Y = A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD;

* Keep only the variables containing effect estimates;
DATA DRIILL2; SET DRILL2; KEEP A--ABCD;

* Transpose the data set "drill2" to get the effect estimates in
* a new data set "drill3" under the variable name "est1";
PROC TRANSPOSE PREFIX = EST OUT = DRILL3;

* Compute absolute estimates and corresponding half-normal scores;
DATA DRILL3; SET DRILL3;

ABS_EST = ABS(EST1); * ABS_EST = 4*ABS(EST1) would normalize;
PROC SORT; BY ABS_EST;
DATA DRILL3; SET DRILL3; P = _N_/16; HP = 0.5*(1+P);

HNSCORE = PROBIT(HP);

* Generate high-resolution half-normal probability plot;
PROC SGPLOT;

SCATTER Y = ABS_EST X = HNSCORE;
TITLE "Half-Normal Probability Plot of Contrast Absolute Estimates";
YAXIS LABEL = "Absolute Estimate"; XAXIS LABEL = "Half-Normal Score";

DRILL2 is made which only keeps the variables with the contrast estimates. The NOPRINT option

suppresses printing of the procedure’s output. (See Chap. 8 for more information about regression.)

In order to be able to plot the estimates, we need them as the different values of a single variable.

This is achieved by PROC TRANSPOSE, which turns the single row of the data set DRILL2 into a

column in the new data set DRILL3. The resulting least squares estimates are listed as values of the

variable EST1. The absolute estimates are then computed and sorted. The absolute estimates could

have been normalized by multiplying by two, though we have not done so here.

In the final DATA step, the half-normal scores corresponding to the values of EST1 are calculated as

in (7.5.4) the PROBIT function being the inverse cumulative distribution function (cdf) of the standard

normal distribution. This final data set is then printed.

Finally, the last procedure in Table 7.8, the statistical graphics plotting procedure PROC SGPLOT,

draws a high resolution plot of the absolute contrast estimates versus the half-normal scores. Assuming

http://dx.doi.org/10.1007/978-3-319-52250-0_8
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Table 7.9 SAS program for the Voss–Wang method for the drill advance experiment

* Use the data set DRILL from the prior program;
DATA DRILL; SET DRILL;

* Fit complete model to obtain the m=15 effect sums of squares;
PROC GLM;

MODEL Y = A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD / SS1;

ODS select ModelANOVA ParameterEstimates;

* The models fit below depend on the results of the above GLM procedure;
* CIs for C, B, D, A, CD, AD, and ACD: compute estimates and standard
* errors by omitting the (other) d=8 effects with the 8 smallest SSs;
PROC GLM;

MODEL Y = C B D A CD AD ACD / SS1;
ODS select OverallANOVA ParameterEstimates;

* CI for ABD: compute est and stde by omitting d=8 other effects;
PROC GLM;

MODEL Y = C B D A CD AD ABD / SS1;
ODS select OverallANOVA ParameterEstimates;

* CI for BC: compute est and stde by omitting d=8 other effects;
PROC GLM;

MODEL Y = C B D A CD AD BC / SS1;
ODS select OverallANOVA ParameterEstimates;

* Continue as above for the six remaining effects;

effect sparsity, the nonnegligible contrasts are those whose estimates do not lie along a straight line

through the origin.

7.6.2 Voss–Wang Confidence Interval Method

The SAS program in Table 7.9 does most of the computations needed to obtain the Voss-Wang simul-

taneous confidence intervals (7.5.5) used for analysis of a single-replicate experiment (Sect. 7.5.3).

Using the data of the drill advance experiment, the program starts with the DRILL data set created in

the program in Table 7.8.

The first call of PROC GLM fits the complete model, providing the estimates and sum of squares

for each of the 15 effects, matching the values given in Table 7.7 (p. 224). While this is sufficient

information to facilitate applying the Voss-Wang method by hand, the rest of the program provides

additional useful computations based on the results of the first procedure call.

First though, a few comments regarding the calls of PROC GLM. With no CLASS statement, PROC
GLM fits a regression model, as did PROC REG in Sect. 7.6.1. Analogously, by again using contrast

coefficients ±0.5, the resulting regression coefficient estimates are again the desired contrast estimates

displayed in Table 7.7. The option SS1, while unnecessary, requests output of the Type I sums of

squares, thereby suppressing output of the matching Type III sums of squares. The output delivery

system statement ODS, also unnecessary, selectively limits output by ODS table name.

Now, given the results of the first call of PROC GLM, consider using SAS software for additional

computations for formula (7.5.5). For the kth effect, the corresponding quasi mean squared error msQk
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is most easily calculated as the error mean square obtained from the submodel that omits the terms

corresponding to the d smallest contrast sums of squares besides ssck . The second and subsequent calls

of PROC GLM illustrate these computations for some of the effects.

The second call of PROC GLM fits the model excluding the d = 8 effects with the smallest sums

of squares from the first call. This yields the value mse = msQk = 0.00090004 given in Table 7.7,

needed to compute the confidence intervals (7.5.5) for the other seven effects C , B, D, A, CD, AD

and ACD. Moreover, for each of these seven effects, the SAS software provides a standard error value

0.01500370. While this is not a standard error per se, since msQk is not an estimate of σ2, it is the

value of

√

msQk

∑

i c2
i in formula (7.5.5). The critical values vm,d,α for the Voss–Wang method are

not directly available through SAS, so the intervals must be completed by hand.

The third call of GLM provides the information to compute the confidence interval (7.5.5) for the

effect ABD. Since ABD had one of the eight smallest sums of squares, ABD is included in the model

in place of the term ACD that had the next smallest sum of squares. This call yields mse = msQk =
0.00091049, matching the value given in Table 7.7, and standard error value 0.01508716 for ABD.

Similarly, the fourth call of GLM provides the corresponding information to compute the confidence

interval (7.5.5) for the effect BC, and additional calls could be made for the six remaining effects.

7.6.3 Experiments with Empty Cells

We now illustrate the use of SAS software for the analysis of an experiment with empty cells. No

new SAS procedures or commands are introduced, but the empty cells can cause complications. For

illustration, we use the following experiment.

Example 7.6.1 Rail weld experiment

S. M. Wu (1964) illustrated the usefulness of two-level factorial designs using the data listed in the SAS

program of Table 7.10. Under investigation were the effects of three factors—ambient temperature (T ),

wind velocity (V ), and rail steel bar size (S)—on the ultimate tensile strength of welds. The factor levels

were 0◦ and 70 ◦F for temperature, 0 and 20 miles per hour for wind velocity, and 4/11 and 11/11 in. for

bar size, each coded as levels 1 and 2, respectively. Only six of the possible eight treatment combinations

were observed, but r = 2 observations were taken on each of these six.

Some SAS commands for analyzing the rail weld experiment are presented in Table 7.10. Notice

that rather than listing the two observations for each treatment combination on separate lines, we have

listed them as Y1 and Y2 on the same line. We have then combined the observations into the response

variable Y. The new variable REP, which will be ignored in the model, is merely a device to keep the

observations distinct. This method of input is often useful if the data have been stored in a table, with

the observations for the same treatment combinations listed side by side, as in Table 7.2, p. 216.

The three-way complete model is requested in the first call of PROC GLM in Table 7.10. The output

is shown in Fig. 7.8. With two cells empty, there are data on only six treatment combinations, so there

are only five degrees of freedom available for comparing treatments. This is not enough to measure the

three main effects, the three two-factor interactions, and the three-factor interaction. This is indicated in

the output, since two effects have zero degrees of freedom. The ESTIMATE statement for the contrast

under the first call of PROC GLM generates no output. Instead, it generates a note in the SAS log

indicating that the contrast is not estimable.

The only model that can be used is one that uses at most five degrees of freedom. Of course, this

should be anticipated ahead of time during step (g) of the checklist (Chap. 2). Figure 7.9 illustrates with

a solid ball at the corresponding corners of the cube the treatment combinations for which data are

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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collected. One might guess that the T V interaction effect is not estimable, since data are only collected

at three of the four combinations of levels of these two factors.

One possibility is to exclude from the complete model those interactions for which the Type I

degrees of freedom are zero, namely the TV and TVS interaction effects. The contrast coefficient lists

for the seven factorial effects are shown in Table 7.11. It is clear that the T and V contrasts are not

orthogonal to the TV interaction contrast, and that the S, TS, and VS contrasts are not orthogonal to

the TVS interaction contrast. Consequently, an incorrect omission of TV and TVS from the model will

bias the estimates of all the other contrasts. If we do decide to exclude both the TV and TVS interaction

effects, then the model is of the form

Yi jkl = μ + αi + β j + γk + (αγ)ik + (βγ) j i + ǫi jkl .

We illustrate analysis of this model using the second call of PROC GLM in Table 7.10. Some of the

output is shown in Fig. 7.10. The contrasts for T and V are not orthogonal to each other, but they can

be estimated (although with a small positive correlation). Similar comments apply to the S, TS, and

VS contrasts. None of the factorial effects appears particularly strong in Fig. 7.10.

The ESTIMATE statements under the second call of PROC GLM generate the information shown

in Fig. 7.10 for testing or constructing confidence intervals for the usual main effects and two-factor

interaction effects under the given model. �

Table 7.10 SAS program for the rail weld experiment with two empty cells

DATA;
INPUT T V S Y1 Y2;
REP = 1; Y = Y1; OUTPUT; * create SAS observation for y = y1;
REP = 2; Y = Y2; OUTPUT; * create SAS observation for y = y2;
LINES;
1 1 1 84.0 91.0
1 1 2 77.7 80.5
2 1 1 95.5 84.0
2 1 2 99.7 95.4
2 2 1 76.0 98.0
2 2 2 93.7 81.7

PROC PRINT;
VAR T V S REP Y;

* try to fit a 3-way complete model;
PROC GLM;

CLASS T V S;
MODEL Y = T | V | S;
ESTIMATE ’TEMPERATURE’ T -1 1;

* fit a sub-model using 5 degrees of freedom;
PROC GLM;

CLASS T V S;
MODEL Y = T V S T*S V*S;
ESTIMATE ’TEMPERATURE’ T -1 1;
ESTIMATE ’VELOCITY’ V -1 1;
ESTIMATE ’SIZE’ S -1 1;
ESTIMATE ’TEMPERATURE*SIZE’ T*S 1 -1 -1 1 / DIVISOR = 2;
ESTIMATE ’VELOCITY*SIZE’ V*S 1 -1 -1 1 / DIVISOR = 2;

Source Data are from Wu (1964). Copyright © 1964 American Welding Society. Reprinted with permission. (Reprinted

University of Wisconsin Engineering Experiment Station, Reprint 684)
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Fig. 7.8 Output from the

first call of PROC GLM for

the rail weld experiment

Fig. 7.9 Treatment

combinations included in

the design of the rail weld

experiment

111

121

122 222

221

211

212112

Table 7.11 Contrast coefficients for the observed treatment combinations (T.C.) in the rail weld experiment

TC T V TV S TS VS TVS

111 −1 −1 1 −1 1 1 −1

112 −1 −1 1 1 −1 −1 1

211 1 −1 −1 −1 −1 1 1

212 1 −1 −1 1 1 −1 −1

221 1 1 1 −1 −1 −1 −1

222 1 1 1 1 1 1 1
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Fig. 7.10 Output from the

second call of PROC GLM

7.7 Using R Software

The analysis of experiments with three or more factors and at least one observation per cell uses

the same types of R commands as illustrated for two factors in Sect. 6.9. In Sect. 7.7.1, we illustrate

the additional commands needed to obtain a half-normal probability plot of the normalized contrast

estimates in the drill advance experiment, and in Sect. 7.7.2, we illustrate computations for the Voss-

Wang confidence intervals. In Sect. 7.7.3, we show the complications that can arise when one or more

cells are empty.

7.7.1 Half-Normal Probability Plots of Contrast Estimates

In Table 7.12, we show an R program for producing a half-normal probability plot similar to that of

Fig. 7.7, p. 223, for the normalized contrast estimates of the drill advance experiment. The levels of A,

B, C , and D together with the responses Advance are read from file into the data set drill.data.

A log transformation is then taken so that the response y = log10(Advance) used in the analysis

is the log of the units of drill advance. Note that the function log10() calculates log to the base

10, whereas log() would calculate log to the base e, which is the more usual transformation. Also

in the second block of code, the coded factor levels 1 and 2 are converted to contrast coefficients −1

and +1, respectively, (e.g. for each factor, 2*(1) - 3 -> -1 and 2*(2) - 3 -> +1). These

coefficients could have been entered directly into and read directly from the data file.

In the second block of code, the linear model function lm fits the linear regression

model y ˜ A*B*C*D, saving the fitted model coefficient estimates and other information as model1.

The syntax A*B*C*D causes all main effect and interaction coefficients for A, B, C, and D to be

included in the model as regressors or predictors of y. The interaction coefficients are obtained by

multiplication to also have values ±1 (e.g., AB = A*B). The statement model1$coefficients

http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 7.12 R program for a half-normal probability plot for the drill advance 24 experiment

# Input data for A, B, C, D and Advance
drill.data = read.table("data/drill.advance.txt", header=T)
# Compute log advance, and convert levels 1 and 2 to coeff’s -1 and 1, resp.
drill.data = within(drill.data,

{ y = log10(Advance); A = 2*A-3; B = 2*B-3; C = 2*C-3; D = 2*D-3 })
head(drill.data, 3)

# Fit regression model with interactions to obtain estimates
model1 = lm(y ˜ A*B*C*D, data=drill.data)
model1$coefficients # Show estimates

# Generate half-normal plot of effect estimates
# install.packages("gplots")
library(gplots)
qqnorm.aov(model1, xlab="Half-Normal Scores",

ylab="Normalized Absolute Estimates")

displays the regression coefficient estimates which are half the value of the contrast estimates, including

the intercept estimate. (See Chap. 8 for more information about regression.)

The last block of code calls the qqnorm.aov function of the gplots package. This function

takes the estimates of the coefficients excluding the intercept, normalizes them, then generates the

desired half-normal plot, plotting the normalized absolute contrast estimates versus the half-normal

scores. Assuming effect sparsity, the nonnegligible contrasts are those whose estimates do not lie along

a straight line through the origin.

7.7.2 Voss–Wang Confidence Interval Method

The R program in Table 7.13 illustrates computation of the Voss-Wang simultaneous confidence inter-

vals (7.5.5) for analysis of a single-replicate experiment (Sect. 7.5.3), using the data of the drill advance

experiment. The levels of A, B, C , and D together with the responses Advance are read from file

into the data set drill.data, and the response y = log10(Advance)—the log base 10 of

Advance—is added to the data set. The levels of the factors A–D are then converted from 1 and 2 to

−1 and +1, respectively.

In the second block of code, the linear model function lm is used to fit the linear regression model

y ˜ A*B*C*D, saving the results as model1. The model is a regression model because the factors

are not factor variables (See Chap. 8). The syntax A*B*C*D causes all main effects and interactions

involving the variables A, B, C and D to be included in the model. The information saved includes

the regression coefficient estimate and corresponding Type I sum of square for each of the 15 effects.

The regression coefficients represent half the corresponding treatment effects of interest, because of

the use of contrast coefficients ± which are 2 units apart. The statement

estimate = 2*(model1$coefficients[2:16])

doubles the coefficient estimates to obtain the usual treatment contrast (effect) estimates (i.e. the

difference of two averages), discards the first coefficient estimate corresponding to the intercept, and

saves the 15 treatment contrast estimates as estimate. If one would display the analysis of variance

http://dx.doi.org/10.1007/978-3-319-52250-0_8
http://dx.doi.org/10.1007/978-3-319-52250-0_8
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Table 7.13 R program and output for the Voss–Wang method for the drill advance experiment

# Input data for A, B, C, D and Advance
drill.data = read.table("data/drill.advance.txt", header=T)
# Compute log advance, and convert levels 1 and 2 to coeff’s -1 and 1, resp.
drill.data = within(drill.data,

{ y = log10(Advance); A = 2*A-3; B = 2*B-3; C = 2*C-3; D = 2*D-3 })

# Fit regression model with interactions to get estimates and SS’s
model1 = lm(y ˜ A*B*C*D, data=drill.data)
# Save estimates, scaled to be difference of 2 averages
estimate = 2*(model1$coefficients[2:16])
# Save sums of squares for effects
SS = anova(model1)[1:15,2]
# Order estimates and SS’s in deceasing magnitude
estimate = estimate[rev(order(SS))]
SS = SS[rev(order(SS))]

# For each effect, compute msQ, stde, msd, and CIs
msQ = numeric(15) # A column with 15 cells
sse = sum(SS[8:15]) # sse = SS(8)+...+SS(15), a scalar
for(i in 1:7){msQ[i]=sse/8} # Compute msQ[1]--msQ[7]
for(i in 8:15){msQ[i] = (sse - SS[i] + SS[7])/8} # msQ[8]--msQ[15]
stde = sqrt(msQ/4); msd = 9.04*stde
LCL = estimate - msd; UCL = estimate + msd # CIs
# Display results to 5 decimal places
round( cbind(estimate, SS, msQ, stde, msd, LCL, UCL), digits=5)

estimate SS msQ stde msd LCL UCL
C 0.50137 1.00550 0.00090 0.01500 0.13563 0.36574 0.63701
B 0.25193 0.25387 0.00090 0.01500 0.13563 0.11629 0.38756
D 0.14182 0.08045 0.00090 0.01500 0.13563 0.00618 0.27745
A 0.05645 0.01275 0.00090 0.01500 0.13563 -0.07918 0.19209
C:D 0.04262 0.00727 0.00090 0.01500 0.13563 -0.09301 0.17826
A:D 0.02905 0.00338 0.00090 0.01500 0.13563 -0.10658 0.16469
A:C:D 0.02312 0.00214 0.00090 0.01500 0.13563 -0.11252 0.15875
A:B:D 0.02268 0.00206 0.00091 0.01509 0.13639 -0.11371 0.15907
B:C -0.02180 0.00190 0.00093 0.01525 0.13784 -0.15964 0.11603
A:B:C:D 0.01677 0.00113 0.00103 0.01602 0.14485 -0.12808 0.16162
B:C:D -0.01499 0.00090 0.00106 0.01624 0.14683 -0.16182 0.13184
A:B -0.01492 0.00089 0.00106 0.01625 0.14690 -0.16182 0.13198
B:D -0.00649 0.00017 0.00115 0.01693 0.15305 -0.15954 0.14656
A:B:C 0.00451 0.00008 0.00116 0.01701 0.15378 -0.14927 0.15828
A:C 0.00450 0.00008 0.00116 0.01701 0.15378 -0.14929 0.15828

table via the statement anova(model1), one would see that the sums of squares for the treatment

contrasts are in rows 1–15 of column 2 of the table. The statement

SS = anova(model1)[1:15,2]

saves these 15 sums of squares as the column SS. The last two statements in the second block of code

use the reverse order function rev(order()) to reorder the elements of estimate and SS to be

in decreasing order of magnitude. At this stage, the command cbind(estimate, SS) if given

would display the estimate and SS columns shown in the bottom of Table 7.13, where each row

corresponds to the contrast or effect identified by the row label.

The third block of code uses this information saved as estimate and SS to complete the com-

putations. First, msQ is defined to be a numeric column with 15 cells—one for each effect. To help
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compute the i th value msQ[i] for msQ, sse is assigned the value of the sum of the eight smallest

sums of squares. For the i th effect, msQ[i] is the average of the eight smallest sums of squares,

excluding the value SS[i] corresponding to the effect. The first for statement assigns the common

value msQ[i]=sse/8 to each of the first seven cells of msQ, since the corresponding effects do not

have sum of squares SS[i] in the smallest eight. The second for statement computes msQ[i] for

each of the last eight effects, i.e. for i = 8, . . . , 15, where msQ[i] for the i th effect excludes the

corresponding sum of squares SS[i] but includes the ninth smallest, SS[7]. The estimates were

scaled to correspond to estimators with variance σ2/4 so, using the quasi mean squared error msQ like

an estimate of σ2, the standard errors are estimated as stde = sqrt(msQ/4). While these are not

standard errors per se, they are the values of

√

msQk

∑

i c2
i in formula (7.5.5). So, for each effect, the

minimum significant difference is msd = 9.04*stde, where the critical value v15,8,0.05 = 9.04 is

obtained from Appendix A.11. The lower and upper confidence limit columns LCL and UCL are then

computed as estimate±msQ. Finally, the pertinent information is column-bound and displayed in

the bottom of Table 7.13, with values rounded to five decimal places.

7.7.3 Experiments with Empty Cells

We now illustrate the use of R software for the analysis of an experiment with empty cells. No new R

procedures or commands are introduced, but the empty cells can cause complications. For illustration,

we use the following experiment.

Example 7.7.1 Rail weld experiment

Wu (1964) illustrated the usefulness of two-level factorial designs using the data listed in Table 7.11.

Under investigation were the effects of three factors—ambient temperature (T ), wind velocity (V ),

and rail steel bar size (S)—on the ultimate tensile strength of welds. The factor levels were 0◦ and

70 ◦F for temperature, 0 and 20 miles per hour for wind velocity, and 4/11 and 11/11 in. for bar size,

each coded as levels 1 and 2, respectively. Only six of the possible eight treatment combinations were

observed, but r = 2 observations were taken on each of these six.

Some R commands for analyzing the rail weld experiment are presented in Table 7.14. In the first

block of code, the data are read from file into the data set rail.data, factor variables are added to

the data set, then three lines of data are displayed.

In the second block of code, an attempt is made to fit the three-way complete model, and lsmeans
is used in an attempt to estimate the main effect of temperature T. Partial output is shown in Table 7.15.

With two cells empty, there are data on only six treatment combinations, so there are only five degrees

of freedom available for comparing treatments. This is not enough to measure the three main effects,

the three two-factor interactions, and the three-factor interaction. This is indicated by the analysis of

variance table, since it includes only five degrees of freedom for effects, with the effects fT:fS and

fT:fV:fS unlisted. Also, the estimate of the least squares mean for T = 1 is listed as not applicable

(NA) because it is not estimable, due to the lack of data at two of the four VS combinations at level 1

of T . Consequently, the command

summary(contrast(lsmT, list(T=c(-1,1))), infer=c(T,T))

is also non-applicable so generates no output.

To estimate contrasts, one must use a model with at most five estimable degrees of freedom. Of

course, this should be anticipated ahead of time during step (g) of the checklist (Chap. 2). Figure 7.9

(p. 230) illustrates with a solid ball at the corresponding corners of the cube the treatment combinations

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 7.14 R program for the rail weld experiment with two empty cells

# Input data for T V S y
rail.data = read.table("data/rail.weld.txt", header=T)
# Create factor variables, then display first 3 lines of rail.data
rail.data = within(rail.data,

{ fT = factor(T); fV = factor(V); fS = factor(S) })
head(rail.data, 3)

# Try to fit a 3-way complete model
model1 = aov(y ˜ fT*fV*fS, data=rail.data); anova(model1)
# See main effects non-estimable under complete model if empty cells
library(lsmeans)
lsmT = lsmeans(model1, ˜ fT)
lsmT; summary(contrast(lsmT, method="pairwise"), infer=c(T,T))

# Fit a model using 5 degrees of freedom
options(contrasts=c("contr.sum","contr.poly"))
model2 = aov(y ˜ fT + fV + fS + fT:fS + fV:fS, data=rail.data)
anova(model2) # Type I ANOVA
drop1(model2, ˜., test="F") # Type III ANOVA

# Estimate main effects of T, V, and S
lsmT = lsmeans(model2, ˜ fT); lsmT
summary(contrast(lsmT, method="pairwise"), infer=c(T,T))
lsmV = lsmeans(model2, ˜ fV); lsmV
summary(contrast(lsmV, method="pairwise"), infer=c(T,T))
lsmS = lsmeans(model2, ˜ fS); lsmS
summary(contrast(lsmS, method="pairwise"), infer=c(T,T))

# Estimating interaction contrasts
lsmTS = lsmeans(model2, ˜ fT:fS); lsmTS
summary(contrast(lsmTS, list(TS=c(1,-1,-1,1)/2)), infer=c(T,T))
lsmVS = lsmeans(model2, ˜ fV:fS); lsmVS
summary(contrast(lsmVS, list(VS=c(1,-1,-1,1)/2)), infer=c(T,T))

# Multiple comparisons of treatment combinations
summary(contrast(lsmTS, method="pairwise"), infer=c(T,T))

Source Data is from Wu (1964). Copyright © 1964 American Welding Society. Reprinted with permission. (Reprinted

University of Wisconsin Engineering Experiment Station, Reprint 684)

for which data are collected. One might guess that the T V interaction effect is not estimable, since

data are only collected at three of the four combinations of levels of these two factors.

One possibility is to exclude from the complete model those interactions for which the type I degrees

of freedom are zero, namely the TV and TVS interaction effects. The contrast coefficient lists for the

seven factorial effects are shown in Table 7.16. It is clear that the T and V contrasts are not orthogonal

to the TV interaction contrast, and that the S, TS, and VS contrasts are not orthogonal to the TVS

interaction contrast. Consequently, the incorrect omission of TV and TVS from the model will bias the

estimates of all the other contrasts. If we do decide to exclude both the TV and TVS interaction effects,

then the model is of the form

Yi jkl = μ + αi + β j + γk + (αγ)ik + (βγ) j i + ǫi jkl .

We illustrate analysis of this model beginning with the third block of code in Table 7.14. The aov

function fits the above model, saving the results as model2. The options statement imposes “sum
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Table 7.15 Output from 3-way complete model for the rail weld experiment

> # Try to fit a 3-way complete model
> model1 = aov(y ˜ fT*fV*fS, data=rail.data); anova(model1)

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

fT 1 138 138.2 1.99 0.21
fV 1 79 79.4 1.14 0.33
fS 1 0 0.0 0.00 0.99
fT:fS 1 107 106.7 1.53 0.26
fV:fS 1 25 25.2 0.36 0.57
Residuals 6 418 69.6

> library(lsmeans)
> lsmT = lsmeans(model1, ˜ fT)

NOTE: Results may be misleading due to involvement in interactions

> lsmT

fT lsmean SE df lower.CL upper.CL
1 NA NA NA NA NA
2 90.5 2.9502 6 83.281 97.719

Results are averaged over the levels of: fV, fS
Confidence level used: 0.95

Table 7.16 Contrast coefficients for the observed treatment combinations (TC) in the rail weld experiment

TC T V TV S TS VS TVS

111 −1 −1 1 −1 1 1 −1

112 −1 −1 1 1 −1 −1 1

211 1 −1 −1 −1 −1 1 1

212 1 −1 −1 1 1 −1 −1

221 1 1 1 −1 −1 −1 −1

222 1 1 1 1 1 1 1

to zero" constraints on least squares estimates as needed to generate the correct Type III analysis

of variance. The anova and drop1 statements generate Type I and Type III analyses, respectively,

shown in the top of Table 7.17.

The contrasts for T and V are not orthogonal to each other, but they can be estimated (although with

a small positive correlation). Similar comments apply to the S, TS, and VS contrasts. The lsmeans,

summary, and contrast statements of the lsmeans package are used to estimate least square

means and contrasts, and also for multiple comparisons of the levels of a factor or the combinations of

levels of multiple factors. Appropriate syntax is illustrated by the last three blocks of code in Table 7.14.

Sample output for factor T , including least squares means and the pairwise contrast, is given in the

bottom of Table 7.17.
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Table 7.17 Partial output from the second call of aov

> anova(model2) # Type I ANOVA

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

fT 1 138 138.2 1.99 0.21

fV 1 79 79.4 1.14 0.33

fS 1 0 0.0 0.00 0.99

fT:fS 1 107 106.7 1.53 0.26

fV:fS 1 25 25.2 0.36 0.57

Residuals 6 418 69.6

> drop1(model2, ˜., test="F") # Type III ANOVA

Single term deletions

Model:
y ˜ fT + fV + fS + fT:fS + fV:fS

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 418 54.6
fT 1 214.2 632 57.6 3.08 0.13
fV 1 79.4 497 54.7 1.14 0.33
fS 1 29.6 447 53.4 0.43 0.54
fT:fS 1 131.2 549 55.9 1.88 0.22
fV:fS 1 25.2 443 53.3 0.36 0.57

> lsmT = lsmeans(model2, ˜ fT); lsmT

fT lsmean SE df lower.CL upper.CL
1 80.15 5.1100 6 67.646 92.654
2 90.50 2.9502 6 83.281 97.719

Results are averaged over the levels of: fV, fS
Confidence level used: 0.95

> summary(contrast(lsmT, method="pairwise"), infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 -10.35 5.9005 6 -24.788 4.088 -1.754 0.1300

Results are averaged over the levels of: fV, fS
Confidence level used: 0.95

Consistent with the results of the Type III analysis of variance, none of the contrasts estimates

generated by the R program in Table 7.14 would appear particularly strong, (only one is shown in

Table 7.14). �

Exercises

1. For the following hypothetical data sets of Sect. 7.2.2 reproduced below, draw interaction plots to

evaluate the BC and ABC interaction effects, with levels of B on the horizontal axis and levels of C
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for labels. In each case, comment on the apparent presence or absence of BC and ABC interaction

effects.

(a) i jk : 111 112 121 122 211 212 221 222 311 312 321 322

yi jk. : 3.0 4.0 1.5 2.5 2.5 3.5 3.0 4.0 3.0 4.0 1.5 2.5

(b) i jk : 111 112 121 122 211 212 221 222 311 312 321 322

yi jk. : 3.0 2.0 1.5 4.0 2.5 3.5 3.0 4.0 3.0 5.0 3.5 6.0

2. In planning a five-factor experiment, it is determined that the factors A, B, and C might interact

and the factors D and E might interact but that no other interaction effects should be present.

Draw a line graph for this experiment and give an appropriate model.

3. Consider an experiment with four treatment factors, A, B, C , and D, at a, b, c, and d levels,

respectively, with r observations per treatment combination. Assume that the four-way complete

model is a valid representation of the data. Use the rules of Sect. 7.3 to answer the following.

(a) Find the number of degrees of freedom associated with the AC interaction effect.

(b) Obtain an expression for the sum of squares for AC.

(c) Give a rule for testing the hypothesis that the AC interaction is negligible against the alternative

hypothesis that it is not negligible. How should the results of the test be interpreted, given the

other terms in the model?

(d) Write down a contrast for measuring the AC interaction. Give an expression for its least squares

estimate and associated variance.

(e) Give a rule for testing the hypothesis that your contrast in part (d) is negligible.

4. Popcorn–microwave experiment, continued

In the popcorn–microwave experiment of Sect. 7.4 (p. 213), the experimenters studied the effects

of popcorn brand, microwave oven power, and cooking time on the percentage of popped kernels in

packages of microwave popcorn. Suppose that, rather than using a completely randomized design,

the experimenters first collected all the observations for one microwave oven, followed by all

observations for the other microwave oven. Would you expect the assumptions on the three-way

complete model to be satisfied? Why or why not?

5. Weathering experiment

An experiment is described in the paper “Accelerated weathering of marine fabrics”(Moore, M. A.

and Epps, H. H., Journal of Testing and Evaluation 20, 1992, 139–143). The purpose of the

experiment was to compare the effects of different types of weathering on the breaking strength

of marine fabrics used for sails. The factors of interest were

F : Fabric at 3 levels (1 = polyester, 2 = acrylic, 3 = nylon).

E : Exposure conditions (1 = continuous light at 62.7 ◦C, 2 = alternating 30 min light and 15 min

condensation).

A: Exposure levels (1 = 1200 AFU, 2 = 2400 AFU, 3 = 3600 AFU).

D: Direction of cut of the fabric (1 = warp direction, 2 = filling direction).

In total there were v = 3×2×3×2 = 36 treatment combinations, and r = 2 observations were taken

on each. The response variable was “percent change in breaking strength of fabric after exposure to

weathering conditions.” The average response for each of the 36 treatment combinations is shown

in Table 7.18. The error mean square was calculated to be 6.598 with 36 degrees of freedom.
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Table 7.18 Percent change in breaking strength of fabrics after exposure

Exposure AFU Direction Fabric (F)

(E) (A) (D) 1 2 3

1 1 1 −43.0 −1.7 −74.7

2 −46.1 +11.7 −86.7

2 1 −45.3 −4.2 −87.9

2 −51.3 +10.0 −97.9

3 1 −53.3 −5.1 −98.2

2 −54.5 +7.5 −100.0

2 1 1 −48.1 −6.8 −85.0

2 −43.6 −3.3 −91.7

2 1 −52.3 −4.2 −100.0

2 −53.8 −3.3 −100.0

3 1 −56.5 −5.9 −100.0

2 −56.4 −6.7 −100.0

Source Moore and Epps (1992). Copyright © ASTM. Reprinted with permission

(a) How would you decide whether or not the error variables have approximately the same variance

for each fabric?

(b) Using the cell-means model, test the hypothesis H0 : [τ1 = · · · = τ36] against the alternative

hypothesis HA : [at least two τi ’s differ]. What can you conclude?

(c) Write down a contrast in the treatment combinations that compares the polyester fabric with

the nylon fabric. Is your contrast estimable?

(d) If your contrast in (c) is estimable, give a formula for the least squares estimator and its

variance. Otherwise, go to part (e).

(e) Assuming that you are likely to be interested in a very large number of contrasts and you

want your overall confidence level to be 95%, calculate a confidence interval for any pairwise

comparison of your choosing. What does the interval tell you?

(f) Calculate a 90% confidence bound for σ2.

(g) If you were to repeat this experiment and you wanted your confidence interval in (e) to be of

length at most 20%, how many observations would you take on each treatment combination?

6. Weathering experiment, continued

Suppose you were to analyze the weathering experiment described in Exercise 5 using a four-way

complete model.

(a) What conclusions can you draw from the analysis of variance table?

(b) Give an explicit formula for testing that the FA-interaction is negligible.

(c) Would confidence intervals for differences in fabrics be of interest? If not, why not? If so, how

would they be interpreted? Give a formula for such confidence intervals assuming that these

intervals are preplanned and are the only intervals envisaged, and the overall level is to be at

least 99%.

(d) In the original paper, the authors write “Fabric direction (D) had essentially no effect on

percent change in breaking strength for any of the fabrics." Do you agree with this statement?

Explain.
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Table 7.19 Data for the coating experiment

A 2 2 2 2 2 2 2 2

B 2 2 2 2 1 1 1 1

C 2 2 1 1 2 2 1 1

D 2 1 2 1 2 1 2 1

yi jkl 5.95 4.57 4.03 2.17 3.43 1.02 4.25 2.13

A 1 1 1 1 1 1 1 1

B 2 2 2 2 1 1 1 1

C 2 2 1 1 2 2 1 1

D 2 1 2 1 2 1 2 1

yi jkl 12.28 9.57 6.73 6.07 8.49 4.92 6.95 5.31

Source Data adapted from Saravanan et al. (2001). Published by the Journal of Physics D: Applied Physics

7. Coating experiment

P. Saravanan, V. Selvarajan, S. V. Joshi, and G. Sundararajan (2001, Journal of Physics D: Applied

Physics) described an experiment to study the effect of different spray parameters on thermal

spray coating properties. In the experiment, the authors attempted to produce high-quality alumina

(Al2O3) coatings by controlling the fuel ratio (factor A at 1:2.8 and 1:2.0), carrier gas flow rate

(factor B at 1.33 and 3.21 L s−1), frequency of detonations (factor C at 2 and 4 Hz), and spray

distance (factor D at 180 and 220 mm). To quantify the quality of the coating, the researchers

measured multiple response variables. In this example we will examine the porosity (vol. %). The

data are shown in Table 7.19.

(a) Assuming that 3- and 4-factor interactions are negligible, outline an analysis that you would

wish to perform for such an experiment (step (g) of the checklist; see Chap. 2).

(b) Check the assumptions on your model.

(c) Carry out the analysis that you outlined in part (a), including drawing any interaction plots

that may be of interest. State your conclusions clearly.

8. Paper towel strength experiment

Burt Beiter, Doug Fairchild, Leo Russo, and Jim Wirtley, in 1990, ran an experiment to compare

the relative strengths of two similarly priced brands of paper towel under varying levels of moisture

saturation and liquid type. The treatment factors were “amount of liquid” (factor A, with levels 5

and 10 drops coded 1 and 2), “brand of towel” (factor B, with levels coded 1 and 2), and “type of

liquid” (factor C , with levels “beer” and “water” coded 1 and 2). A 2 × 2 × 2 factorial experiment

with r = 3 was run in a completely randomized design. The resulting data, including run order,

are given in Table 7.20.

(a) The experimenters assumed only factors A and B would interact. Specify the corresponding

model.

(b) List all treatment contrasts that are likely to be of primary interest to the experimenters.

(c) Use residual plots to evaluate the adequacy of the model specified in part (a).

(d) Provide an analysis of variance table for this experiment, test the various effects, show plots

of significant main effects and interactions, and draw conclusions.

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 7.20 Data for paper towel strength experiment: A = “amount of liquid,” B = “brand of towel,” and C = “liquid

type”

ABC Strength (Order) Strength (Order) Strength (Order)

111 3279.0 (3) 4330.7 (15) 3843.7 (16)

112 3260.8 (11) 3134.2 (20) 3206.7 (22)

121 2889.6 (5) 3019.5 (6) 2451.5 (21)

122 2323.0 (1) 2603.6 (2) 2893.8 (14)

211 2964.5 (4) 4067.8 (10) 3327.0 (18)

212 3114.2 (12) 3009.3 (13) 3242.0 (19)

221 2883.4 (9) 2581.4 (23) 2385.9 (24)

222 2142.3 (7) 2364.9 (8) 2189.9 (17)

Table 7.21 Thrust duration (in seconds) for the rocket experiment

C0 C1

A B D0 D1 D2 D3 D0 D1 D2 D3

0 0 21.60 11.54 19.09 13.11 21.60 11.50 21.08 11.72

0 1 21.09 11.14 21.31 11.26 22.17 11.32 20.44 12.82

1 0 21.60 11.75 19.50 13.72 21.86 9.82 21.66 13.03

1 1 19.57 11.69 20.11 12.09 21.86 11.18 20.24 12.29

Total 83.86 46.12 80.01 50.18 87.49 43.82 83.42 49.86

Source Wood and Hartvigsen (1973). Copyright © 1964 American Society for Quality. Reprinted with permission

(e) Construct confidence intervals for each of the treatment contrasts that you listed in part (b),

using an appropriate method of multiple comparisons. Discuss the results.

9. Rocket experiment

S. R. Wood and D. E. Hartvigsen describe an experiment in the 1964 issue of Industrial Quality

Control on the testing of an auxiliary rocket engine. According to the authors, the rocket engine

must be capable of satisfactory operation after exposure to environmental conditions encountered

during storage, transportation, and the in-flight environment. Four environmental factors were

deemed important. These were vibration (Factor A; absent, present, coded 0, 1), temperature

cycling (Factor B; absent, present, coded 0, 1), altitude cycling (Factor C ; absent, present, coded

0, 1) and firing temperature/altitude (Factor D, 4 levels, coded 0, 1, 2, 3). The response variable

was “thrust duration,” and the observations are shown in Table 7.21, where Ck and Dl denote the

kth level of C and the lth level of D, respectively.

The experimenters were willing to assume that the 3-factor and 4-factor interactions were negli-

gible.

(a) State a reasonable model for this experiment, including any assumptions on the error term.

(b) How would you check the assumptions on your model?

(c) Calculate an analysis of variance table and test any relevant hypotheses, stating your choice

of the overall level of significance and your conclusions.

(d) Levels 0 and 1 of factor D represent temperatures −75◦F and 170◦F, respectively at sea level.

Level 2 of D represents −75◦F at 35,000 ft. Suppose the experimenters had been interested in



242 7 Several Crossed Treatment Factors

Table 7.22 Manganese data for the spectrometer experiment

A1 A2 A3

C D E B1 B2 B1 B2 B1 B2

1 1 1 0.9331 0.9214 0.8664 0.8729 0.8711 0.8627

1 1 2 0.9253 0.9399 0.8508 0.8711 0.8618 0.8785

1 2 1 0.8472 0.8417 0.7948 0.8305 0.7810 0.8009

1 2 2 0.8554 0.8517 0.7810 0.7784 0.7887 0.7853

2 1 1 0.9253 0.9340 0.8879 0.8729 0.8618 0.8692

2 1 2 0.9301 0.9272 0.8545 0.8536 0.8720 0.8674

2 2 1 0.8435 0.8674 0.7879 0.8009 0.7904 0.7793

2 2 2 0.8463 0.8526 0.7784 0.7863 0.7939 0.7844

3 1 1 0.9146 0.9272 0.8769 0.8683 0.8591 0.8683

3 1 2 0.9399 0.9488 0.8739 0.8729 0.8729 0.8481

3 2 1 0.8499 0.8417 0.7893 0.8009 0.7893 0.7904

3 2 2 0.8472 0.8300 0.7913 0.7904 0.7956 0.7827

Total 10.6578 10.6836 9.9331 9.9991 9.9376 9.9172

Source Inman et al. (1992). Reprinted with Permission from Journal of Quality Technology © 1992 ASQ, www.asq.org

two preplanned contrasts. The first compares the effects of levels 0 and 1 of D, and the second

compares the effects the levels 0 and 2 of D. Using an overall level of at least 98%, give a set

of simultaneous confidence intervals for these two contrasts.

(e) Test the hypotheses that each contrast identified in part (d) is negligible. Be explicit about

which method you are using and your choice of the overall level of significance.

(f) If the contrasts in part (d) had not been preplanned, would your answer to (d) have been

different? If so, give the new calculations.

(g) Although it may not be of great interest in this particular experiment, draw an interaction plot

for the CD interaction and explain what it shows.

(h) If the experimenters had included the 3-factor and 4-factor interactions in the model, how

could they have decided upon the important main effects and interactions?

10. Spectrometer experiment

A study to determine the causes of instability of measurements made by a Baird spectrometer

during production at North Star Steel Iowa was reported by J. Inman, J. Ledolter, R. V. Lenth, and

L. Niemi in the Journal of Quality Technology in 1992. A brainstorming session with members of

the Quality Assurance and Technology Department of the company produced a list of five factors

that could be controlled and could be the cause of the observed measurement variability. The

factors and their selected experimental levels were:

A: Temperature of the lab. (67◦, 72◦, 77◦).

B: Cleanliness of entrance window seal (clean, one week’s use).

C: Placement of sample (sample edge tangential to edge of disk, sample completely covering

disk, sample partially covering disk).

D: Wear of boron nitride disk (new, one month old).

E: Sharpness of counter electrode tip (newly sharpened, one week’s wear).

Spectrometer measurements were made on several different elements. The manganese measure-

ments are shown in Table 7.22, where Ai and B j denote the i th level of A and the j th level of B,

www.asq.org
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respectively. The experimenters were willing to assume that the 4-factor and 5-factor interactions

were negligible.

(a) Test any relevant hypotheses, at a 0.05 overall level of significance, and state your conclusions.

(b) Draw an interaction plot for the AE interaction. Does the plot show what you expected it to

show? Why or why not? (Mention AE , A, and E .)

(c) The spectrometer manual recommends that the placement of the sample be at level 2. Using

level 2 as a control level, give confidence intervals comparing the other placements with the

control placement. You may assume that these comparisons were preplanned. State which

method you are using and give reasons for your choice. Use an overall confidence level of at

least 98% for these two intervals.

(d) Test the hypotheses of no linear and quadratic trends in the manganese measurements due to

temperature. Use a significance level of 0.01 for each test.

11. Antifungal antibiotic experiment

M. Gupte and P. Kulkarni (2003, Journal of Chemical Technology and Biotechnology) described

an experiment to maximize the yield of an antifungal antibiotic from the isolate Thermomonospora

sp MTCC 3340. The researchers examined the effect of the three factors temperature of incubation

(factor A at 25, 30, and 37 C), concentration of carbon (factor B at 2, 5, and 7.5%), and concentration

of nitrogen (factor C at 0.5, 1, and 3%) on the antifungal yield which was measured in terms of

activity against Candida albicans, a type of fungus that can be detrimental to humans. The data

are shown in Table 7.23.

(a) Construct appropriate plots to assess whether any of the main effects seem to have a significant

effect on the response. What do you conclude?

(b) What assumption regarding interactions did you make while drawing your conclusion in part

(a)?

(c) Construct an appropriate plot to asses the significance of two-way interactions. Do any two-

way interactions seem to have a significant effect on the response? If so, does this affect your

conclusions from part (c)?

(d) Suppose there is reason to believe that the three factors do not jointly interact. Fit a model that

includes all main effects and two-way interactions. What effects do you find to be significant?

How does this compare with your conjectures from part (c)?

(e) Do the assumptions of normality and equal error variances hold for the model considered in

part (d)? Are there any outliers?

12. Antifungal antibiotic experiment, continued

Consider the data from Table 7.23, but without assuming that the three-factor interaction is neg-

ligible. Also, for the purposes of this particular exercise, we change the third levels of factors A

and B to be 35 and 8, respectively, so that their levels are equally spaced.

(a) Make a table similar to that of Table 7.1, p. 208, with the first column containing the 27

treatment combinations for the antifungal antibiotic experiment in ascending order. List the

contrast coefficients for the main effect trend contrasts: Linear A, Quadratic A, Linear B, and

Quadratic B. Also list the contrast coefficients for the interaction trend contrasts Linear A×
Linear B, Linear A× Quadratic B, Quadratic A× Linear B, Quadratic A× Quadratic B.
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Table 7.23 Data for the antifungal antibiotic experiment

A 1 1 1 1 1 1 1 1 1

B 1 1 1 2 2 2 3 3 3

C 1 2 3 1 2 3 1 2 3

yi jk 25.84 51.86 32.59 20.48 25.84 12.87 20.48 25.84 10.20

A 2 2 2 2 2 2 2 2 2

B 1 1 1 2 2 2 3 3 3

C 1 2 3 1 2 3 1 2 3

yi jk 51.86 131.33 41.11 41.11 104.11 32.59 65.42 82.53 51.86

A 3 3 3 3 3 3 3 3 3

B 1 1 1 2 2 2 3 3 3

C 1 2 3 1 2 3 1 2 3

yi jk 41.11 104.11 32.59 32.59 82.53 25.84 51.86 65.42 41.11

Source Gupte and Kulkarni (2003). Journal of Chemical Technology and Biotechnology Published by John Wiley and

Sons. Reprinted with permission

(b) What divisors are needed to normalize each of the contrasts? Calculate, by hand, the least

squares estimates for the normalized contrasts Linear A and Quadratic A.

(c) The levels of C are not equally spaced. Select two orthogonal contrasts that compare the levels

of C and add these to your table in part (a).

(d) Use a computer program (similar to that of Table 7.8 or 7.12) to calculate the least squares

estimates of a complete set of 26 orthogonal normalized contrasts that measure the main effects

of A, B, and C and their interactions. Prepare a half-normal probability plot of the 26 contrast

estimates. Explain what you can conclude from the plot.

(e) Use the method of Voss and Wang (Sect. 7.5.3) to examine a complete set of 26 orthogonal

normalized contrasts that measure the main effects of A, B, and C and their interactions.

Compare your conclusions with those obtained from part 12.

13. Paper towel experiment, continued

Consider the paper towel strength experiment of Exercise 8. Suppose that only the first ten obser-

vations had been collected. These are labeled (1)–(10) in Table 7.20, p. 240.

(a) Is it possible to perform an analysis of variance of these data, using a model that includes main

effects and the AB interaction as required by the experimenters? If so, analyze the experiment.

(b) Use a computer program to fit a three-way complete model. Can all of the main effects and

interactions be measured? If not, investigate which models could have been used in the analysis

of such a design with two empty cells and unequal numbers of observations in the other cells.

14. Abrasive wear experiment

To improve the characteristics of some metals, scientists combine them with another metal or

element. The resulting mixture is called an alloy. Alloys are widely used in engineering applications

in order to reduce cost, improve physical or chemical properties of materials, etc. O. P. Modi, R.

P. Yadav, D. P. Mondal, R. Dasgupta, S. Das, and A. H. Yegneswaran (2001, Journal of Materials

Science) described an experiment to study the effects of three factors on the wear rate (m3/m) of a

zinc-aluminum alloy. The three factors were sliding distance (factor A at 25 and 125 m), applied
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Table 7.24 Data for the abrasive wear experiment

A 1 1 1 1 2 2 2 2

B 1 1 2 2 1 1 2 2

C 1 2 1 2 1 2 1 2

yi jk 0.049 0.041 0.220 0.358 0.044 0.030 0.133 0.192

Source Data adapted from Modi et al. (2001), Journal of Materials Science. Published by Kluwer Academic Publishers

load (factor B at 1 and 7 N), and abrasive size (factor C at 23 and 275 μm). The data were run in

a random order and are listed in Table 7.24.

(a) Calculate the least squares estimates for a set of seven orthogonal contrasts, measuring the

main effects and interactions of the three factors.

(b) Draw a half-normal probability plot of the seven contrast estimates. Although m = 7 contrasts

is too few to be able to draw good conclusions about the main effects and interactions, which

contrasts should be investigated in more detail later?

(c) Use the Voss–Wang procedure to examine the seven contrasts used in part (b).

(d) Based on parts (b) and (c), what conclusions can you draw about the effects of the three factors?

15. Steel bar experiment

Baten (1956, Industrial Quality Control) described an experiment that investigated the cause of

variability of the length of steel bars in a manufacturing process. Each bar was processed with one

of two different heat treatments (factor A, levels 1, 2) and was cut on one of four different screw

machines (factor B, levels 1, 2, 3, 4) at one of three different times of day (factor C , levels 8 am,

11 am, 3 pm, coded 1, 2, 3). There were considerable differences in the lengths of the bars after

cutting, and a purpose for this experiment was to try to determine whether there were assignable

causes for this variation.

(a) Discuss possible ways to design and analyze this experiment, but assume that it needs to be

run in a working factory. In your discussion, consider using

(i) a completely randomized design,

(ii) a randomized block design,

(iii) a design with times of day (factor C) regarded as a block factor,

(b) The randomization employed by the experimenter is not specified in the published article, and

we proceed as though it were run as a completely randomized design with the three factors A,

B, and C described above. List some of the sources of variation that must have been deemed

as minor and ignored.

(c) The data that were collected by the experimenter are shown in Table 7.25. There are r = 4

observations on each of the v = 24 treatment combinations. The data values are “yi jkt =
(length − 4.38) × 1000 in.” Check the assumptions on the three-way complete model for

these data. (You may wish to remove an outlier). If the assumptions are satisfied, calculate an

analysis of variance table. What are your conclusions?

(d) The desired length for each bar was 4.385±0.005 in., which means that the desired value for

the response yi jkt is 5 units. Calculate confidence intervals for the true mean lengths of the

bars cut on the four machines. Which machines appear to give bars closest to specification?
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Table 7.25 Data for the steel bar experiment

ABC y1 jk1 y1 jk2 y1 jk3 y1 jk4 ABC y2 jk1 y2 jk2 y2 jk3 y2 jk4

111 6 9 1 3 211 4 6 0 1

112 6 3 1 −1 212 3 1 1 −2

113 5 4 9 6 213 6 0 3 7

121 7 9 5 5 221 6 5 3 4

122 8 7 4 8 222 6 4 1 3

123 10 11 6 4 223 8 7 10 0

131 1 2 0 4 231 −1 0 0 1

132 3 2 1 0 232 2 0 −1 1

133 −1 2 6 1 233 0 −2 4 −4

141 6 6 7 3 241 4 5 5 4

142 7 9 11 6 242 9 4 6 3

143 10 5 4 8 243 4 3 7 0

Source Baten (1956). Copyright 1956 American Society for Quality. Reprinted with permission

16. Ice melting experiment

An experiment to gain a better understanding of the role of various substances in melting ice was

run in 2004 by Shuangling He, Mimi Lou, Xiaozhou Xiong, Li Yu, and Yihong Zhao. For each

observation, a 10 ml block of ice was placed into water containing a given concentration of sugar,

or salt, or a sugar and salt mix. The melting time for the ice block was measured in seconds and

then converted to minutes. The three factors of interest were shape of ice block (factor A with

levels 1 - lozenge, 2 - cylinder, and 3 - cube), solute (factor B with levels 1 - sugar, 2 - salt, and

3 - equal parts sugar and salt), and concentration (factor C at 5%, 10% 15%, 20%; coded 1, 2, 3, 4).

The experiment was run as a completely randomized design and the resulting data are shown in

Table 7.26. There are two observations on each treatment combination.

Table 7.26 Data (in minutes) for the ice melting experiment

Concentration Lozenge

Sugar Salt Sugar/Salt

5% 54.25 53.33 37.17 37.50 42.75 43.83

10% 52.50 52.25 28.33 28.83 39.33 40.00

15% 47.25 48.00 21.17 21.33 35.83 37.00

20% 43.83 44.33 15.50 16.33 25.50 26.17

Concentration Cylinder

Sugar Salt Sugar/Salt

5% 87.00 85.83 64.33 62.83 76.50 77.17

10% 83.50 82.00 51.83 51.50 67.08 67.33

15% 78.50 79.50 36.00 37.33 55.50 55.67

20% 69.00 67.83 25.00 25.50 45.83 46.50

Concentration Cube

Sugar Salt Sugar/Salt

5% 65.83 65.00 54.00 53.17 55.17 54.83

10% 61.83 62.50 42.50 43.83 47.00 48.50

15% 57.50 58.67 33.00 32.50 43.50 44.83

20% 54.50 55.00 27.50 28.33 36.72 35.15
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(a) Explain briefly what you would randomize if you were running this experiment and why

randomization might be important here.

(b) If the experiment had to be run in two labs with a different technician in each lab, how would

you change the design and the randomization?

(c) Use the three-way complete model (7.2.2) and state the error assumptions on the model. Check

these assumptions are valid.

(d) Test the single hypothesis that lozenge shaped ice blocks melt faster than the other two shapes

on average (averaged over solutes and concentrations). State your null and alternative hypothe-

ses and use significance level 0.01.

(e) Now consider the equivalent cell-means model shown in (7.2.1) with the error assumptions

that you listed in part (c) and i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3, 4; t = 1, 2.

(i) Give a formula for a set of 95% set of confidence intervals for the true differences in the

effects of the treatment combinations. Which method are you using?

(ii) Using the method in (i), calculate a confidence interval for the difference between the

melting times for a cylinder-shaped ice block with 5% concentration of sugar, and a cube-

shaped ice block with 20% concentration of salt.

(f) Obtain a 90% upper confidence bound for σ2.
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8.1 Introduction

In each of the previous chapters we were concerned with experiments that were run as completely

randomized designs for the purpose of investigating the effects of one or more treatment factors on a

response variable. Analysis of variance and methods of multiple comparisons were used to analyze the

data. These methods are applicable whether factor levels are qualitative or quantitative.

In this chapter, we consider an alternative approach for quantitative factors, when the set of possible

levels of each factor is real-valued rather than discrete. We restrict attention to a single factor and denote

its levels by x . The mean response E[Yxt ] is modeled as a polynomial function of the level x of the

factor, and the points (x, E[Yxt ]) are called the response curve. For example, if E[Yxt ] = β0 +β1x for

unknown parameters β0 and β1, then the mean response is a linear function of x and the response curve

is a line, called the regression line. Using data collected at various levels x , we can obtain estimates

β̂0 and β̂1 of the intercept and slope of the line. Then ŷx = β̂0 + β̂1x provides an estimate of E[Yxt ]
as a function of x , and it can be used to estimate the mean response or to predict the values of new

observations for any factor level x , including values for which no data have been collected. We call ŷx

the fitted model or the estimated mean response at the level x .

In Sect. 8.2, we look at polynomial regression and the fit of polynomial response curves to data.

Estimation of the parameters in the model, using the method of least squares, is discussed in the

optional Sect. 8.3. In Sect. 8.4, we investigate how well a regression model fits a given set of data via

a “lack-of-fit” test. In Sect. 8.5, we look at the analysis of a simple linear regression model and test

hypotheses about the values of the model parameters. Confidence intervals are also discussed. The

general analysis of a higher-order polynomial regression model using a computer package is discussed

in Sect. 8.6. Investigation of linear and quadratic trends in the data via orthogonal polynomials is the

topic of optional Sect. 8.7. An experiment is examined in detail in Sect. 8.8, and analysis using the SAS

and R software packages is done in Sects. 8.9 and 8.10, respectively.

Polynomial regression methods can be extended to experiments involving two or more quantitative

factors. The mean response E[Yxt ] is then a function of several variables and defines a response surface

in three or more dimensions. Specialized designs are usually required for fitting response surfaces, and

consequently, we postpone their discussion to Chap. 16.

© Springer International Publishing AG 2017
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8.2 Models

The standard model for polynomial regression is

Yxt =β0 + β1x + β2x2 + · · · + βpx p + ǫxt , (8.2.1)

ǫxt ∼ N (0,σ2) ,

ǫxt ’s are mutually independent

t = 1, . . . , rx ; x = x1, . . . , xv.

The treatment factor is observed at v different levels x1, . . . , xv . There are rx observations taken

when the treatment factor is at level x , and Yxt is the response for the t th of these. The responses Yxt

are modeled as independent random variables with mean

E[Yxt ] = β0 + β1x + β2x2 + · · · + βpx p ,

which is a pth-degree polynomial function of the level x of the treatment factor. Since ǫxt ∼ N (0,σ2),

it follows that

Yxt ∼ N (β0 + β1x + β2x2 + · · · + βpx p, σ2) .

Typically, in a given experiment, the exact functional form of the true response curve is unknown.

In polynomial regression, the true response curve is assumed to be well approximated by a polynomial

function. If the true response curve is relatively smooth, then a low-order polynomial function will

often provide a good model, at least for a limited range of levels of the treatment factor.

If p = 1 in the polynomial regression function, we have the case known as simple linear regression,

for which the mean response is

E[Yxt ] = β0 + β1x ,

which is a linear function of x . This model assumes that an increase of one unit in the level of x

produces a mean increase of β1 in the response, and is illustrated in Fig. 8.1. At each value of x , there

is a normal distribution of possible values of the response, the mean of which is the corresponding

point, E[Yxt ] = β0 + β1x , on the regression line and the variance of which is σ2.

Consider now the data plotted in Fig. 8.2, for which polynomial regression might be appropriate.

Envisage a normal distribution of possible values of Yxt for each level x , and a smooth response curve

connecting the distribution of their means, E[Yxt ]. It would appear that a quadratic response curve

Fig. 8.1 Simple linear
regression model

0 2 4 6 8 10

x

E
 [
Y

]
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Fig. 8.2 Three
hypothetical observations
yxt at each of five
treatment factor levels

x

y x
t

10 20 30 40 50

may provide a good fit to these data. This case, for which

E[Yxt ] = β0 + β1x + β2x2,

is called quadratic regression. If this model is adequate, the fitted quadratic model can be used to

estimate the value of x for which the mean response is maximized, even though it may not occur at

one of the x values for which data have been collected.

Although regression models can be used to estimate the mean response at values of x that have not

been observed, estimation outside the range of observed x values must be done with caution. There is

no guarantee that the model provides a good fit outside the observed range.

If observations are collected for v distinct levels x of the treatment factor, then any polynomial

regression model of degree p ≤ v − 1 (that is, with v or fewer parameters) can be fitted to the

data. However, it is generally preferable to use the simplest model that provides an adequate fit. So

for polynomial regression, lower-order models are preferred. Higher-order models are susceptible to

overfit, a circumstance in which the model fits the data too well at the expense of having the fitted

response curve vary or fluctuate excessively between data points. Over-fit is illustrated in Fig. 8.3,

which contains plots for a simple linear regression model and a sixth-degree polynomial regression

model, each fitted to the same set of data. The sixth-degree polynomial model provides the better fit

in the sense of providing a smaller value for the sum of squared errors. However, since we may be

looking at natural fluctuation of data around a true linear model, it is arguable that the simple linear

regression model is actually a better model—better for predicting responses at new values of x , for

example. Information concerning the nature of the treatment factor and the response variable may shed

light on which model is more likely to be appropriate.

Least Squares Estimates

Once data are available, we can use the method of least squares to find estimates β̂ j of the parameters

β j of the chosen regression model. The fitted model is then

ŷx = β̂0 + β̂1x + β̂2x2 + · · · + β̂px p ,

and the error sum of squares is

ssE =
∑

x

∑

t

(yxt − ŷx )
2 .
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Fig. 8.3 Data and fitted
linear and sixth-degree
polynomial regression
models

x

y
x
t

Linear

Degree 6 polynomial

The number of error degrees of freedom is the number of observations minus the number of parameters

in the model; that is, n − (p + 1). The mean squared error,

msE =
∑

x

∑

t

(yxt − ŷx )
2/(n − p − 1) ,

provides an unbiased estimate of σ2.

In the following optional section, we obtain the least squares estimates of the parameters β0 and β1

in a simple linear regression model. However, in general we leave the determination of least squares

estimates to a computer, since the formulae are not easily expressed without the use of matrices, and

the hand computations are generally tedious. An exception to this occurs with the use of orthogonal

polynomial models, discussed in Sect. 8.7.

Checking Model Assumptions

Having made an initial selection for the degree of polynomial model required in a given scenario, the

model assumptions should be checked. The first assumption to check is that the proposed polynomial

model for E[Yxt ] is indeed adequate. This can done either by examination of a plot of the residuals

versus x or by formally testing for model lack of fit. The standard test for lack of fit is discussed in

Sect. 8.4.

If no pattern is apparent in a plot of the residuals versus x , this indicates that the model is adequate.

Lack of fit is indicated if there is a clear function-like pattern. For example, suppose a quadratic model

is fitted but a cubic model is needed. Any linear or quadratic pattern in the data would then be explained

by the model and would not be evident in the residual plot, but the residual plot would show the pattern

of a cubic polynomial function unexplained by the fitted model (see Fig. 8.4).

Residual plots can also be used to assess the assumptions on the random error terms in the model in

the same way as discussed in Chap. 5. The residuals are plotted versus run order to evaluate indepen-

dence of the error variables, plotted versus fitted values ŷx to check the constant variance assumption

and to check for outliers, and plotted versus the normal scores to check the normality assumption.

If the error assumptions are not valid, the fitted line still provides a model for mean response.

However, the results of confidence intervals and hypothesis tests can be misleading. Departures from

normality are generally serious problems only when the true error distribution has long tails or when

prediction of a single observation is required. Nonconstant variance can sometimes be corrected via

transformations, as in Chap. 5, but this may also change the order of the model that needs to be fitted.

If no model assumptions are invalidated, then analysis of variance can be used to determine whether

or not a simpler model would suffice than the one postulated by the experimenter (see Sect. 8.6).

http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Fig. 8.4 Plots for a quadratic polynomial regression model fitted to data from a cubic model

8.3 Least Squares Estimation (Optional)

In this section, we derive the normal equations for a general polynomial regression model. These

equations can be solved to obtain the set of least squares estimates β̂ j of the parameters β j . We

illustrate this for the case of simple linear regression.

8.3.1 Normal Equations

For the pth-order polynomial regression model (8.2.1), the normal equations are obtained by differen-

tiating the sum of squared errors

∑

x

∑

t

e2
xt =

∑

x

∑

t

(yxt − β0 − β1x − · · · − βpx p)2

with respect to each parameter and setting each derivative equal to zero. For example, if we differentiate

with respect to β j , set the derivative equal to zero, and replace each βi with β̂i , we obtain the j th normal

equation as ∑

x

∑

t

x j yxt =
∑

x

∑

t

x j
(
β̂0 + x β̂1 + · · · + x pβ̂p

)
. (8.3.2)

We have one normal equation of this form for each value of j , j = 0, 1, . . . , p. Thus, in total, we have

p + 1 equations in p + 1 unknowns β̂ j . Provided that the number of levels of the treatment factor

exceeds the number of parameters in the model (that is, v ≥ p + 1), there is a unique solution to the

normal equations giving a unique set of least squares estimates, with the result that all parameters are

estimable.
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8.3.2 Least Squares Estimates for Simple Linear Regression

For the simple linear regression model, we have p = 1, and there are two normal equations obtained

from (8.3.2) with j = 0, 1. These are

∑

x

∑

t

yxt = nβ̂0 +
∑

x

∑

t

x β̂1 ,

∑

x

∑

t

xyxt =
∑

x

∑

t

x β̂0 +
∑

x

∑

t

x2β̂1 ,

where n = �xrx denotes the total number of observations in the experiment. Dividing the first equation

by n, we obtain

β̂0 = y.. − β̂1x .. , (8.3.3)

where x .. =
∑

x rx x/n. Substituting this into the second equation gives

β̂1 =
∑

x

∑
t xyxt − nx ..y..

ssxx

, (8.3.4)

where ssxx =
∑

x rx (x − x ..)
2.

8.4 Test for Lack of Fit

We illustrate the lack-of-fit test via the quadratic regression model

E[Yxt ] = β0 + β1x + β2x2 .

If data have been collected for only three levels x = x1, x2, x3 of the treatment factor, then the fitted

model ŷx = β̂0 + β̂1x + β̂2x2 will pass through the sample means yx . computed at each value of x .

This means that the predicted response ŷx at the observed values of x is ŷx = yx . (for x = x1, x2, x3).

This is the same fit as would be obtained using the one-way analysis of variance model, so we know

that it is the best possible fit of a model to the data in the sense that no other model can give a smaller

sum of squares for error, ssE.

If observations have been collected at more than three values of x , however, then the model is

unlikely to fit the data perfectly, and in general, ŷx �= yx .. If the values ŷx and yx . are too far apart

relative to the amount of variability inherent in the data, then the model does not fit the data well,

and there is said to be model lack of fit. In other words, in our example, the quadratic function is not

sufficient to model the mean response E[Yxt ].
If there is replication at one or more of the x-values, and if data are collected at more than three

x-values, then it is possible to conduct a test for lack-of-fit of the quadratic model. The null hypothesis

is that the quadratic model is adequate for modeling mean response; that is,

H
Q
0 : E[Yxt ] = β0 + β1x + β2x2 .

The alternative hypothesis is that a more general model (the one-way analysis of variance model) is

needed; that is,

H
Q
A : E[Yxt ] = μ + τx ,
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where τx is the effect on the response of the treatment factor at level x . We fit the quadratic regression

model and obtain ssE and msE = ssE/(n−3). Now, MSE is an unbiased estimator of the error variance

if the quadratic model is correct, but otherwise it has expected value larger than σ2.

At each level x where more than one observation has been taken, we can calculate the sample

variance s2
x of the responses. Each sample variance s2

x is an unbiased estimator of the error variance,

σ2, and these can be pooled to obtain the pooled sample variance,

s2
p =

[∑

x

(rx − 1)s2
x

]
/(n − v) . (8.4.5)

Provided that the assumption of equal error variances is valid, the pooled sample variance is an unbiased

estimator of σ2 even if the model does not fit the data well. This pooled sample variance is called the

mean square for pure error and denoted by msPE. An alternative way to compute msPE is as the mean

square for error obtained by fitting the one-way analysis of variance model.

The test of lack of fit, which is the test of H
Q
0 versus H

Q
A , is based on a comparison of the two

fitted models (the quadratic model and the one-way analysis of variance model), using the difference

in the corresponding error sums of squares. We write ssE for the error sum of squares obtained from

the quadratic regression model and ssPE for the error sum of squares from the one-way analysis of

variance model. Then the sum of squares for lack of fit is

ssLOF = ssE − ssPE .

The sum of squares for pure error has n − v degrees of freedom associated with it, whereas the sum

of squares for error has n − (p + 1) = n − 3 (since there are p + 1 = 3 parameters in the quadratic

regression model). The number of degrees of freedom for lack of fit is therefore (n−3)−(n−v) = v−3.

The corresponding mean square for lack of fit,

msLOF = ssLOF/(v − 3),

measures model lack of fit because it is an unbiased estimator of σ2 if the null hypothesis is true but

has expected value larger than σ2 otherwise.

Under the polynomial regression model (8.2.1) for p = 2, the decision rule for testing H
Q
0 versus

H
Q
A at significance level α is

reject H
Q
0 if msLOF/msPE > Fv−3,n−v,α .

In general, a polynomial regression model of degree p can be tested for lack of fit as long as

v > p +1 and there is replication for at least one of the x-levels. A test for lack of fit of the pth-degree

polynomial regression model is a test of the null hypothesis

H
p

0 : { E[Yxt ] = β0 + β1x + · · · + βpx p; x = x1, . . . , xv }

versus the alternative hypothesis

H
p

A : { E[Yxt ] = μ + τx ; x = x1, . . . , xv } .

The decision rule at significance level α is
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Table 8.1 Hypothetical data for one continuous treatment factor

x yxt yx . s2
x

10 69.42 66.07 71.70 69.0633 8.0196

20 79.91 81.45 85.52 82.2933 8.4014

30 88.33 82.01 84.43 84.9233 10.1681

40 62.59 70.98 64.12 65.8967 19.9654

50 25.86 32.73 24.39 27.6600 19.8189

Table 8.2 Test for lack of fit of quadratic regression model for hypothetical data

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Lack of fit 2 30.0542 15.0271 1.13 0.3604

Pure error 10 132.7471 13.2747

Error 12 162.8013

reject H
p

0 if msLOF/msPE > Fv−p−1,n−v,α ,

where

msLOF = ssLOF/(v − p − 1) and ssLOF = ssE − ssPE .

Here, ssE is the error sum of squares obtained by fitting the polynomial regression model of degree p,

and ssPE is the error sum of squares obtained by fitting the one-way analysis of variance model.

Example 8.4.1 Lack-of-fit test for quadratic regression

In this example we conduct a test for lack of fit of a quadratic polynomial regression model, using the

hypothetical data that were plotted in Fig. 8.2 (p. 251). Table 8.1 lists the r = 3 observations for each

of v = 5 levels x of the treatment factor, together with the sample mean and sample variance. The

pooled sample variance (8.4.5) is

s2
p = msPE =

∑

x

2s2
x /(15 − 5) = 13.2747 ,

and the sum of squares for pure error is therefore

ssPE = (15 − 5)msPE = 132.7471 .

Alternatively, this can be obtained as the sum of squares for error from fitting the one-way analysis of

variance model.

The error sum of squares ssE is obtained by fitting the quadratic polynomial regression model using

a computer program (see Sects. 8.9 and 8.10 for achieving this via SAS and R software, respectively).

We obtain ssE = 162.8013. Thus

ssLOF = ssE − ssPE = 162.8013 − 132.7471 = 30.0542

with

v − p − 1 = 5 − 2 − 1 = 2
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degrees of freedom. The test for lack of fit is summarized in Table 8.2. Since the p-value is large, there

is no significant lack of fit. The quadratic model seems to be adequate for these data. �

8.5 Analysis of the Simple Linear Regression Model

Suppose a linear regression model has been postulated for a given scenario, and a check of the model

assumptions finds no significant violations including lack of fit. Then it is appropriate to proceed with

analysis of the data.

It was shown in the optional Sect. 8.3 that the least squares estimates of the intercept and slope

parameters in the simple linear regression model are

β̂0 = y.. − β̂1x .. and β̂1 =
∑

x

∑
t xyxt − nx ..y..

ssxx

, (8.5.6)

where x .. =
∑

x rx x/n and ssxx =
∑

x rx (x −x ..)
2. The corresponding estimators (random variables),

which we also denote by β̂0 and β̂1, are normally distributed, since they are linear combinations of the

normally distributed random variables Yxt . In Exercise 1, the reader is asked to show that the variances

of β̂0 and β̂1 are equal to

Var(β̂0) = σ2

(
1

n
+ x2

..

ssxx

)
and Var(β̂1) = σ2

(
1

ssxx

)
. (8.5.7)

If we estimate σ2 by

msE =
∑

x

∑
t (yxt − (β̂0 + β̂1x))2

n − 2
, (8.5.8)

it follows that
β̂0 − β0√

msE
(

1
n

+ x2
..

ssxx

) ∼ tn−2 and
β̂1 − β1√

msE
(

1
ssxx

) ∼ tn−2 .

Thus, the decision rule at significance level α for testing whether or not the intercept is equal to a

specific value a (H int
0 : {β0 = a} versus H int

A : {β0 �= a}) is

reject H int
0 if

β̂0 − a√
msE

(
1
n

+ x2
..

ssxx

) > tn−2,α/2 or < tn−2,1−α/2 . (8.5.9)

The decision rule at significance level α for testing whether or not the slope of the regression model is

equal to a specific value b (H
slp
0 :{β1 = b} versus H

slp
A :{β1 �= b}) is

reject H
slp
0 if

β̂1 − b√
msE

(
1

ssxx

) > tn−2,α/2 or < tn−2,1−α/2 . (8.5.10)

Corresponding one-tailed tests can be constructed by choosing the appropriate tail of the t distribution

and replacing α/2 by α.
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Confidence intervals at individual confidence levels of 100(1−α)% for β0 and β1 are, respectively,

β̂0 ± tn−2,α/2

√√√√msE

(
1

n
+ x2

..

ssxx

)
(8.5.11)

and

β̂1 ± tn−2,α/2

√
msE

(
1

ssxx

)
. (8.5.12)

We can use the regression line to estimate the expected mean response E[Yxt ] at any particular

value of x , say xa ; that is,

Ê[Yxa t ] = ŷxa = β̂0 + β̂1xa .

The variance associated with this estimator is

Var(Ŷxa ) = σ2

(
1

n
+ (xa − x ..)

2

ssxx

)
.

Since Ŷxa is a linear combination of the normally distributed random variables β̂0 and β̂1, it, too, has

a normal distribution. Thus, if we estimate σ2 by msE given in (8.5.8), we obtain a 100(1 − α)%

confidence interval for the expected mean response at xa as

β̂0 + β̂1xa ± tn−2,α/2

√
msE

(
1

n
+ (xa − x ..)2

ssxx

)
. (8.5.13)

A confidence “band” for the entire regression line can be obtained by calculating confidence intervals

for the mean response at all values of x . Since this is an extremely large number of intervals, we need to

use Scheffé’s method of multiple comparisons. So, a 100(1 − α)% confidence band for the regression

line is given by

β̂0 + β̂1xa ±
√

2F2,n−2,α

√
msE

(
1

n
+ (xa − x ..)2

ssxx

)
. (8.5.14)

The critical coefficient here is w =
√

2 F2,n−2,α rather than the value w =
√

(v − 1) Fv−1,n−v,α that

we had in the one-way analysis of variance model, since there are only two parameters of interest in

our model (instead of linear combinations of v − 1 pairwise comparisons) and the number of error

degrees of freedom is n − 2 rather than n − v.

Finally, we note that it is also possible to use the regression line to predict a future observation at

a particular value xa of x . The predicted value ŷxa is the same as the estimated mean response at xa

obtained from the regression line; that is,

ŷxa = β̂0 + β̂1xa .

The variance associated with this prediction is larger by an amount σ2 than that associated with the

estimated mean response, since the model acknowledges that the data values are distributed around

their mean according to a normal distribution with variance σ2. Consequently, we may adapt (8.5.13)

to obtain a 100(1 − α)% prediction interval for a future observation at xa , as follows:
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Table 8.3 Fluid flow in
liters/minute for the
heart–lung pump
experiment

rpm Liters per minute

50 1.158 1.128 1.140 1.122 1.128

75 1.740 1.686 1.740

100 2.340 2.328 2.328 2.340 2.298

125 2.868 2.982

150 3.540 3.480 3.510 3.504 3.612

β̂0 + β̂1xa ± tn−2,1−α/2

√
msE

(
1 + 1

n
+ (xa − x ..)2

ssxx

)
. (8.5.15)

Alternatively, the prediction interval follows, because

Ŷxa − Yxa√
msE

(
1 + 1

n
+ (xa−x ..)2

ssxx

) ∼ t (n − 2)

under our model.

Example 8.5.1 Heart–lung pump experiment, continued

In Example 4.2.3, p. 73, a strong linear trend was discovered in the fluid flow rate as the number of

revolutions per minute increases in a rotary pump head of an Olson heart–lung pump. Consequently,

a simple linear regression model may provide a good model for the data. The data are reproduced in

Table 8.3. It can be verified that

x .. =
∑

x

rx x/n = [5(50) + 3(75) + 5(100) + 2(125) + 5(150)]/20 = 98.75 ,

and

y.. = 2.2986 and
∑

x

∑

t

xyxt = 5212.8 .

So,

ssxx = [5(−48.75)2 + 3(−23.75)2 + 5(1.25)2 + 2(26.25)2 + 5(51.25)2]
= 28, 093.75 ,

giving

β̂1 = [5212.8 − 20(98.75)(2.2986)]/[28,093.75]

= 673.065/28,093.75 = 0.02396 .

The mean square for error (8.5.8) for the regression model is best calculated by a computer package.

It is equal to msE = 0.001177, so the estimated variance of β̂1 is

Var(β̂1) = msE/ssxx = (0.001177)/28,093.75 = 0.000000042 .

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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A 95% confidence interval for β1 is then given by (8.5.12), as

0.02396 ± t18,.025

√
0.000000042 ,

0.02396 ± (2.101)(0.00020466) ,

( 0.02353, 0.02439 ) .

To test the null hypothesis H
slp
0 : {β1 = 0}, against the one-sided alternative hypothesis H

slp
A : {β1 > 0}

that the slope is greater than zero at significance level α = 0.01, we use a one-sided version of the

decision rule (8.5.10) and calculate

β̂1 − 0√
msE

(
1

ssxx

) = 0.02396

0.00020466
= 117.07 ,

and since this is considerably greater than t18,0.01 = 2.552, we reject H
slp
0 . We therefore conclude that

the slope of the regression line is greater than zero, and the fluid flow increases as the revolutions per

minute increase. �

8.6 Analysis of Polynomial Regression Models

8.6.1 Analysis of Variance

Suppose a polynomial regression model has been postulated for a given experiment, and the model

assumptions appear to be satisfied, including no significant lack of fit. Then it is appropriate to proceed

with analysis of the data. A common objective of the analysis of variance is to determine whether or

not a lower-order model might suffice. One reasonable approach to the analysis, which we demonstrate

for the quadratic model (p = 2), is as follows.

First, test the null hypothesis H L
0 : β2 = 0 that the highest-order term β2x2 is not needed in the

model so that the simple linear regression model is adequate. If this hypothesis is rejected, then the

full quadratic model is needed. Otherwise, testing continues and attempts to assess whether an even

simpler model is suitable. Thus, the next step is to test the hypothesis H0 : β1 = β2 = 0. If this

is rejected, the simple linear regression model is needed and adequate. If it is not rejected, then x is

apparently not useful in modeling the mean response.

Each test is constructed in the usual way, by comparing the error sum of squares of the full (quadratic)

model with the error sum of squares of the reduced model corresponding to the null hypothesis being

true. For example, to test the null hypothesis H L
0 : β2 = 0 that the simple linear regression model is

adequate versus the alternative hypothesis H L
A that the linear model is not adequate, the decision rule

at significance level α is

reject H L
0 if ms(β2)/msE > F1,n−v,α ,

where the mean square ms(β2) = ss(β2)/1 is based on one degree of freedom, and

ss(β2) = ssE1 − ssE2 ,

where ssE1 and ssE2 are the error sums of squares obtained by fitting the models of degree one and

two, respectively.
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Table 8.4 Analysis of variance table for polynomial regression model of degree p. Here ssEb denotes the error sum of
squares obtained by fitting the polynomial regression model of degree b

Source of
variation

Degrees of freedom Sum of square Mean squares Ratio

βp 1 ssEp−1 − ssE ms(βp) ms(βp)/msE

βp−1,βp 2 ssEp−2 − ssE ms(βp−1,βp) ms(βp−1,βp)/msE

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

β2, . . . ,βp p − 1 ssE1 − ssE ms(β2, . . . ,βp) ms(β2, . . . ,βp)/msE

Model p ssE0 − ssE ms(β1, . . . ,βp)

ms(β1, . . . ,βp)/msE

Error n − p − 1 ssE msE

Total n − 1 sstot

Similarly, the decision rule at significance level α for testing H0 : β1 = β2 = 0 versus the alternative

hypothesis that H0 is false is

reject H0 if ms(β1,β2)/msE > F2,n−v,α ,

where the mean square ms(β1,β2) = ss(β1,β2)/2 is based on 2 degrees of freedom, and

ss(β1,β2) = (ssE0 − ssE2)/2 ,

and ssE0 and ssE2 are the error sums of squares obtained by fitting the models of degree zero and two,

respectively.

The tests are generally summarized in an analysis of variance table, as indicated in Table 8.4 for the

polynomial regression model of degree p. In the table, under sources of variability, “Model” is listed

rather than “β1, . . . ,βp” for the test of H0 : β1 = · · · = βp = 0, since this is generally included as

standard output in a computer package. Also, to save space, we have written the error sum of squares

as ssE for the full model, rather than indicating the order of the model with a subscript p. Analysis of

variance for quadratic regression (p = 2) is illustrated in the following example.

Example 8.6.1 Analysis of variance for quadratic regression

Consider the hypothetical data in Table 8.1, p. 256, with three observations for each of the levels

x = 10, 20, 30, 40, 50. For five levels, the quartic model is the highest-order polynomial model that

can be fitted to the data. However, a quadratic model was postulated for these data, and a test for lack

of fit of the quadratic model, conducted in Example 8.4.1, suggested that this model is adequate.

The analysis of variance for the quadratic model is given in Table 8.5. The null hypothesis H L
0 :

{β2 = 0} is rejected, since the p-value is less than 0.0001. So, the linear model is not adequate, and

the quadratic model is needed. This is no surprise, based on the plot of the data shown in Fig. 8.5.

Now, suppose the objective of the experiment was to determine how to maximize mean response.

From the data plot, it appears that the maximum response occurs within the range of the levels x that

were observed. The fitted quadratic regression model can be obtained from a computer program, as

illustrated in Sects. 8.9 and 8.10 for the SAS and R programs, respectively. The fitted model is
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Table 8.5 Analysis of variance for the quadratic model

Source of variation Degrees of freedom Sum of square Mean squares Ratio p-value

β2 1 3326.2860 3326.2860 245.18 0.0001

Model 2 6278.6764 3139.3382 231.40 0.0001

Error 12 162.8013 13.5668

Total 14 6441.4777

Fig. 8.5 Quadratic
polynomial regression
model fitted to hypothetical
data
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ŷx = 33.43333 + 4.34754x − 0.08899x2 ,

and is plotted in Fig. 8.5 along with the raw data. The fitted curve achieves its maximum value when

x is around 24.4, which should provide a good estimate of the level x that maximizes mean response.

Further experimentation involving levels around this value could now be done. �

The adequacy of a regression model is sometimes assessed in terms of the proportion of variability

in the response variable that is explained by the model. This proportion, which is the ratio of the model

sum of squares to the sum of squares total, is called the coefficient of multiple determination, or the

R2-value. In the notation of Table 8.4,

R2 = (ssE0 − ssE)/sstot = ss(β1, . . . ,βp)/sstot . (8.6.1)

For simple linear regression,

R2 = ss(β1)/sstot

is called the coefficient of determination, and in this case R2 = r2, where

r = ssxy/
√

ssxx ssyy

is the sample correlation coefficient, or Pearson product-moment correlation coefficient.

8.6.2 Confidence Intervals

When the model is fitted via a computer program, the least squares estimates of β̂ j and their corre-

sponding standard errors (estimated standard deviations) usually form part of the standard computer
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output. If the model assumptions are satisfied, then

β̂ j − β j√
V̂ar (β̂ j )

∼ tn−p−1 .

Individual confidence intervals can be obtained for the model parameters, as we illustrated in Sect. 8.5

for the simple linear regression model. The general form is

β̂ j ± tn−2,α/2

√
V̂ar (β̂ j ) .

Most programs will also allow calculation of the estimated mean response at any value of x = xa

together with its standard error, and also calculation of the predicted response at x = xa plus its

standard error. Confidence and prediction intervals for these can again be calculated using the tn−p−1

distribution. The confidence interval formula for mean response at x = xa is

β̂0 + β̂1xa + · · · + β̂px
p
a ± tn−p−1,α/2

√
V̂ar (Ŷxa )

and the prediction interval formula for a new observation at x = xa is

β̂0 + β̂1xa + · · · + β̂px
p
a ± tn−p−1,α/2

√
σ̂2 + V̂ar (Ŷxa ) .

The overall confidence level for all the intervals combined should be computed via the Bonferroni

method as usual. A confidence band for the regression line is obtained by calculating confidence

intervals for the estimated mean response at all values of x , using the critical coefficient for Scheffé’s

method; that is,

β̂0 + β̂1x + · · · + β̂px p ±
√

(p + 1) Fp+1,n−p−1,α

√
V̂ar (Ŷx ) .

8.7 Orthogonal Polynomials and Trend Contrasts (Optional)

The normal equations for polynomial regression were presented in Eq. (8.3.2). It was noted that solving

the equations can be tedious. However, the factor levels can be transformed in such a way that the least

squares estimates have a simple algebraic form and are easily computed. Furthermore, the parameter

estimators become uncorrelated and are multiples of the corresponding trend contrast estimators. This

transformation is illustrated in this section for simple linear regression and for quadratic regression,

when the factor levels x are equally spaced with equal numbers r of observations per level.

8.7.1 Simple Linear Regression

Consider the simple linear regression model, for which

Yxt = β0 + β1x + ǫxt ; x = x1, . . . , xv; t = 1, . . . , r . (8.7.17)
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When there are r observations on each of the v quantitative levels x of the treatment factor, the average

value of x is x .. = r
∑

x x/n =
∑

x x/v. The transformation zx = x − x .. centers the levels x at zero,

so that
∑

x zx = 0. This makes the estimates of the slope and intercept parameters uncorrelated (or

orthogonal). We can replace x in model (8.7.17) by zx , so that the “centered” form of the model is

Yxt = β∗
0 + β∗

1 zx + ǫxt ; x = x1, . . . , xv; t = 1, . . . , r . (8.7.18)

A transformation of the independent variable changes the interpretation of some of the parameters.

For example, in the simple linear regression model (8.7.17), β0 denotes mean response when x = 0,

whereas in the transformed model (8.7.18), β∗
0 denotes mean response when zx = 0, which occurs

when x = x .. .

The normal equations corresponding to j = 0 and j = 1 for the centered model are obtained

from (8.3.2) with zx in place of x . Thus, we have

∑
x

∑
t yxt =

∑
x

∑
t

(
β̂∗

0 + zx β̂
∗
1

)
, = vr β̂∗

0∑
x

∑
t zx yxt =

∑
x

∑
t zx

(
β̂∗

0 + zx β̂
∗
1

)
=

∑
xr z2

x β̂
∗
1 .

Solving these equations gives the least squares estimates as

β̂∗
0 = y.. and β̂∗

1 = 1

r
∑

x z2
x

∑

x

∑

t

zx yxt .

Now,

Cov

(
Y..,

∑

x

∑

t

zx Yxt

)
=

∑

x

∑

t

zx Cov(Yxt , Yxt ) = rσ2
∑

x

zx = 0 ,

so the estimators β̂∗
0 and β̂∗

1 are uncorrelated.

We now consider a special case to illustrate the relationship of the slope estimator with the linear

trend contrast that we used in Sect. 4.2.4. Suppose equal numbers of observations are collected at the

three equally spaced levels

x1 = 5, x2 = 7, and x3 = 9 .

Then x .. = 7, so

z5 = −2, z7 = 0, and z9 = 2 .

These values are twice the corresponding linear trend contrast coefficients (−1, 0, 1) listed in Appen-

dix A.2. Now, r = 2, so r
∑

x z2
x = 8r , and

β̂∗
1 = 1

r
∑

x z2
x

∑

x

∑

t

zx yzx t = 1

8r
(2y9. − 2y5.)

= 1

4
(y9. − y5.) ,

which is a quarter of the value of the linear trend contrast estimate. It follows that β∗
1 and the linear

trend contrast have the same normalized estimate and hence also the same sum of squares. Thus, testing

H0 : β∗
1 = 0 under model (8.7.18) is analogous to testing the hypothesis H0 : τ3 − τ1 = 0 of no linear

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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trend effect under the one-way analysis of variance model

Yi t = μ + τi + ǫi t ; i = 1, 2, 3 ; t = 1, 2 ,

where τi is the effect on the response of the i th coded level of the treatment factor. The one difference

is that in the first case, the model is the linear regression model (p = 1), while in the second case, the

model is the one-way analysis of variance model, which is equivalent to a model of order p = v−1 = 2.

Thus the two models will not yield the same mean squared error, so the F-statistics will not be identical.

8.7.2 Quadratic Regression

Consider the quadratic regression model, for which

Yxt = β0 + β1x + β2x2 + ǫxt . (8.7.19)

Assume that the treatment levels x = x1, . . . , xv are equally spaced, with r observations per level.

To achieve orthogonality of estimates, it is necessary to transform both the linear and the quadratic

independent variables.

Let zx = x − x .. as in the case of simple linear regression, so that again
∑

x zx = 0. Similarly,

define

z(2)
x = z2

x −
∑

x

z2
x/v .

Then
∑

x z
(2)
x = 0. Also, writing zi for the i th value of zx in rank order, we note that since the levels

x are equally spaced,

zi = −zv+1−i and z
(2)
i = z

(2)
v+1−i ,

so
∑

x zx z
(2)
x = 0. These conditions give uncorrelated parameter estimators. To see this, consider the

transformed model

Yxt = β∗
0 + β∗

1 zx + β∗
2 z(2)

x + ǫxt . (8.7.20)

The normal equations (8.3.2) become

∑
x

∑
t yxt =

∑
x

∑
t

(
β̂∗

0 + zx β̂
∗
1 + z

(2)
x β̂∗

2

)
= vr β̂∗

0 ,
∑

x

∑
t zx yxt =

∑
x

∑
t zx

(
β̂∗

0 + zx β̂
∗
1 + z

(2)
x β̂∗

2

)
= r

∑
x z2

x β̂
∗
1 ,

∑
x

∑
t z

(2)
x yxt =

∑
x

∑
t z

(2)
x

(
β̂∗

0 + zx β̂
∗
1 + z

(2)
x β̂∗

2

)
= r

∑
x (z

(2)
x )2β̂∗

2 .

The least squares estimates, obtained by solving the normal equations, are

β̂∗
0 = y.. , β̂∗

1 =
∑

x

∑
t zx yxt

r
∑

x z2
x

, β̂∗
2 =

∑
x

∑
t z

(2)
x yxt

r
∑

x (z
(2)
x )2

.

The estimators β̂∗
0 and β̂∗

1 are unchanged from the simple linear regression model (8.7.18), so they

remain uncorrelated. Similarly, β̂∗
0 and β̂∗

2 are uncorrelated, because
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Cov

(
Y..,

∑

x

∑

t

z(2)
x Yxt

)
= rσ2

∑

x

z(2)
x = 0.

Observe that Cov(β̂∗
1 , β̂∗

2 ) is also zero, since it is proportional to

Cov

(∑

x

∑

t

zx Yxt ,
∑

x

∑

t

z(2)
x Yxt

)
= rσ2

∑

x

zx z(2)
x = 0.

The transformed variables zx and z
(2)
x are called orthogonal polynomials, because they are polyno-

mial functions of the levels x and give rise to uncorrelated parameter estimators β̂∗
0 , β̂∗

1 , and β̂∗
2 . It was

illustrated in the previous subsection on simple linear regression that the values zx are multiples of the

coefficients of the linear trend contrast. Likewise, the values z
(2)
x are multiples of the coefficients of

the quadratic trend contrast. For example, suppose we have r = 17 observations on the equally spaced

levels

x1 = 12, x2 = 18, x3 = 24, x4 = 30 .

Then zx = x − x .., so

z12 = −9, z18 = −3, z24 = 3, z30 = 9 .

These are 3 times the linear trend contrast coefficients listed in Appendix A.2. Also,
∑

x z2
x/v = 45,

so

z
(2)
12 = 36, z

(2)
18 = −36, z

(2)
24 = −36, z

(2)
30 = 36 ,

which are 36 times the quadratic trend contrasts.

As in the simple linear regression case, one can likewise show that the least squares estimates β̂∗
1

and β̂∗
2 are constant multiples of the corresponding linear and quadratic trend contrast estimates τ̂3 − τ̂1

and τ̂1 − 2τ̂2 + τ̂3 that would be used in the one-way analysis of variance model. Consequently, the

sums of squares for testing no quadratic trend and no linear trend are the same, although again, the

error mean square will differ.

8.7.3 Comments

We have illustrated via two examples the equivalence between the orthogonal trend contrasts in analysis

of variance and orthogonal polynomials in regression analysis for the case of equispaced, equireplicated

treatment levels. While both are convenient tools for data analysis, identification of orthogonal trend

contrasts and orthogonal polynomials can be rather complicated for higher-order trends, unequally

spaced levels, or unequal numbers of observations per level. Fortunately, analogous testing information

can also be generated by fitting appropriate full and reduced models, as was discussed in Sect. 8.6.1.

This is easily accomplished using computer regression software. Use of SAS and R software for such

tests will be illustrated in Sects. 8.9 and 8.10.

8.8 A Real Experiment—Bean-Soaking Experiment

The bean-soaking experiment was run by Gordon Keeler in 1984 to study how long mung bean

seeds ought to be soaked prior to planting in order to promote early growth of the bean sprouts. The

experiment was run using a completely randomized design, and the experimenter used a one-way
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analysis of variance model and methods of multiple comparisons to analyze the data. In Sect. 8.8.2,

we present the one-way analysis of variance, and then in Sect. 8.8.3, we reanalyze the data using

polynomial regression methods.

8.8.1 Checklist

The following checklist has been drawn from the experimenter’s report.

(a) Define the objectives of the experiment.

The objective of the experiment is to determine whether the length of the soaking period affects

the rate of growth of mung bean seed sprouts. The directions for planting merely advise soaking

overnight, and no further details are given.

As indicated in Fig. 8.6, I expect to see no sprouting whatsoever for short soaking times, as the

water does not have sufficient time to penetrate the bean coat and initiate sprouting. Then, as the

soaking time is increased, I would expect to see a transition period of sprouting with higher rates

of growth as water begins to penetrate the bean coat. Eventually, the maximum growth rate would

be reached due to complete saturation of the bean. A possible decrease in growth rates could ensue

from even longer soaking times due to bacterial infection and “drowning” the bean.

(b) Identify all sources of variation.

(i) Treatment factors and their levels.

There is just one treatment factor in this experiment, namely soaking time. A pilot experiment

was run to obtain an indication of suitable times to be examined in the main experiment. The

pilot experiment examined soaking times from 0.5 to 16 h. Many beans that had been soaked

for less than 6 h failed to germinate, and at 16 h the saturation point had not yet been reached.

Consequently, the five equally spaced soaking times of 6, 12, 18, 24 and 30 h will be selected as

treatment factor levels for the experiment.

(ii) Experimental units.

The experimental units are the mung bean seeds selected at random from a large sack of approx-

imately 10,000 beans.

(iii) Blocking factors, noise factors, and covariates.

Sources of variation that could affect growth rates include: individual bean differences; protozoan,

bacterial, fungal, and viral parasitism; light; temperature; humidity; water quality.

Differences between beans will hopefully balance out in the random assignment to soaking

times. Light, temperature, humidity, and water quality will be kept constant for all beans in the

experiment. Thus, no blocking factors or covariates will be needed in the model.

Bacterial infection could differ from one treatment factor level to another due to soaking the

beans in different baths. However, if the beans assigned to different treatment factor levels are

soaked in the same bath, this introduces the possibility of a chemical signal from beans ready to

germinate to the still dormant beans that sprouting conditions are prime. Consequently, separate

baths will be used.

(c) Choose a rule by which to assign experimental units to treatments.

A completely randomized design will be used with an equal number of beans assigned to each

soaking time.
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Fig. 8.6 Anticipated
results from the
bean-soaking experiment
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(d) Specify the measurements to be made, the experimental procedure, and the anticipated dif-

ficulties.

The soaking periods will be started at 6-h intervals, so that the beans are removed from the water

at the same time. They will then be allowed to grow in the same environmental conditions for 48

h, when the lengths of the bean sprouts will be measured (in millimeters).

The main difficulty in running the experiment is in controlling all the factors that affect growth. The

beans themselves will be randomly selected and randomly assigned to soaking times. Different

soaking dishes for the different soaking times will be filled at the same time from the same source.

On removal from the soaking dishes, the beans will be put in a growth chamber with no light but

high humidity. During the pilot experiment, the beans were rinsed after 24 h to keep them from

dehydrating. However, the procedure cannot be well controlled from treatment to treatment, and

will not be done in the main experiment.

A further difficulty is that of accurately measuring the shoot length.

(e) Run a pilot experiment.

A pilot study was run and the rest of the checklist was completed. As indicated in step (b), the

results were used to determine the soaking times to be included in the experiment.

(f) Specify the model.

The one-way analysis of variance model (3.3.1) will be used, and the assumptions will be checked

after the data are collected.

(g) Outline the analysis.

Confidence intervals for the pairwise differences in the effects of soaking time on the 48-h shoot

lengths will be calculated. Also, in view of the expected results, linear, quadratic and cubic trends

in the shoot length will be examined. Tukey’s method will be used for the pairwise comparisons

with α1 = 0.01, and Bonferroni’s method will be used for the three trend contrasts with overall

level α2 ≤ 0.01. The experimentwise error rate will then be at most 0.02.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 8.6 Length of shoots of beans after 48 h for the bean-soaking experiment

Soaking time (h) r Length (mm) Average length Sample variance

12 17 5 11 8 11 4 4 5.9412 7.0588

8 3 6 4 7 3

5 4 6 9 3

18 17 11 16 18 24 18 18 18.4118 12.6324

21 14 21 19 17 24

14 20 16 20 22

24 17 17 16 26 18 14 24 19.5294 15.6397

18 14 24 26 21 21

22 19 14 19 19

30 17 20 18 22 20 21 17 21.2941 8.5956

16 23 25 19 21 20

27 25 22 23 23

Fig. 8.7 Plot of sprout
length yxt against soaking
time x for the bean-soaking
experiment
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(h) Calculate the number of observations that need to be taken.

Using the results of the pilot experiment, a calculation showed that 17 observations should be

taken on each treatment (see Example 4.5.1, p. 93).

(i) Review the above decisions. Revise, if necessary.

Since 17 observations could easily be taken for the soaking time, there was no need to revise the

previous steps of the checklist.

The experiment was run, and the resulting data are shown in Table 8.6. The data for soaking time 6

h have been omitted from the table, since none of these beans germinated.

The data are plotted in Fig. 8.7 and show that the trend expected by the experimenter is approximately

correct. For the soaking times included in the study, sprout length appears to increase with soaking

time, with soaking times of 18, 24, and 30 h yielding similar results, but a soaking of time of only 12

h yielding consistently shorter sprouts.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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8.8.2 One-Way Analysis of Variance and Multiple Comparisons

The experimenter used Tukey’s method with a 99% simultaneous confidence level to compare the

effects of soaking the beans for 12, 18, 24, or 30 h. The formula for Tukey’s method for the one-way

analysis of variance model was given in (4.4.28) as

τi − τs ∈
(

yi. − ys. ± wT

√(
2

r

)
msE

)
,

where wT = qv,n−v,α/
√

2.

The treatment sample means are shown in Table 8.6. There are r = 17 observations on each of

the v = 4 levels of the treatment factor. The formula for the sum of squares for error in the one-way

analysis of variance model was given in (3.4.5), p. 39. Using the data in Table 8.6 we have

msE = ssE/(n − v) = 10.9816 .

From Table A.8, q4,64,0.01 = 4.60. Thus, in terms of the coded factor levels, the 99% simultaneous

confidence intervals for pairwise comparisons are

τ4 − τ3 ∈ (−1.93, 5.46) , τ3 − τ2 ∈ (−2.58, 4.81) ,

τ4 − τ2 ∈ (−0.81, 6.58) , τ3 − τ1 ∈ (9.89, 17.29) ,

τ4 − τ1 ∈ (11.66, 19.05) , τ2 − τ1 ∈ (8.77, 16.17) .

From these, we can deduce that soaking times of 18, 24, and 30 h yield significantly longer sprouts

on average after 48 h than does a soaking time of only 12 h. The three highest soaking times are not

significantly different in their effects on the sprout lengths, although the plot (Fig. 8.7) suggests that

the optimum soaking time might approach or even exceed 30 h.

The one-way analysis of variance for the data is given in Table 8.7 and includes the information

for testing for linear, quadratic, and cubic trends. The coefficients for the trend contrasts, when there

are v = 4 equally spaced levels and equal sample sizes, are listed in Table A.2. The linear contrast is

[−3,−1, 1, 3], and the hypothesis of no linear trend is H L
0 : {−3τ1 − τ2 + τ3 + 3τ4 = 0}. Obtaining

the treatment sample means from Table 8.6, the estimate of the linear trend is

∑

i

ci yi = −3y1. − y2. + y3. + 3y4. = 47.1765 ,

with associated variance

�i (c
2
i /r)σ2 = (1/17)(9 + 1 + 1 + 9)σ2 = (20/17)σ2 .

The sum of squares is calculated from (4.3.14), p. 77; that is,

ssc =
(∑

i

ci yi.

)2

/

(∑

i

c2
i /17

)
.

So, the sum of squares for the linear trend is

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
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Table 8.7 One-way ANOVA for the bean-soaking experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Soaking time 3 2501.29 833.76 75.92 0.0001

Linear trend 1 1891.78 1891.78 172.27 0.0001

Quadratic trend 1 487.12 487.12 44.36 0.0001

Cubic trend 1 122.40 122.40 11.15 0.0014

Error 64 702.82 10.98

Total 67 3204.12

ssc = (47.1765)2/(20/17) = 1891.78.

The quadratic and cubic trends correspond to the contrasts [ 1,−1,−1, 1 ] and [−1, 3,−3, 1 ],
respectively, and their corresponding sums of squares are calculated in a similar way and are listed in

Table 8.7. If we test the hypotheses that each of these three trends is zero with an overall significance

level of α = 0.01 using the Bonferroni method, then, using (4.4.24) on p. 84 for each trend, the

null hypothesis that the trend is zero is rejected if ssc/msE > F1,64,0.01/3. This critical value is not

tabulated, but since F1,64,0.0033 = t2
1,64,0.00166, it can be approximated using (4.4.22) as follows:

t1,64,0.00166 ≈ 2.935 + (2.9353 + 2.935)/(4 × 64) = 3.0454,

so the critical value is F1,64,0.0033 ≈ 9.2747. (Alternatively, the critical value could be obtained from

a computer package using the “inverse cumulative distribution function” of the F-distribution.)

To test the null hypothesis H L
0 that the linear trend is zero against the alternative hypothesis H L

A :
−3τ1 − τ2 + τ3 + 3τ4 �= 0 that the linear trend is nonzero, the decision rule is to

reject H0 if ssc/msE = 172.27 > F1,64,.0033 ≈ 9.2747 .

Thus, using a simultaneous significance level α = 0.01 for the three trends, the linear trend is deter-

mined to be nonzero.

The corresponding test ratios for the quadratic and cubic trends are given in Table 8.7. There is

sufficient evidence to conclude that the linear, quadratic, and cubic trends are all significantly different

from zero. The probability that one or more of these hypotheses would be incorrectly rejected by this

procedure is at most α = 0.01.

8.8.3 Regression Analysis

In the previous subsection, the bean-soaking experiment was analyzed using the one-way analysis

of variance and multiple comparison methods. In this subsection, we reanalyze the experiment using

regression analysis. Since there are four levels of the treatment factor “soaking time,” the highest-order

polynomial regression model that can be (uniquely) fitted to the data is the cubic regression model,

namely,

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_4


272 8 Polynomial Regression

Table 8.8 Cubic regression ANOVA for the bean-soaking experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

β3 1 122.40 122.40 11.15 0.0014

β2,β3 2 609.52 304.76 27.76 0.0001

Model 3 2501.29 833.76 75.92 0.0001

Error 64 702.82 10.98

Total 67 3204.12

Yxt = β0 + β1x + β2x2 + β3x3 + ǫxt ,

ǫxt ∼ N (0,σ2) ,

ǫxt ’s are mutually independent ,

x = 12, 18, 24, 30; t = 1, . . . , 17.

Using the data given in Table 8.6, the fitted model can be obtained from a computer program (see

Sects. 8.9 and 8.10) as

ŷx = −101.058824 + 15.475490x − 0.657680x2 + 0.009259x3 .

Table 8.8 contains the analysis of variance for the bean experiment data based on the cubic regression

model. The cubic model provides the same fit as does the one-way analysis of variance model, since

p+1 = v = 4. Thus, ŷx = yx . for x = 12, 18, 24, 30, and the number of degrees of freedom, the sum of

squares, and the mean square for the major sources of variation—the treatment factor (“Model”), error,

and total—are the same in the regression analysis of variance as in the one-way analysis of variance.

It is not possible to test for model lack of fit, since the postulated model is of order p = 3 = v − 1.

We can, however, test to see whether a lower-order model would suffice.

We first test the null hypothesis H
Q
0 : β3 = 0, or equivalently, that the quadratic regression model

E[Yxt ] = β0+β1x+β2x2 would provide an adequate fit to the data. The result of the test is summarized

in Table 8.8. The test ratio is 11.15 with a p-value of 0.0014. So, we reject H
Q
0 and conclude that the

cubic model is needed. Since the cubic regression model provides the same fit as the analysis of variance

model, this test is identical to the test that the cubic trend contrast is zero in the one-way analysis of

variance, shown in Table 8.7.

If H
Q
0 : β3 = 0 had not been rejected, then the next step would have been to have tested the null

hypothesis H L
0 : β2 = β3 = 0, or equivalently, that the simple linear regression model is adequate. If

neither H
Q
0 : β3 = 0 nor H L

0 : β2 = β3 = 0 had been rejected, the next step would have been to have

tested H0 : β1 = β2 = β3 = 0.

Based on the previous analysis, the cubic model is needed to provide an adequate fit to the data.

Figure 8.8 illustrates the cubic model fitted to the data. We may now see the dangers of using a model

to predict the value of the response beyond the range of observed x values. The cubic model predicts

that mean sprout length will increase rapidly as soaking time is increased beyond 30 h! Clearly, this

model is extremely unlikely to be reliable for extrapolation beyond 30 h.

Recall that Tukey’s method of multiple comparisons did not yield any significant differences in

mean response between the soaking times of 18, 24, and 30 h. Yet the plot of the data in Fig. 8.8

suggests that a trend over these levels might well exist. There is a lot of variability inherent in the data

that prevents significant differences between the soaking times from being detected. Nevertheless, a
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Fig. 8.8 Plot of data and
fitted cubic polynomial
regression model for the
bean-soaking experiment
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followup experiment examining soaking times from 18 to, say, 48 h might provide the information

needed to determine the best range of soaking times.

8.9 Using SAS Software

Polynomial regression models can be fitted using the SAS regression procedure PROC REG. The

procedure provides least squares estimates of the regression parameters. Predicted (fitted) values and

residuals can be saved to an output data set, as can 95% confidence limits for mean response, 95%

prediction limits for new observations for given treatment levels x , and corresponding standard errors.

A sample SAS program to analyze the data from the bean-soaking experiment of Sect. 8.8 is shown

in Table 8.9 . In the first DATA statement, the variables x2 and x3 are created for the cubic regression

model. PROC REG is used to fit the cubic regression model, and the output is shown in Fig. 8.9.

An analysis of variance table is automatically generated and includes information needed for testing

the hypothesis that the treatment factor “soaking time” has no predictive value for mean growth length,

namely, H0 : {β1 = β2 = β3 = 0}. The information for this test is listed with source of variation

“Model”. We see that the p-value is less than 0.0001, so H0 would be rejected.

Below the analysis of variance table, parameter estimates for the fitted model are given. Using these,

we have the fitted cubic regression model

ŷx = −101.05882 + 15.47549x − 0.65768x2 + 0.00926x3 .

The standard error of each estimate is also provided, together with the information for conducting a

t-test of each individual hypothesis H0 : {βi = 0}, i = 1, 2, 3.

Inclusion of the option SS1 in the MODEL statement of PROC REG causes printing of the Type

I (sequential) sums of squares in the output. Each Type I sum of squares is the variation explained

by entering the corresponding variable into the model, given that the previously listed variables are

already in the model. For example, the Type I sum of squares for X is ssE0 − ssE1, where ssE0 is the

error sum of squares for the model with E[Yxt ] = β0, and ssE1 is the error sum of squares for the

simple linear regression model E[Yxt ] = β0 + β1x ; that is,

ss(β1|β0) = ssE0 − ssE1 = 1891.77647 .

Likewise, the Type I sum of squares for X2 is the difference in error sums of squares for the linear and

quadratic regression models; that is,
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Fig. 8.9 Output generated
by PROC REG

ss(β2|β0,β1) = ssE1 − ssE2 = 487.11765 ,

and for X3, the Type I sum of squares is the difference in error sums of squares for the quadratic and

cubic regression models; that is,

ss(β3|β0,β1,β2) = ssE2 − ssE = 122.40000 ,

where we have written ssE for the error sum of squares for the full cubic model (rather than ssE3).

Thus, the ratio used to test the null hypothesis H
Q
0 : {β3 = 0} versus H

Q
A : {β3 �= 0} is

ss(β3)/msE = ss(β3|β0,β1,β2)/msE = 122.4/10.98162 = 11.1459 .
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Table 8.9 SAS program for analysis of the bean-soaking experiment

DATA BEAN;
INPUT X LENGTH;
X2 = X**2; X3 = X**3;
LINES;
12 5
12 11
12 8
: :

30 23
30 23

;
* create extra x-values for plotting the fitted curve;
DATA TOPLOT;

DO X = 8 TO 34; X2 = X**2; X3 = X**3;
LENGTH = .; * "." denotes a missing value;
OUTPUT;

END; * X loop;
* concatenate data sets BEAN and TOPLOT;
DATA; SET BEAN TOPLOT;
* do the analysis;
PROC REG; MODEL LENGTH = X X2 X3 / SS1;

QUAD: TEST X3 = 0; * test adequacy of quadratic model;
LINEAR: TEST X2 = 0, X3 = 0; * test adequacy of linear model;
OUTPUT PREDICTED = LHAT RESIDUAL = E

L95M = L95M U95M = U95M STDP = STDM
L95 = L95I U95 = U95I STDI = STDI;

* plot the data and fitted model, overlayed on one plot;
PROC SGPLOT;

SCATTER Y = LENGTH X = X / LEGENDLABEL = ’Observed data’
MARKEREATTRS = (SIZE = 0.25cm COLOR = BLACK);

SCATTER Y = LHAT X = X / LEGENDLABEL = ’Cubic model fit’
MARKEREATTRS = (SYMBOL = SQUARE SIZE = 0.25cm COLOR = BLACK);

YAXIS LABEL = "Sprout length (mm)" VALUES = (-20 TO 30 by 5);
XAXIS LABEL = "Soaking time (hrs)" VALUES = (8 TO 36 by 4);

* 95% confidence intervals and standard errors for mean response;
PROC PRINT; VAR X L95M LHAT U95M STDM;
* 95% prediction intervals and standard errors for new observations;
PROC PRINT; VAR X L95I LHAT U95I STDI;
* generate residual plots;
PROC RANK NORMAL = BLOM; VAR E; RANKS NSCORE;
PROC SGPLOT; SCATTER Y = E X = X;
PROC SGPLOT; SCATTER Y = E X = LHAT;
PROC SGPLOT; SCATTER Y = E X = NSCORE;

The output of the TEST statement labeled QUAD provides the same information, as well as the

p-value 0.0014. The null hypothesis H
Q
0 is thus rejected, so the quadratic model is not adequate—the

cubic model is needed. Hence, there is no reason to test further reduced models, but the information

for such tests will be discussed for illustrative purposes.

To test H L
0 : β2 = β3 = 0, the full model is the cubic model and the reduced model is the linear

model, so the numerator sum of squares of the test statistic is
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ss(β2,β3) = ssE1 − ssE = ss(β2|β0,β1) + ss(β3|β0,β1,β2)

= 487.117647 + 122.400000 = 609.517647 ,

and the decision rule for testing H L
0 against the alternative hypothesis H L

A that the cubic model is

needed is

reject H L
0 if ms(β2,β3)/msE > F2,64,α ,

where

ms(β2,β3) = ss(β2,β3)/2 .

The information for this test of adequacy of the linear model is also generated by the TEST statement

labeled LINEAR.

The OUTPUT statement in PROC REG saves into an output data set the upper and lower 95%

confidence limits for mean response and the corresponding standard error under the variable names

L95M, U95M and STDM. This is done for each x-value in the input data set for which all regressors are

available. Similarly, the upper and lower 95% prediction limits for a new individual observation and

the corresponding standard error are saved under the variable names L95I, U95I and STDI. These

could be printed or plotted, though we do not do so here.

The plot produced by PROC SGPLOT is not shown but is similar to the plot in Fig. 8.8. Overlaid

on the same axes are plots of the raw data and the fitted cubic polynomial regression curve. A trick

was used to generate data to plot the fitted curve. Actual x values range from 12 to 30. In the DATA

TOPLOT step in Table 8.9, additional observations were created in the data set corresponding to the

integer x values ranging from 8 to 34 but with missing values for the dependent variable length. While

observations with missing length values cannot be used to fit the model, the regression procedure does

compute the corresponding predicted values LHAT. The OUTPUT statement includes these fitted values

in the newly created output data set, so they can be plotted to show the fitted model.

In this example, it is not possible to test for lack of fit of the cubic model, since data were collected

at only four x-levels. If we had been fitting a quadratic model, then a lack-of-fit test would have been

possible. An easy way to generate the relevant output using the SAS software is as follows. In line 4

of the program, add a classification variable A, using the statement “A = X;”. Then insert a PROC

GLM procedure before PROC REG as follows.

PROC GLM;
CLASS A;
MODEL LENGTH = X X2 A;

Then the Type I sum of squares for A is the appropriate numerator ssLOF for the test ratio.

Statements for generation of residual plots for checking the error assumptions are included in the

sample SAS program in Table 8.9, but the output is not shown here.

8.10 Using R Software

Polynomial regression models can be fitted using the R functionlm that fits linear models. The function

provides least squares estimates of the regression parameters. Predicted (fitted) values and residuals are

available, as are 95% confidence limits for mean response, 95% prediction limits for new observations

for given treatment levels x , and corresponding standard errors.

A sample R program to analyze the data from the bean-soaking experiment of Sect. 8.8 is shown

in Table 8.10. In the first block of code, the data are read from file into the data set bean.data.



8.10 Using R Software 277

Subsequently, though the results are not shown here, the head command would display the first six

rows of data, showing for example that the data set contains the two variables x and Length, then the

dimension command would reveal that the data set contains 68 observations, and a scatterplot of the

data would be generated.

In the second block of code, the linear model function lm is used to fit the cubic, quadratic, and

linear regression models, saving the respective results as model3, model2 and model1, and related

commands are used to generate the output shown in Tables 8.11 and 8.12. Since the data set contains

the soaking time, x , the syntax I(x∧2) allows inclusion of the quadratic term x2 as a predictor variable

in a model without creating a corresponding variable in the data set, and likewise I(x∧3) for the cubic

term x3. The command summary(model3) displays the parameter least squares estimates shown

in the middle of Table 8.11. From these, we have the fitted cubic regression model

ŷx = −101.05882 + 15.47549x − 0.65768x2 + 0.00926x3 .

The standard error of each estimate is also provided, together with the information for conducting a

t-test of each individual hypothesis H0 : {βi = 0}, i = 1, 2, 3.

The summary command also generates the analysis of variance F-test of the hypothesis that the

treatment factor “soaking time” has no predictive value for mean growth length, namely, H0 : {β1 =
β2 = β3 = 0}. The information for this test is listed after “F-statistic”. We see that the p-value

is very small, only 2 × 10−16, so H0 would be rejected.

Having saved the results of the cubic fit asmodel3, the statementanova(model3) causes display

of the Type I (sequential) sums of squares, provided in an analysis of variance table in the bottom

of Table 8.11. Each Type I sum of squares is the variation explained by entering the corresponding

variable into the model, given that the previously listed variables are already in the model. For example,

the Type I sum of squares for x is ssE0 − ssE1, where ssE0 is the error sum of squares for the

model with E[Yxt ] = β0, and ssE1 is the error sum of squares for the simple linear regression model

E[Yxt ] = β0 + β1x ; that is,

ss(β1|β0) = ssE0 − ssE1 ≈ 1892 .

Likewise, the Type I sum of squares for x∧2 is the difference in error sums of squares for the linear

and quadratic regression models; that is,

ss(β2|β0,β1) = ssE1 − ssE2 ≈ 487 ,

and for x∧3, the Type I sum of squares is the difference in error sums of squares for the quadratic and

cubic regression models; that is,

ss(β3|β0,β1,β2) = ssE2 − ssE ≈ 122 ,

where we have written ssE for the error sum of squares for the full cubic model (rather than ssE3).

Thus, the ratio used to test the null hypothesis H
Q
0 : {β3 = 0} versus H

Q
A : {β3 �= 0} is

ss(β3)/msE = ss(β3|β0,β1,β2)/msE ≈ 122/11 ≈ 11.2 ,

with corresponding p-value 0.0014. The null hypothesis H
Q
0 is thus rejected, so the quadratic model

is not adequate—the cubic model is needed. The same information is generated by the statement

anova(model2, model3), which compares the reduced quadratic and full cubic models, with
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Table 8.10 R program for analysis of the bean-soaking experiment

bean.data = read.table("data/bean.txt", header=T)

head(bean.data); dim(bean.data); plot(Length ˜ x, data=bean.data)

# Fit regression models and generate ANOVA info

model3 = lm(Length ˜ x + I(xˆ2) + I(xˆ3), data=bean.data) # Fit cubic model

summary(model3) # Display least squares estimates, overall F test

anova(model3) # Display type 1 SS

# Would a lower order model suffice?

model2 = lm(Length ˜ x + I(xˆ2), data=bean.data) # Fit quadratic model

model1 = lm(Length ˜ x, data=bean.data) # Fit simple linear reg model

anova(model2, model3) # Can cubic term be dropped?

anova(model1, model3) # Can both cubic and quadratic terms be dropped?

# Compute predicted values, CIs, PIs, and std errors for x=8, 8.01, ..., 34

# Set up a grid of x’s for prediction: x=8, 8.01, 8.02, ..., 34

xPred = data.frame(x=seq(8, 34, 0.01))

# Calculate fitted values, 95% CIs for mean response, se.fit

preds = predict(model3, xPred, se.fit=T, interval=c("confidence"))

# Calculate 95% PIs for new observations

preds2 = predict(model3, xPred, interval = c("prediction"))

# preds; preds2 # (Reader: display preds and preds2 to see contents)

se.fit = preds$se.fit # to remove "preds$" from column header name

# Compute standard error for prediction

rmse = preds$residual.scale # used to compute se.pred

se.pred = sqrt(preds$se.fitˆ2 + rmseˆ2)

# Consolidate results for display

stats = cbind(xPred, preds$fit, se.fit, preds2[,2:3], se.pred)

head(stats) # display first six rows of results

# Plot data (length vs x), plus fitted model for x=8:34

plot(Length ˜ x, xlim = c(8, 34), ylim = c(-10, 30), data=bean.data)

lines(xPred$x, preds$fit[, 1])

# Some plots to check model assumptions

bean.data$e = residuals(model3); # Obtain residuals

bean.data$pred = fitted(model3) # Obtain predicted values

# Plot residuals vs x

plot(e ˜ x, ylab = "Residuals", las=1, xaxt="n", data=bean.data)

axis(1, at = c(12,18,24,30)); abline(h=0)

# Plot residuals vs predicted values

plot(e ˜ pred, xlim=c(5,25), las=1, xaxt="n", data=bean.data,

xlab="Predicted Values", ylab = "Residuals")

axis(1, at=seq(5,25,5)); abline(h=0)

# Normal probability plot of residuals

qqnorm(model3$res, ylim=c(-10,10), xlim=c(-4,4)); abline(h=0, v=0)

output shown in the top of Table 8.12. Since the cubic model is needed, there is no reason to test further

reduced models, but the information for such tests will be discussed for illustrative purposes.

To test H L
0 : β2 = β3 = 0, the full model is the cubic model and the reduced model is the simple

linear regression model, so the numerator sum of squares of the test statistic computed from the Type

I sums of squares is
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Table 8.11 Output generated for the cubic model

> # Fit regression models and generate ANOVA info

> model3 = lm(Length ˜ x + I(xˆ2) + I(xˆ3), data=bean.data) # Fit cubic model

> summary(model3) # Display least squares estimates, overall F test

Call:

lm(formula = Length ˜ x + I(xˆ2) + I(xˆ3), data = bean.data)

Residuals:

Min 1Q Median 3Q Max

-7.412 -2.029 -0.412 2.059 6.471

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -101.05882 21.87851 -4.62 0.000019

x 15.47549 3.49667 4.43 0.000038

I(xˆ2) -0.65768 0.17508 -3.76 0.00037

I(xˆ3) 0.00926 0.00277 3.34 0.00141

Residual standard error: 3.31 on 64 degrees of freedom

Multiple R-squared: 0.781, Adjusted R-squared: 0.77

F-statistic: 75.9 on 3 and 64 DF, p-value: <2e-16

> anova(model3) # Display type 1 SS

Analysis of Variance Table

Response: Length

Df Sum Sq Mean Sq F value Pr(>F)

x 1 1892 1892 172.3 < 2e-16

I(xˆ2) 1 487 487 44.4 7.3e-09

I(xˆ3) 1 122 122 11.2 0.0014

Residuals 64 703 11

ss(β2,β3) = ssE1 − ssE = ss(β2|β0,β1) + ss(β3|β0,β1,β2)

≈ 487 + 122 = 609 ,

and the decision rule for testing H L
0 against the alternative hypothesis H L

A that the cubic model is

needed is

reject H L
0 if ms(β2,β3)/msE > F2,64,α ,

where

ms(β2,β3) = ss(β2,β3)/2 .

The information for this test of adequacy of the simple linear regression model is also generated by

the statement anova(model1, model3), with results shown in the bottom of Table 8.12. Here,

the numerator sum of squares is rounded to 610, yielding F = 27.8 and p = 2.1 × 10−09.

The third block of code in Table 8.10 saves a grid of x values from 8 to 34 in step of 0.01 in a data

set xPred, in order to compute confidence and prediction intervals at these x values. The predict

function is called twice, each time using the results of the cubic fit saved asmodel3. For each x value in

the grid, the first call ofpredict computes the predicted length, the standard error for predicting mean

length, and the 95% confidence interval for mean response, saving these results asvadjust preds. By
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Table 8.12 Output generated for the cubic model (continued)

> # Would a lower order model suffice?

> model2 = lm(Length ˜ x + I(xˆ2), data=bean.data) # Fit quadratic model

> model1 = lm(Length ˜ x, data=bean.data) # Fit simple linear reg model

> anova(model2, model3) # Can cubic term be dropped?

Analysis of Variance Table

Model 1: Length ˜ x + I(xˆ2)

Model 2: Length ˜ x + I(xˆ2) + I(xˆ3)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 65 825

2 64 703 1 122 11.2 0.0014

> anova(model1, model3) # Can both cubic and quadratic terms be dropped?

Analysis of Variance Table

Model 1: Length ˜ x

Model 2: Length ˜ x + I(xˆ2) + I(xˆ3)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 66 1312

2 64 703 2 610 27.8 2.1e-09

displaying preds, one would see that the predicted values and confidence limits are saved as the three

columns of the object preds$fit, the standard error is saved as the lone column of preds$se.fit,

and the root mean squared error is saved as a scalar as preds$residual.scale. Due to the

“prediction” option, the second call of predict computes the predicted length and the 95%

prediction interval for a new observation for each x = 8, . . . , 34, saving these results as the three

columns of preds2. The standard error for prediction is not provided directly, but is subsequently

computed for each x from the standard error for estimation of mean length for the given x value

and from the common root mean squared error value, both available from preds. The column bind

command cbind is used to combine the desired information into the columns of the object stats.

These could be printed or plotted, though we do not do so here.

The output of the plot function in the fourth block of code is not shown here, but is similar to

the plot show in Fig. 8.8. The plot command causes the raw data to be plotted. Then the lines

subcommand augments the plot with the line corresponding to the predicted values at the grid points

x = 8, 8.01, 8.02, . . . , 34, giving a sense of the fitted cubic polynomial regression curve.

In this example, it is not possible to test for lack of fit of the cubic model, since data were collected

at only four x-levels. If we had been fitting a quadratic model, then a lack-of-fit test would have been

possible. An easy way to generate the relevant output using the R software is as follows. Anyplace

after saving the fitted quadratic model as model2 in the second block of code, add the following code.

bean.data$fA = factor(bean.data$x)

modelA = lm(Length ˜ fA, data=bean.data)

anova(model2, modelA))

The first command adds a factor variable fA to the data set, the second fits the one-way model with a

different mean for each x value (i.e. for each level of fA), and the third generates the F-test for lack

of fit by comparing the reduced quadratic model to the full one-way model, which is the fullest model

one can fit here.

Statements for generation of residual plots for checking the error assumptions are included in the

sample R program in Table 8.10, but the output is not shown here.
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Table 8.13 Data for the
bicycle experiment

Treatment (mph) Crank rates yxt

x yxt

5 15 19 22

10 32 34 27

15 44 47 44

20 59 61 61

25 75 73 75

Exercises

1. For the simple linear regression model

E[Yxt ] = β0 + β1x ,

the least squares estimators β̂0 and β̂1 for the parameters β0 and β1 are given in (8.5.6), p. 257.

Show that their variances are

Var(β̂0) = σ2

(
1

n
+ x2

..

ssxx

)
and Var(β̂1) = σ2

(
1

ssxx

)
,

where ssxx =
∑

x rx (x − x ..)
2, as given in (8.5.7).

2. Bicycle experiment, continued

The bicycle experiment was run to compare the crank rates required to keep a bicycle at certain

speeds, when the bicycle (a Cannondale SR400) was in twelfth gear on flat ground. The speeds

chosen were x = 5, 10, 15, 20, and 25 mph. The data are given in Table 8.13. (See also Exercise 6

of Chap. 5.)

(a) Fit the simple linear regression model to the data, and use residual plots to check the assumptions

of the simple linear regression model.

(b) If a transformation of the data is needed, choose a transformation, refit the simple linear regression

model, and check for lack of fit.

(c) Using your results from parts (a) and (b), select a model for the data. Use this model to obtain an

estimate for the mean crank rate needed to maintain a speed of 18 mph in twelfth gear on level

ground.

(d) Calculate a 95% confidence interval for the mean crank rate needed to maintain a speed of 18

mph in twelfth gear on level ground.

(e) Find the 95% confidence band for the regression line. Draw a scatter plot of the data and super-

impose the regression line and the confidence band on the plot.

(f) Would you be happy to use your model to estimate the mean crank rate needed to maintain a

speed of 35 mph in twelfth gear on level ground. Why or why not?

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Table 8.14 Systolic blood pressure measurements—(order of collection in parentheses)

Jogging time in seconds (order of collection)

10 20 25 30 40 50

120 (1) 125 (2) 127 (10) 128 (3) 137 (5) 143 (6)

118 (9) 126 (4) 131 (7)

123 (8)

Table 8.15 Data for the trout experiment

x Hemoglobin (grams per 100 ml)

00 6.7 7.8 5.5 8.4 7.0 7.8 8.6 7.4 5.8 7.0

05 9.9 8.4 10.4 9.3 10.7 11.9 7.1 6.4 8.6 10.6

10 10.4 8.1 10.6 8.7 10.7 9.1 8.8 8.1 7.8 8.0

15 9.3 9.3 7.2 7.8 9.3 10.2 8.7 8.6 9.3 7.2

Source Gutsell, J.S. (1951). Copyright© 1951 International Biometric Society. Reprinted with permission

3. Systolic blood pressure experiment

A pilot experiment was run by John Spitak in 1987 to investigate the effect of jogging on systolic

blood pressure. Only one subject was used in the pilot experiment, and a main experiment involving

a random sample of subjects from a population of interest would need to be run in order to draw

more general conclusions. The subject jogged in place for a specified number of seconds and then

his systolic blood pressure was measured. The subject rested for at least 5 min, and then the next

observation was taken.

The data and their order of observation are given in Table 8.14.

(a) Fit a simple linear regression model to the data and test for model lack of fit.

(b) Use residual plots to check the assumptions of the simple linear regression model.

(c) Give a 95% confidence interval for the slope of the regression line.

(d) Using the confidence interval in part (c), test at significance level α = 0.05 whether the linear

term is needed in the model.

(e) Repeat the test in part (d) but using the formula for the orthogonal polynomial linear trend

coefficients for unequally spaced levels and unequal sample sizes given in Sect. 4.2.4. Do these

two tests give the same information?

(f) Estimate the mean systolic blood pressure of the subject after jogging in place for 35 sec and

calculate a 99% confidence interval.

(g) The current experiment was only a pilot experiment. Write out a checklist for the main experiment.

4. Trout experiment, continued

The data in Table 8.15 show the measurements of hemoglobin (grams per 100 ml) in the blood of

brown trout. (The same data were used in Exercise 15 of Chap. 3.) The trout were placed at random

in four different troughs. The fish food added to the troughs contained, respectively, x = 0, 5,

10, and 15 grams of sulfamerazine per 100 pounds of fish. The measurements were made on ten

randomly selected fish from each trough after 35 days.

(a) Fit a quadratic regression model to the data.

(b) Test the quadratic model for lack of fit.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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(c) Use residual plots to check the assumptions of the quadratic model.

(d) Test whether the quadratic term is needed in the model.

(e) Use the fitted quadratic model to estimate the number of grams of sulfamerazine per 100 pounds

of fish to maximize the mean amount of hemoglobin in the blood of the brown trout.

5. Bean-soaking experiment, continued

Use residual plots to check the assumptions of the cubic regression model for the data of the bean-

soaking experiment. (The data are in Table 8.6, p. 269).

6. Bean-soaking experiment, continued

Suppose the experimenter in the bean-soaking experiment of Sect. 8.8 had presumed that the

quadratic regression model would be adequate for soaking times ranging from 12 to 30 h.

(a) Figure 8.8, p. 273, shows the fitted response curve and the standardized residuals each plotted

against soaking time. Based on these plots, discuss model adequacy.

(b) Test the quadratic model for lack of fit.

7. Orthogonal polynomials

Consider an experiment in which an equal number of observations are collected for each of the

treatment factor levels x = 10, 20, 30, 40, 50.

(a) Compute the corresponding values zx for the linear orthogonal polynomial, and determine the

rescaling factor by which the zx differ from the coefficients of the linear trend contrast.

(b) Compute the values z
(2)
x for the quadratic orthogonal polynomial, and determine the rescaling

factor by which the z
(2)
x differ from the coefficients of the quadratic trend contrast.

(c) Use the data of Table 8.1 and the orthogonal polynomial coefficients to test that the quadratic

and linear trends are zero.

(d) Using the data of Table 8.1 and a statistical computing package, fit a quadratic model to the

original values. Test the hypotheses

H L
0 : {β2 = 0} and H0 : {β1 = β2 = 0}

against their respective two-sided alternative hypotheses. Compare the results of these tests with

those in (c).

8. Orthogonal polynomials

Consider use of the quadratic orthogonal polynomial regression model (8.7.20), p. 265, for the data

at levels 18, 24, and 30 of the bean-soaking experiment—the data are in Table 8.6, p. 269.

(a) Compute the least squares estimates of the parameters.

(b) Why is it not possible to test for lack of fit of the quadratic model?

(c) Give an analysis of variance table and test the hypothesis that a linear model would provide an

adequate representation of the data.
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9. Heart–lung pump experiment, continued

In Example 8.5.1, p. 259, we fitted a linear regression model to the data of the heart–lung pump

experiment. We rejected the null hypothesis that the slope of the line is zero.

(a) Show that the numerator sum of squares for testing H0 : {β1 = 0} against the alternative

hypothesis HA : {β1 �= 0} is the same as the sum of squares ssc that would be obtained for

testing that the linear trend is zero in the analysis of variance model (the relevant calculations

were done in Example 4.2.3, p. 73).

(b) Obtain a 95% confidence band for the regression line.

(c) Calculate a 99% prediction interval for the fluid flow rate at 100 revolutions per minute.

(d) Estimate the intercept β0. This is not zero, which suggests that the fluid flow rate is not zero at

0 rpm. Since this should not be the case, explain what is happening.

http://dx.doi.org/10.1007/978-3-319-52250-0_4


9Analysis of Covariance

9.1 Introduction

In Chaps. 3–7, we used completely randomized designs and analysis of variance to compare the effects

of one or more treatment factors on a response variable. If nuisance factors are expected to be a major

source of variation, they should be taken into account in the design and analysis of the experiment. If

the values of the nuisance factors can be measured in advance of the experiment or controlled during the

experiment, then they can be taken into account at the design stage using blocking factors, as discussed

in Chap. 10. Analysis of covariance, which is the topic of this chapter, is a means of adjusting the

analysis for nuisance factors that cannot be controlled and that sometimes cannot be measured until

the experiment is conducted. The method is applicable if the nuisance factors are related to the response

variable but are themselves unaffected by the treatment factors.

For example, suppose an investigator wants to compare the effects of several diets on the weights of

month-old piglets. The response (weight at the end of the experimental period) is likely to be related to

the weight at the beginning of the experimental period, and these weights will typically be somewhat

variable. To control or adjust for this prior weight variability, one possibility is to use a block design,

dividing the piglets into groups (or blocks) of comparable weight, then comparing the effects of diets

within blocks. A second possibility is to use a completely randomized design with response being the

weight gain over the experimental period. This loses information, however, since heavier piglets may

experience higher weight gain than lighter piglets, or vice versa. It is preferable to include the prior

weight in the model as a variable, called a covariate, that helps to explain the final weight.

The model for a completely randomized design includes the effects of the treatment factors of

interest, together with the effects of any nuisance factors (covariates). Analysis of covariance is the

comparison of treatment effects, adjusting for one or more covariates. Standard analysis of covariance

models and assumptions are discussed in Sect. 9.2. Least squares estimates are derived in Sect. 9.3.

Sections 9.4 and 9.5 cover analysis of covariance tests and confidence interval methods for the compar-

ison of treatment effects. Analysis using software is illustrated using SAS and R software in Sects. 9.6

and 9.7, respectively.

9.2 Models

Consider an experiment conducted as a completely randomized design to compare the effects of the

levels of v treatments on a response variable Y . Suppose that the response is also affected by a nuisance

© Springer International Publishing AG 2017
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Fig. 9.1 Linear and

quadratic parallel response
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(b) Quadratic response curves

factor (covariate) whose value x can be measured during or prior to the experiment. Furthermore,

suppose that there is a linear relationship between E[Y ] and x , with the same slope for each treatment.

Then, if we plot E[Y ] versus x for each treatment separately, we would see parallel lines, as illustrated

for two treatments in Fig. 9.1a. A comparison of the effects of the two treatments can be done by

comparison of mean response at any value of x . The model that allows this type of analysis is the

analysis of covariance model:

Yi t = μ + τi + βxi t + ǫi t , (9.2.1)

ǫi t ∼ N (0,σ2) ,

ǫi t
′s are mutually independent ,

t = 1, 2, . . . , ri ; i = 1, . . . , v .

In this model, the effect of the i th treatment is modeled as τi , as usual. If there is more than one

treatment factor, then τi represents the effect of the i th treatment combination and could be replaced

by main-effect and interaction parameters. The value of the covariate on the t th time that treatment

i is observed is written as xi t , and the linear relationship between the response and the covariate is

modeled as βxi t as in a regression model. It is important for the analysis that follows that the value

xi t of the covariate not be affected by the treatment—otherwise, comparison of treatment effects at a

common x-value would not be meaningful.

A common alternative form of the analysis of covariance model is

Yi t = μ∗ + τi + β(xi t − x ..) + ǫi t , (9.2.2)

in which the covariate values have been “centered.” The two models are equivalent for comparison of

treatment effects. The slope parameter β has the same interpretation in both models. In model (9.2.2),

μ + τi denotes the mean response when xi t = x .., whereas in model (9.2.1), μ∗ + τi denotes the mean

response when xi t = 0, with the parameter relationship μ∗ = μ − β x̄... Model (9.2.2) is often used to

reduce computational problems and is a little easier to work with in obtaining least squares estimates.
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9.2.1 Checking Model Assumptions and Equality of Slopes

In addition to the usual assumptions on the error variables, the analysis of covariance model (9.2.2)

assumes a linear relationship between the covariate and the mean response, with the same slope for

each treatment, as illustrated in Fig. 9.1a. It is appropriate to start by checking for model lack of fit.

Lack of fit can be investigated by plotting the residuals versus the covariate for each treatment on

the same scale. If the plot looks nonlinear for any treatment, then a linear relationship between the

response and covariate may not be adequate. If each plot does look linear, one can assess whether the

slopes are comparable. A formal test of equality of slopes can be conducted by comparing the fit of

the analysis of covariance model (9.2.2) with the fit of the corresponding model that does not require

equal slopes, for which

Yi t = μ + τi + βi (xi t − x ..) + ǫi t . (9.2.3)

If there is no significant lack of fit of the model, then plots of the residuals versus run order, predicted

values, and normal scores can be used as in Chap. 5 to assess the assumptions of independence, equal

variances, and normality of the random error terms.

9.2.2 Model Extensions

The analysis of covariance model (9.2.1) can be generalized in various ways that we will mention here

but not consider further.

If the effect of the covariate is not linear, then βx can be replaced with a higher-order polynomial

function β1x + β2x2 + · · · + βpx p to adequately model the common shape of the response curves for

each treatment, analogous to the polynomial response curve models of Chap. 8. For example, parallel

quadratic response curves for two treatments are shown in Fig. 9.1b.

If there is more than one covariate, the single covariate term can be replaced by an appropriate

polynomial function of all the covariates. For example, for two covariates x1 and x2, the second-order

function

β1x1 + β2x2 + β12x1x2 + β11x2
1 + β22x2

2

might be used, analogous to the polynomial response surface models of Chap. 16. Centered forms of

these functions can also be obtained (see Sect. 8.7).

9.3 Least Squares Estimates

We now obtain the least squares estimates for the parameters in the analysis of covariance model, and

then illustrate the need to use adjusted means to compare treatment effects.

9.3.1 Normal Equations (Optional)

To obtain the least squares estimates of the parameters in model (9.2.2), we need to minimize the sum

of squared errors,
v∑

i=1

ri∑

t=1

e2
i t =

v∑

i=1

ri∑

t=1

(yi t − μ − τi − β(xi t − x ..))
2 .

http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_8
http://dx.doi.org/10.1007/978-3-319-52250-0_16
http://dx.doi.org/10.1007/978-3-319-52250-0_8
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Differentiating this with respect to each parameter in turn and setting the corresponding derivative

equal to zero gives the normal equations as

y.. = nμ̂ +
v∑

i=1

ri τ̂i , (9.3.4)

yi. = ri (μ̂ + τ̂i ) + β̂

ri∑

t=1

(xi t − x ..), i = 1, . . . , v , (9.3.5)

v∑

i=1

ri∑

t=1

yi t (xi t − x ..) =
v∑

i=1

ri∑

t=1

(μ̂ + τ̂i )(xi t − x ..) (9.3.6)

+
v∑

i=1

ri∑

t=1

β̂(xi t − x ..)
2 .

There are v + 2 normal equations and v + 2 unknown parameters. However, Eq. (9.3.4) is the sum

of the v equations given in (9.3.5), since �ri = n and ��(xi t − x ..) = 0. Thus, the normal equations

are not linearly independent, and the equations do not have a unique solution. However, the v + 1

equations in (9.3.5) and (9.3.6) are linearly independent and can be solved to obtain the unique least

squares estimates for β, μ + τ1, . . ., μ + τv given in the next subsection.

9.3.2 Least Squares Estimates and Adjusted Treatment Means

Under model (9.2.2) the expected value

E[Y i.] = μ + τi + β(x i. − x ..)

is an estimate of the mean response of the i th treatment when the value of the covariate xi t is x i.. So,

unless the covariate means x i. all happen to be equal, the difference of response means yi. − ys. does

not estimate τi − τs and cannot be used to compare treatment effects. The least squares estimates of

the parameters in the model are obtained by solving the normal equations in optional Sect. 9.3.1 and

are

μ̂ + τ̂i = yi. − β̂(x i. − x ..) , i = 1, . . . , v , (9.3.7)

β̂ = sp∗
xy/ss∗

xx , (9.3.8)

where

sp∗
xy =

v∑

i=1

ri∑

t=1

(xi t − x i.)(yi t − yi.) and ss∗
xx =

v∑

i=1

ri∑

t=1

(xi t − x i.)
2 .

In this notation, ss can be read as “sum of squares” and sp as “sum of products.” In Exercise 2, the

reader is asked to verify that E[β̂] = β. Consequently,

E[μ̂ + τ̂i ] = μ + τi .

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 9.1 Hypothetical analysis of covariance data

i xi t yi t x i. yi.

1 20 44.29 39.51 42.87 35 49.11

30 44.48 48.39 49.14

40 50.24 51.63 46.55

50 57.75 59.23 55.23

2 70 48.67 56.79 52.03 85 61.68

80 57.68 67.25 52.88

90 62.04 66.12 64.39

100 63.54 72.49 76.33

The least squares estimators μ̂ + τ̂i therefore estimate the mean response for the i th treatment at the

value of the covariate equal to x ... We call the estimates μ̂ + τ̂i the adjusted means, since they adjust

the response mean yi. by the amount β̂(x i. − x ..), which is equivalent to measuring the responses at the

same point on the covariate scale. The need for this adjustment is illustrated in the following example.

Example 9.3.1 Adjusted versus unadjusted means

Table 9.1 contains hypothetical data arising from two treatments at various values of the covariate.

Using Eqs. (9.3.7) and (9.3.8), one can show that the corresponding fitted model is

ŷi t = μ̂ + τ̂i + 0.5372(xi j − 60) ,

where

μ̂ + τ̂1 = 62.5416 and μ̂ + τ̂2 = 48.2516 .

The data and fitted model are plotted in Fig. 9.2. Observe that treatment one has the larger effect, and

correspondingly the higher fitted line. However if the treatment effects were estimated as y1. and y2.,

it would appear that treatment two has the larger effect, since it has the larger unadjusted mean:

y2. = 61.68 > y1. = 49.11.

This bias in the treatment effect estimates is due to the relative values of x1. and x2..

These data provide an exaggerated illustration of the need for adjustment of treatment sample means

in analysis of covariance. �

9.4 Analysis of Covariance

For a completely randomized design and analysis of covariance model (9.2.2), a one-way analysis

of covariance is used to test the null hypothesis H0 : {τ1 = τ2 = · · · = τv} against the alternative

hypothesis HA that at least two of the τi ’s differ. The test is based on the comparison of error sums of

squares under the full and reduced models. If the null hypothesis is true with common treatment effect

τi = τ , then the reduced model is
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Fig. 9.2 Illustration of

bias if unadjusted means

yi. are compared
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i = 1

i = 2

Yi t = μ + τ + β(xi t − x ..) + ǫi t .

This is similar to a simple linear regression model, with constant β0 = μ + τ , slope β1 = β, and with

regressor xi t centered. Thus, if we replace x by xi t − x .. in the formula (8.5.6), p. 257, and the average

x .. in (8.5.6) by the averaged centered value 0, the least squares estimates under the reduced model

are

μ̂ + τ̂ = y.. and β̂ = spxy/ssxx ,

where

spxy =
v∑

i=1

ri∑

t=1

(xi t − x ..)yi t =
v∑

i=1

ri∑

t=1

(xi t − x ..)(yi t − y..)

and

ssxx =
v∑

i=1

ri∑

t=1

(xi t − x ..)
2 .

So,

ssE0 =
∑

i

∑

t

(
yi t − μ̂ − τ̂ − β̂(xi t − x ..)

)2
(9.4.9)

=
∑

i

∑

t

(
yi t − y.. − spxy(xi t − x ..)/ssxx

)2

= ssyy − (spxy)
2/ssxx ,

where ssyy =
∑

i

∑
t (yi t − y..)

2. The number of degrees of freedom for error is equal to the number

of observations minus a degree of freedom for the constant μ+τ and one for the slope β; that is, n −2.

Under the full analysis of covariance model (9.2.2), using the least squares estimates given in Eqs.

(9.3.7) and (9.3.8), the error sum of squares is

http://dx.doi.org/10.1007/978-3-319-52250-0_8
http://dx.doi.org/10.1007/978-3-319-52250-0_8
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ssE =
∑

i

∑

t

(
yi t − μ̂ − τ̂i − β̂(xi t − x ..)

)2

=
∑

i

∑

t

(
yi t − yi. + β̂(x i. − x ..) − β̂(xi t − x ..)

)2

=
∑

i

∑

t

(
(yi t − yi.) − β̂(xi t − x i.)

)2

= ss∗
yy − β̂(sp∗

xy) = ss∗
yy − (sp∗

xy)
2/ss∗

xx , (9.4.10)

where

ss∗
xx =

∑

i

∑

t

(xi t − x i.)
2 ,

ss∗
yy =

∑

i

∑

t

(yi t − yi.)
2 ,

sp∗
xy =

∑

i

∑

t

(xi t − x i.)(yi t − yi.) .

The values ss∗
xx and ss∗

yy can be obtained from a computer program as the values of ssE fitting the one-

way analysis of variance models with xi t and yi t as the response variables, respectively. The number

of error degrees of freedom is n − v − 1 (one less than the error degrees of freedom under the analysis

of variance model due to the additional parameter β).

The sum of squares for treatments ss(T |β) is the difference in the error sums of squares under the

reduced and full models,

ss(T |β) = ssE0 − ssE (9.4.11)

=
(

ssyy − (spxy)
2/ssxx

)
−

(
ss∗

yy − (sp∗
xy)

2/ss∗
xx

)
.

The difference in the error degrees of freedom for the reduced and full models is

(n − 2) − (n − v − 1) = v − 1 .

We denote the corresponding mean square by

ms(T |β) = ss(T |β)/(v − 1) .

If the null hypothesis is true, then

MS(T |β)/MSE ∼ Fv−1,n−v−1 ,

so we can obtain a decision rule for testing H0 : {τ1 = τ2 = · · · = τv} against HA : {τi not all equal}
as

reject H0 if ms(T |β)/msE > Fv−1,n−v−1,α

at chosen significance level α. The information for testing equality of the treatment effects is typically

summarized in an analysis of covariance table such as that shown in Table 9.2.
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Table 9.2 Analysis of covariance for one linear covariate

Source of variation Degrees of freedom Sum of squares Mean squares Ratio

T |β v − 1 ss(T |β)
ss(T |β)

v−1
ms(T |β)

msE

β|T 1 ss(β|T ) ss(β|T )
ms(β|T )

msE

Error n − v − 1 ssE msE

Total n − 1 ssyy

Formulae

ss(T |β) =
(
ssyy − (spxy)

2/ssxx

)
−

(
ss∗

yy − (sp∗
xy)

2/ss∗
xx

)

ss(β|T ) = (sp∗
xy)

2/ss∗
xx ssE = ss∗

yy − (sp∗
xy)

2/ss∗
xx

ssxx =
∑

i

∑
t (xi t − x ..)

2 ssyy =
∑

i

∑
t (yi t − y..)

2

spxy =
∑

i

∑
t (xi t − x ..)(yi t − y..) ss∗

xx =
∑

i

∑
t (xi t − x i.)

2

sp∗
xy =

∑
i

∑
t (xi t − x i.)(yi t − yi.) ss∗

yy =
∑

i

∑
t (yi t − yi.)

2

The table also includes information for testing the null hypothesis H0 : {β = 0} against the

alternative hypothesis HA : {β �= 0}. The reduced model for this test is the one-way analysis of

variance model (3.3.1), for which Yi t = μ + τi + ǫi t . From Chap. 3, the corresponding error sum of

squares is

ssE0 =
∑

i

∑

t

(yi t − yi.)
2 = ss∗

yy ,

and the number of error degrees of freedom is n − v. The error sum of squares for the full model is

given in (9.4.10). Denoting the difference in error sums of squares by ss(β|T ), we have

ss(β|T ) = ssE0 − ssE = (sp∗
xy)

2/ss∗
xx = β̂2ss∗

xx .

The difference in the error degrees of freedom is (n −v)− (n −v −1) = 1, so the corresponding mean

square, ms(β|T ), has the same value ss(β|T ). Under the assumptions of the analysis of covariance

model (9.2.2), if H0 : {β = 0} is true, then

MS(β|T )/MSE ∼ F1,n−v−1 .

Thus, the decision rule for testing H0 : {β = 0} against HA : {β �= 0}, at significance level α, is

reject H0 if ms(β|T )/msE > F1,n−v−1,α .

Example 9.4.1 Balloon experiment, continued

Consider the balloon experiment of Meily Lin, in which she compared the effects of four colors on

balloon inflation time. In Example 5.5.1, p. 108, the standardized residuals were plotted against the

run order of the observations. The plot, reproduced in Fig. 9.3, shows a clear linear decreasing trend in

the residuals. This trend indicates a definite lack of independence in the error terms under the one-way

analysis of variance model, but the trend can be eliminated by including the run order as a covariate in

the model.

The analysis of covariance table for this experiment is shown in Table 9.3. Residual plots for checking

the model assumptions will be discussed in Sects. 9.6 and 9.7 and reveal no anomalies.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Fig. 9.3 Residual plot for

the balloon experiment
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Table 9.3 Analysis of covariance for the balloon experiment

Source of variation Degrees of freedom Sum of squares Mean squares Ratio

T |β 3 127.679 42.560 6.32

β|T 1 120.835 120.835 17.95

Error 27 181.742 6.731

Total 31 430.239

The decision rule for testing equality of the treatment effects is to

reject H0 : {τ1 = · · · = τv} if ms(T |β)/msE = 6.32 > F3,27,α .

Since F3,27,.01 = 4.60, the null hypothesis is rejected at significance level α = 0.01, and we can

conclude that there is a difference in inflation times for the different colors of balloon.

Of secondary interest is the test of H0 : {β = 0} against HA : {β �= 0}. The decision rule is to

reject the null hypothesis if ms(β|T )/msE = 17.95 > F1,27,α. Again, the null hypothesis is rejected

at significance level α = 0.01, since F1,27,.01 = 7.68. We may conclude that the apparent linear trend

in the inflation times due to order is a real trend and not due to random error.

9.5 Treatment Contrasts and Confidence Intervals

9.5.1 Individual Confidence Intervals

Since μ + τi is estimable under model (9.2.2), any treatment contrast
∑

i ciτi (
∑

i ci = 0) is also

estimable. From (9.3.7),
∑

i ciτi has least squares estimator

∑

i

ci τ̂i =
∑

i

ci (μ̂ + τ̂i ) =
∑

i

ci

(
Y i. − β̂(x̄i. − x̄..)

)
=

∑

i

ci

(
Y i. − β̂ x̄i.

)
. (9.5.12)

(The term �ci β̂ x̄.. is zero, since �ci = 0.) Now, Var
(
Y i.

)
= σ2/ri , and it can be shown that

Var(β̂) = σ2/ss∗
xx and Cov(Y i., β̂) = 0. Using these results and (9.5.12), the variance of

∑
i ci τ̂i is
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Var

(∑

i

ci τ̂i

)
= Var

(∑

i

ci Y i.

)
+ Var

(
β̂

∑

i

ci x i.

)

= σ2

(∑

i

c2
i

ri

)
+

(
σ2

ss∗
xx

) (∑

i

ci x i.

)2

.

So, the estimated variance is

V̂ar(�ci τ̂i ) = msE

(∑

i

c2
i

ri

+
(∑

i ci x i.

)2

ss∗
xx

)
. (9.5.13)

From (9.5.12), the least squares estimator
∑

i ci τ̂i is a function of Y i. and β̂. Since Yi j has a

normal distribution, both Y i. and β̂ are normally distributed. Consequently,
∑

i ci τ̂i also has a normal

distribution. Also, MSE/σ2 has a chi-squared distribution with n − v − 1 degrees of freedom. Then,

for any treatment contrast
∑

i ciτi , it follows that

∑
ci τ̂i −

∑
ciτi√

V̂ar(
∑

ci τ̂i )

∼ tn−v−1 .

So, a 100(1 − α)% confidence interval for
∑

i ciτi is

∑

i

ciτi ∈

⎛
⎝∑

i

ci τ̂i ± tn−v−1,α/2

√√√√V̂ar

(∑

i

ci τ̂i

) ⎞
⎠ . (9.5.14)

9.5.2 Multiple Comparisons

The multiple comparison methods of Bonferroni and Scheffé are applicable in the analysis of covariance

setting. However, since the adjusted treatment means μ̂ + τ̂i = Y i. − β̂(x i. − x ..) are not independent

unless the x i. are all equal, the methods of Tukey and Dunnett are not known to apply. It is believed

that Tukey’s method does still control the experimentwise confidence level in this case, but there is no

known proof of this conjecture.

Confidence intervals are obtained as

∑

i

ciτi ∈

⎛
⎝∑

i

ci τ̂i ± w

√√√√V̂ar

(∑

i

ci τ̂i

) ⎞
⎠ , (9.5.15)

where w is the appropriate critical coefficient. For the Bonferroni method and m predetermined

treatment contrasts, w = tn−v−1,α/2m . For the Scheffé method for all treatment contrasts,

w =
√

(v − 1)Fv−1,n−v−1,α. Formulae for the estimate �ci τ̂i and the corresponding estimated vari-

ance are given in Eqs. (9.5.12) and (9.5.13).

Example 9.5.1 Balloon experiment, continued

We now illustrate the Scheffé method of multiple comparisons to obtain simultaneous 95% confidence

intervals for all pairwise treatment comparisons for the balloon experiment of Example 9.4.1. (The data
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Table 9.4 Scheffé pairwise comparisons for the balloon experiment; overall confidence level is 95%

i s τ̂i − τ̂s

√
V̂ar(τ̂i − τ̂s) msd

1 2 −4.106 1.298 3.868

1 3 −3.801 1.299 3.871

1 4 0.071 1.297 3.865

2 3 0.304 1.301 3.877

2 4 4.176 1.298 3.868

3 4 3.872 1.298 3.868

are in Table 3.13, p. 68.) For pairwise comparisons, the confidence intervals are obtained from (9.5.15),

τi − τs ∈
(

τ̂i − τ̂s ±
√

3F3,27,.05

√
V̂ar(τ̂i − τ̂s)

)
,

where τ̂i − τ̂s = (yi. − ys.) − β̂(x i. − x s.). The treatment and covariate means are

y1. = 18.337, y2. = 22.575, y3. = 21.875, y4. = 18.187,

x1. = 16.250, x2. = 15.625, x3. = 17.500, x4. = 16.625,

and from (9.3.8), we obtain

β̂ = sp∗
xy/ss∗

xx = −572.59/2713.3 = −0.21103 .

Now, msE = 6.731 from Table 9.3, so

V̂ar(τ̂i − τ̂s) = msE

(
1

8
+ 1

8
+ (x i. − x s.)

2

ss∗
xx

)

= (6.731)

(
0.25 + (x i. − x s.)

2

2713.3

)

= 1.68275 + (0.00248) (x i. − x s.)
2 .

Using the critical coefficient w =
√

3F3,27,.05 =
√

3 × 2.96, one can obtain the confidence interval

information given in Table 9.4. The estimated difference exceeds the minimum significant difference

msd = w

√
V̂ar(τ̂i − τ̂s) with w =

√
3F3,27,.05

for the first two and last two comparisons. One can conclude from the corresponding confidence

intervals that the mean time to inflate balloons is longer for color 2 (yellow) than for colors 1 and 4

(pink and blue), and the mean inflation time for color 3 (orange) is longer than for color 4 (blue). At a

slightly lower confidence level, we would also detect a difference in mean inflation times for colors 3

and 1 (orange and pink). The corresponding six intervals with overall confidence level 95% are

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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τ2 − τ1 ∈ ( 0.238, 7.974), τ3 − τ1 ∈ (−0.070, 7.672), τ4 − τ1 ∈ (−3.936, 3.794),

τ2 − τ3 ∈ (−3.573, 4.181), τ2 − τ4 ∈ ( 0.308, 8.044), τ3 − τ4 ∈ ( 0.004, 7.740).

�

Whenever the data are used to determine or modify the model, the confidence levels and error rates

associated with any subsequent analyses of the same data will not be exactly as stated. Such is the case

for the analyses presented in Example 9.5.1 for the balloon experiment, since the covariate “run order”

was included in the model as a result of a trend observed in the residuals from the original analysis of

variance model. Thus, although Scheffé’s method was used, we cannot be certain that the overall level

of the confidence intervals in Example 9.5.1 is exactly 95%.

9.6 Using SAS Software

Table 9.5 contains a sample SAS program for performing a one-way analysis of covariance involving a

single covariate with a linear effect. The program uses the data from the balloon experiment discussed

in Examples 9.4.1 and 9.5.1. The data are given in Table 3.13, p. 68. The experimenter was interested in

comparing the effects of four colors (pink, yellow, orange, and blue) on the inflation time of balloons,

and she collected eight observations per color. The balloons were inflated one after another by the

same person. Residual analysis for the one-way analysis of variance model showed a linear trend in the

residuals plotted against run order (Fig. 9.3, p. 293). Hence, run order is included in the model here as

a linear covariate. To obtain the “centered” form of the model, as in model (9.2.2), a centered variable

has been created immediately after the INPUT statement, using the SAS statement

X = RUNORDER - 16.5;

where 16.5 is the average value of RUNORDER.

In Table 9.5, PROC GLM is used to generate the analysis of covariance. The output is shown in

Fig. 9.4. The treatment factorCOLOR has been included in theCLASS statement to generate a parameter

τi for each level of the treatment factor “color,” while the covariate X has been excluded from the class

statement so that it is included in the model as a regressor, or covariate, as in model (9.2.2). To obtain

the “uncentered” form of the model, as in model (9.2.1), the variable RUNORDER would replace X
throughout the program. The output in Fig. 9.4 would not change, since only the definition of the

constant in the model has been altered.

The information for testing the null hypotheses H T
0 : {τ1 = · · · = τ4} against H T

A : {H T
0 not true}

and H0 : {β = 0} against HA : {β �= 0} is in Fig. 9.4 under the heading Type III SS. Specifically,

ss(T |β) = 127.678829 and ss(β|T ) = 120.835325. The corresponding ratio statistics and p-values

are listed under F Value and Pr > F, respectively. Since the p-values are very small, both null

hypotheses would be rejected for any reasonable overall significance level. Thus, there are significant

differences in the effects of the four colors on inflation time after adjusting for linear effects of run

order. Also, there is a significant linear trend in mean inflation as a function of run order after adjusting

for the treatment effects. The least squares estimate for β is negative (β̂ = −0.211), so the trend is

decreasing, as we saw in Fig. 9.3.

The Type I and Type III sums of squares for color are similar but not quite equal, indicating that

the treatment effects and the covariate effect are not independent. This is because the comparison of

treatment effects is a comparison of the adjusted means, which do depend on β, since the covariate

means x i. are not all equal for these data.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 9.5 SAS program for analysis of covariance—Balloon experiment

DATA;
INPUT RUNORDER COLOR INFTIME;
X = RUNORDER - 16.5;
LINES;

1 1 22.0
2 3 24.6
3 1 20.3
4 4 19.8
: : :
30 1 19.3
31 1 15.9
32 3 20.3

;
PROC GLM;
CLASS COLOR;
MODEL INFTIME = COLOR X;
ESTIMATE ’1-2’ COLOR 1 -1 0 0;
ESTIMATE ’1-3’ COLOR 1 0 -1 0;
ESTIMATE ’1-4’ COLOR 1 0 0 -1;
ESTIMATE ’2-3’ COLOR 0 1 -1 0;
ESTIMATE ’2-4’ COLOR 0 1 0 -1;
ESTIMATE ’3-4’ COLOR 0 0 1 -1;
ESTIMATE ’BETA’ X 1;
OUTPUT OUT=B P=PRED R=Z;

PROC STANDARD STD=1;
VAR Z;

PROC RANK NORMAL=BLOM OUT=C;
VAR Z;
RANKS NSCORE;

PROC SGPLOT;
SCATTER Y = Z X = RUNORDER;
YAXIS VALUES = (-2 TO 2 BY 1);
XAXIS LABEL = "Run Order" VALUES = (0 TO 35 BY 5);

PROC SGPLOT; SCATTER Y = Z X = PRED;
PROC SGPLOT; SCATTER Y = Z X = COLOR;
PROC SGPLOT; SCATTER Y = Z X = NSCORE;

ESTIMATE statements under PROC GLM are used to generate the least squares estimate and es-

timated standard error for each pairwise comparison of treatment effects and for the coefficient β of

the covariate. The standard errors of each τ̂i − τ̂ j are not quite equal but are all approximately 1.30.

To compare all treatment effects pairwise using Scheffé’s method and a simultaneous 95% confidence

level, the calculations proceed as shown in Example 9.5.1.

The OUTPUT statement under PROC GLM and the procedures PROC STANDARD, PROC RANK,

andPROC SGPLOT are used as they were in Chap. 5 to generate four residual plots. The resulting plots

(not shown) show no problems with the model assumptions. Of special note, the plot of the residuals

against run order in Fig. 9.5 no longer shows any trend, so the linear run order covariate has apparently

adequately modeled any run order dependence in the observations.

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Fig. 9.4 Output from SAS

PROC GLM

A test for equality of slopes as discussed in Sect. 9.2.1 can be generated using the SAS statements

PROC GLM; CLASS COLOR;

MODEL INFTIME = COLOR X COLOR*X;

The interaction term COLOR*X will be significantly different from zero if the linear run order trends

are not the same for each color.
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Fig. 9.5 SAS plot of zi t

against run order
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9.7 Using R Software

Table 9.6 contains a sample R program for performing a one-way analysis of covariance involving a

single covariate with a linear effect. The program uses the data from the balloon experiment discussed

in Examples 9.4.1 and 9.5.1. The data are given in Table 3.13, p. 68. The experimenter was interested in

comparing the effects of four colors (pink, yellow, orange, and blue) on the inflation time of balloons,

and she collected eight observations per color. The balloons were inflated one after another by the

same person. Residual analysis for the one-way analysis of variance model showed a linear trend in the

residuals plotted against run order (Fig. 9.3, p. 293). Hence, run order is included in the model here as

a linear covariate. To obtain the “centered” form of the model, as in model (9.2.2), a centered variable

x has been created after reading the data from file, using the R statement

x = Order - 16.5

within balloon.data, where 16.5 is the average value of Order.

In the second block of code in Table 9.6, the linear models function lm and related functions are

used to generate the analysis of covariance. Selected output is shown in Table 9.7. The factor variable

fC has been included in the model to generate a parameter τi for each level of the treatment factor

“color,” while the covariate x, because it is a numeric variable but not a factor variable, is included

in the model as a regressor, or covariate, as in model (9.2.2). To obtain the “uncentered” form of the

model, as in model (9.2.1), the variable Order would replace x throughout the program. The output

in Table 9.7 would not change, since only the definition of the constant in the model would be altered.

The information for testing the null hypotheses H T
0 : {τ1 = · · · = τ4} against H T

A : {H T
0 not true}

and H0 : {β = 0} against HA : {β �= 0} is in Table 9.7 under the drop1 command that generates it.

Specifically, the Type I sums of squares are ss(T |β) ≈ 128 and ss(β|T ) ≈ 121. The corresponding

ratio statistics and p-values are listed under F value and PR(>F), respectively. Since the p-values

are very small, both null hypotheses would be rejected for any reasonable overall significance level.

Thus, there are significant differences in the effects of the four colors on inflation time after adjusting

for linear effects of run order. Also, there is a significant linear trend in mean inflation as a function

of run order after adjusting for the treatment effects. The least squares estimate for β is negative

(β̂ = −0.2110), so the trend is decreasing, as we saw in Fig. 9.3.

The command anova(model1) generates type 3 sums of squares and the corresponding analysis

of variance tables. The p-values for color for the Type I and Type III tests are similar but not identical,

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 9.6 R program for analysis of covariance—Balloon experiment

balloon.data = read.table("data/balloon.txt", header=T)
head(balloon.data, 3)
balloon.data = within(balloon.data,
{x = Order - 16.5; fC = factor(Color) })

options(contrasts = c("contr.sum", "contr.poly"))
model1 = lm(Time ˜ fC + x, data=balloon.data)
summary(model1) # LSE etc. for covariate, model F-test
drop1(model1, ˜., test="F") # Type 3 tests
anova(model1) # Type 1 tests

# Multiple comparisons: Scheffe’s method
library(lsmeans)
lsmC = lsmeans(model1, ˜ fC)
summary(contrast(lsmC, method="pairwise", adjust="Scheffe"),

infer=c(T,T))

# Residual plots
balloon.data = within(balloon.data,
{pred=fitted(model1); e=resid(model1); z=e/sd(e);
n=length(e); q=rank(e); nscore=qnorm((q-0.375)/(n+0.25)) })

plot (z ˜ Order, data=balloon.data); abline(h=0)
plot (z ˜ pred, data=balloon.data); abline(h=0)
plot (z ˜ Color, data=balloon.data); abline(h=0)
plot (z ˜ nscore, data=balloon.data); qqline(balloon.data$z)

indicating that the corresponding Type I and Type III sums of squares are not quite equal, though

both values have rounded to 128. This discrepancy, though minor, indicates that the treatment effects

and the covariate effect are not independent. This is because the comparison of treatment effects is a

comparison of the adjusted means, which do depend on β, since the covariate means x i. are not all

equal for these data.

The least squares means function lsmeans and the corresponding summary statement in the

third block of code are used to compare all treatment effects pairwise using Scheffé’s method and a

simultaneous 95% confidence level (by default), generating the simultaneous 95% confidence intervals

and related information shown at the bottom of Fig. 9.4. These results correspond to those of Exam-

ple 9.5.1. The standard errors of each τ̂i − τ̂ j are not quite equal but are all approximately 1.30, so the

widths of the confidence intervals obtained by Scheffé’s method will be similar but not identical.

In the last block of code in Table 9.6, the saved predicted and residual values are used as they were

in Chap. 5 to generate four residual plots. The resulting plots (not shown) show no problems with the

model assumptions. Of special note, the plot of the residuals against run order (not shown here; see

Fig. 9.5 for the same plot created in SAS) no longer shows any trend, so the linear run order covariate

has apparently adequately modeled any run order dependence in the observations.

A test for equality of slopes as discussed in Sect. 9.2.1 can be generated using the R statements

model2 = lm(Time ˜ fC + x + fC:x, data=balloon.data)

anova(model1, model2)

The interaction term fC:x will be significantly different from zero if the linear run order trends are

not the same for each color.

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Table 9.7 R selected output for analysis of variance and multiple comparisons

> summary(model1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

: : : :
x -0.2110 0.0498 -4.24 0.00024

Residual standard error: 2.59 on 27 degrees of freedom
Multiple R-squared: 0.578,Adjusted R-squared: 0.515
F-statistic: 9.23 on 4 and 27 DF, p-value: 0.000078

> drop1(model1, ˜., test="F")

Single term deletions
Df Sum of Sq RSS AIC F value Pr(>F)

<none> 182 65.6
fC 3 128 309 76.6 6.32 0.00217
x 1 121 303 79.9 17.95 0.00024

> anova(model1)

Analysis of Variance Table
Response: Time

Df Sum Sq Mean Sq F value Pr(>F)
fC 3 128 42.6 6.32 0.00218
x 1 121 120.8 17.95 0.00024
Residuals 27 182 6.7

> summary(contrast(lsmC, method="pairwise", adjust="Scheffe"),
+ infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 -4.105604 1.2976 27 -7.9725957 -0.238612 -3.164 0.0341
1 - 3 -3.801292 1.2987 27 -7.6716211 0.069037 -2.927 0.0557
1 - 4 0.070862 1.2974 27 -3.7954172 3.937142 0.055 1.0000
2 - 3 0.304312 1.3006 27 -3.5715725 4.180196 0.234 0.9966
2 - 4 4.176466 1.2982 27 0.3077388 8.045194 3.217 0.0304
3 - 4 3.872155 1.2980 27 0.0040946 7.740215 2.983 0.0497

Confidence level used: 0.95
Confidence-level adjustment: scheffe method for a family of 4 estimates
P value adjustment: scheffe method for a family of 4 tests

Exercises

1. Consider the hypothetical data of Example 9.3.1, in which two treatments are to be compared.

(a) Fit the analysis of covariance model (9.2.1) or (9.2.2) to the data of Table 9.1, p. 289.

(b) Plot the residuals against the covariate, the predicted values, and normal scores. Use the plots to

evaluate the model assumptions.

(c) Test for inequality of slopes, using a level of significance α = 0.05.
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Table 9.8 Bracket thickness xi t and plating thickness yi t in 10−5 inches for three vendors (Hicks 1965)

Vendor

1 2 3

t x1t y1t x2t y2t x3t y3t

1 110 40 60 25 62 27

2 75 38 75 32 90 24

3 93 30 38 13 45 20

4 97 47 140 35 59 13

Source Hicks (1965). Copyright © 1965 American Society for Quality. Reprinted with permission

(d) Test for equality of the treatment effects, using a significance level of α = 0.05. Discuss the

results.

(e) Construct a 95% confidence interval for the difference in treatment effects. Discuss the results.

2. (optional) Assume that the analysis of covariance model (9.2.2) holds, so that Yi t = μ+τi +β(xi t −
x ..) + ǫi t .

(a) Compute E[Yi t ].
(b) Verify that sp∗

xY =
∑

i

∑
t (xi t − x i.)Yi t , given that sp∗

xY =
∑

i

∑
t (xi t − x i.)(Yi t − Y i.).

(c) Show that E[β̂] = β, where β̂ = sp∗
xY /ss∗

xx and ss∗
xx =

∑
i

∑
t (xi t − x i.)

2.

(d) Verify that Var(β̂) = σ2/ss∗
xx and Cov(Y i., β̂) = 0.

(e) Verify that E[μ̂ + τ̂i ] = μ + τi , where μ̂ + τ̂i = Y i. − β̂(x i. − x ..).

(f) Using the results of (c) and (e), argue that μ + τi and β and all linear combinations of these are

estimable.

3. Zinc plating experiment

The following experiment was used by C. R. Hicks (1965), Industrial Quality Control, to illustrate

the possible bias caused by ignoring an important covariate. The experimental units consisted of 12

steel brackets. Four steel brackets were sent to each of three vendors to be zinc plated. The response

variable was the thickness of the zinc plating, in hundred-thousandths of an inch. The thickness of

each bracket before plating was measured as a covariate. The data are reproduced in Table 9.8.

(a) Plot yi t versus xi t , using the vendor index i as the plotting symbol. Discuss the relationship

between plating thickness and bracket thickness before plating. Based on the plot, discuss ap-

propriateness of the analysis of covariance model. Based on the plot, discuss whether there

appears to be a vendor effect.

(b) Fit the analysis of covariance model (9.2.1) or (9.2.2) to the data.

(c) Plot the residuals against the covariate, predicted values, and normal scores. Use the plots to

evaluate model assumptions.

(d) Test for equality of slopes, using a level of significance α = 0.05.

(e) Test for equality of the vendor effects, using a significance level α = 0.05.

(f) Fit the analysis of variance model to the data, ignoring the covariate.

(g) Using analysis of variance, ignoring the covariate, test for equality of the vendor effects using a

significance level α = 0.05.
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Table 9.9 Data for the paper tower absorbancy experiment

Run Treatment AB Drops Time Area Rate Absorbancy

1 2 12 89 50 121.00 1.780 0.7355

2 4 22 28 15 99.00 1.867 0.2828

3 2 12 47 22 121.00 2.136 0.3884

4 1 11 82 42 121.00 1.952 0.6777

5 5 31 54 30 123.75 1.800 0.4364

6 1 11 74 37 121.00 2.000 0.6116

7 4 22 29 14 99.00 2.071 0.2929

8 6 32 80 41 123.75 1.951 0.6465

9 3 21 25 11 99.00 2.272 0.2525

10 3 21 27 12 99.00 2.250 0.2727

11 6 32 83 40 123.75 2.075 0.6707

12 5 31 41 19 123.75 2.158 0.3313

(h) Compare and discuss the results of parts (e) and (g). For which model is msE smaller? Which

model gives the greater evidence that vendor effects are not equal? What explanation can you

offer for this?

4. Paper towel absorbancy experiment

S. Bortnick, M. Hoffman, K.K. Lewis and C. Williams conducted a pilot experiment in 1996 to

compare the effects of two treatment factors, brand and printing, on the absorbancy of paper towels.

Three brands of paper towels were compared (factor A at 3 levels). For each brand, both white

and printed towels were evaluated (factor B, 1=white, 2=printed). For each observation, water

was dripped from above a towel, which was horizontally suspended between two pairs of books

on a flat surface, until the water began leaking through to the surface below. The time to collect

each observation was measured in seconds. Absorbancy was measured as the number of water

drops absorbed per square inch of towel. The rate at which the water droplets fell to the towel was

measured (in drops per second) as a covariate. The data are reproduced in Table 9.9.

(a) Plot absorbancy versus rate, using the treatment level as the plotting symbol. Based on the plot,

discuss appropriateness of the analysis of covariance model, and discuss whether there appear

to be treatment effects.

(b) Fit the one-way analysis of covariance model to the data.

(c) Plot the residuals against the covariate, run order, predicted values, and normal scores. Use the

plots to evaluate model assumptions.

(d) Test for equality of slopes, using a level of significance α = 0.05.

(e) Test for equality of treatment effects, using a significance level α = 0.05.

(f) Conduct a two-way analysis of covariance. Test the main effects and interactions for significance.

5. Catalyst experiment, continued

The catalyst experiment was described in Exercise 5 of Chap. 5. The data were given in Table 5.18,

p. 134. There were twelve treatment combinations consisting of four levels of reagent, which we

may recode as A = 1, B = 2, C = 3, D = 4, and three levels of catalyst, which we may recode

as X = 1, Y = 2, Z = 3, giving the treatment combinations 11, 12, 13, 21, . . . , 43.

The order of observation of the treatment combinations is also given in Table 5.18.

http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_5
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(a) Fit a two-way complete model to the data and plot the residuals against the time order. If you

are happy about the independence of the error variables, then check the other assumptions on

the model and analyze the data. Otherwise, go to part (b).

(b) Recode the treatment combinations as 1, 2, . . . , 12. Fit an analysis of covariance model (9.2.1)

or (9.2.2) to the data, where the covariate xi t denotes the time in the run order at which the t th

observation on the i th treatment combination was made. Check all of the assumptions on your

model, and if they appear to be satisfied, analyze the data.

(c) Plot the adjusted means of the twelve treatment combinations in such a way that you can inves-

tigate the interaction between the reagents and catalysts. Test the hypothesis that the interaction

is negligible.

(d) Check the model for lack of fit; that is, investigate the treatment × time interaction. State your

conclusions.
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10.1 Introduction

In step (b)(iii) of the checklist in Chap. 2, we raised the possibility that an experiment may involve one

or more nuisance factors that, although not of interest to the experimenter, could have a major effect

on the response. We classified these nuisance factors into three types: blocking factors, noise factors,

and covariates. Different types of nuisance factors lead to different types of analyses, and the choice

between these is revisited in Sect. 10.2.

The cotton-spinning experiment of Sect. 2.3, p. 13, illustrates some of the considerations that might

lead an experimenter to include a blocking factor in the model and to adopt a block design. The most

commonly used block designs are the complete block designs. These are defined in Sect. 10.3 and their

randomization is illustrated. Models, multiple comparisons, and analysis of variance for randomized

complete block designs in which each treatment is observed once in each block are given in Sect. 10.4

and those for more general complete block designs in Sect. 10.6. Model assumption checks are outlined

briefly in Sect. 10.7. An analysis of the cotton-spinning experiment is described in Sect. 10.5 and, in

Sect. 10.8, we illustrate the analysis of a complete block design with factorial treatment combinations.

Analyses of complete block designs using the SAS and R computer packages are discussed in Sects. 10.9

and 10.10, respectively.

10.2 Blocks, Noise Factors or Covariates?

It is not always obvious whether to classify a nuisance factor as a blocking factor, a covariate, or a

noise factor. The decision will often be governed by the goal of the experiment.

Nuisance factors are classified as noise factors if the objective of the experiment is to find settings

of the treatment factors whose response is least affected by varying the levels of the nuisance factors.

Settings of noise factors can usually be controlled during an experiment but are uncontrollable outside

the laboratory. We will give some examples illustrating noise factors in Chap. 15.

Covariates are nuisance factors that cannot be controlled but can be measured prior to, or during,

the experiment. Sometimes covariates are of interest in their own right, but when they are included in

the model as nuisance variables, their effects are used to adjust the responses so that treatments can be

compared as though all experimental units were identical (see Chap. 9).

A block design is appropriate when the goal of the experiment is to compare the effects of different

treatments averaged over a range of different conditions. The experimental units are grouped into sets

© Springer International Publishing AG 2017

A. Dean et al., Design and Analysis of Experiments,

Springer Texts in Statistics, DOI 10.1007/978-3-319-52250-0_10

305

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_15
http://dx.doi.org/10.1007/978-3-319-52250-0_9


306 10 Complete Block Designs

in such a way that two experimental units in the same set are similar and can be measured under similar

experimental conditions, but two experimental units in different sets are likely to give rise to quite

different measurements even when assigned to the same treatment. The sets of similar experimental

units are called blocks, and the conditions that vary from block to block form the levels of the blocking

factor. The intent of blocking is to prevent large differences in the experimental units from masking

differences between treatment effects, while at the same time allowing the treatments to be examined

under different experimental conditions.

The levels of a blocking factor may be the values of a covariate that has been measured prior

to the experiment and whose values are used to group the experimental units. More often, however,

the levels of a blocking factor are groupings of characteristics that cannot be conveniently measured.

For example, grouping the time slots in the same day into the same block, as was done for the cotton-

spinning experiment in Sect. 2.3, ensures that environmental conditions within a block are fairly similar

without the necessity of measuring them.

Since the levels of the blocking factor do not necessarily need to be measured, the block design

is very popular. Agricultural experimenters may know that plots close together in a field are alike,

while those far apart are not alike. Industrial experimenters may know that two items produced by one

machine have similar characteristics, while those produced by two different machines are somewhat

different. Medical experimenters may know that measurements taken on the same subject will be alike,

while those taken on different subjects will not be alike. Consequently, blocks may be formed without

actually knowing the precise levels of the blocking factor. Some more examples are given in the next

section and throughout the chapter.

10.3 Design Issues

10.3.1 Block Sizes

Although it is perfectly possible for the numbers of experimental units in each block to be unequal, the

most common setting, and the only one that we will examine here, is when the blocks are of the same

size. We will use b to represent the number of blocks and k to represent the common block sizes.

Sometimes the block sizes are naturally defined, and sometimes they need to be specifically selected

by the experimenter. In a bread-baking experiment, for example, the experimental units are the baking

tins in different positions in the oven. If the temperature cannot be carefully controlled, there may be

a temperature gradient from the top shelf to the bottom shelf of the oven, although the temperature

at all positions within a shelf may be more or less constant. If the measured response is affected by

temperature, then experimental units on the same shelf are alike, but those on different shelves are

different. There is a natural grouping of experimental units into blocks defined by the shelf of the oven.

Thus, the shelves are the blocks of experimental units and represent the levels of the blocking factor

“temperature.” The number b of blocks is the number of shelves in the oven. The block size k is the

number of baking tins that can be accommodated on each shelf.

Block size is not always dictated by the experimental equipment. The size often needs to be deter-

mined by the judgment of the experimenter. For example, the data in Fig. 10.1 were gathered in a

pilot experiment by Bob Belloto in the Department of Pharmacy at The Ohio State University. The

data show the readings obtained by a breathalyzer for a given concentration of alcohol. Notice how the

readings decrease over time. Likely causes for this decrease include changes in atmospheric conditions,

evaporation of alcohol, and deterioration of the breathalyzer filters. In other experiments, such trends

in the data can be caused by equipment heating over time, by variability of batches of raw material, by

experimenter fatigue, etc.

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Fig. 10.1 Pilot data for the

breathalyzer experiment
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The block sizes for the breathalyzer experiment were chosen to be five, that is, the first five obser-

vations would be in one block, the next five in the next block, and so on. The reason for the choice was

twofold. First, it can be seen from Fig. 10.1 that the observations in the pilot experiment seem to be

fairly stable in groups of five. Secondly, the experiment was to be run by two different technicians, who

alternated shifts, and five observations could be taken per shift. Thus the blocking factor was factorial

in nature, and its levels represented combinations of time and technicians.

It is not uncommon in industry for an experiment to be automatically divided into blocks according

to time of day as a precaution against changing experimental conditions. A pilot experiment using a

single treatment such as that in the breathalyzer experiment is an ideal way of determining the necessity

for blocking. If blocks were to be created when they are not needed, hypothesis tests would be less

powerful and confidence intervals would be wider than those obtained via a completely randomized

design.

10.3.2 Complete Block Design Definitions

Having decided on the block size and having grouped the experimental units into blocks of similar

units, the next step is to assign the units to the levels of the treatment factors. The worst possible

assignment of experimental units to treatments is to assign all the units within a block to one treatment,

all units within another block to a second treatment, and so on. This assignment is bad because it does

not allow the analysis to distinguish block differences from treatment differences. The effects of the

treatment factors and the effects of the blocking factor are said to be confounded.

The best possible assignment is one that allocates to every treatment the same number of experi-

mental units per block. This can be achieved only when the block size k is a multiple of v, the number

of treatments. Such designs are called complete block designs, and in the special case of k = v, they

have historically been called randomized complete block designs or, simply, randomized block designs.

The historical name is unfortunate, since all block designs need to be randomized. Nevertheless, we

will retain the name randomized complete block design for block size k = v and use the name general

complete block design for block size a larger multiple of v.

If the block size is not a multiple of v, then the block design is known as an incomplete block design.

This term is sometimes reserved for the smaller designs where k < v, but we will find it convenient to

classify all designs as either complete or incomplete. Incomplete block designs are more complicated

to design and analyze than complete block designs, and we postpone their discussion to Chap. 11. For

http://dx.doi.org/10.1007/978-3-319-52250-0_11
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complete block designs, every treatment is observed s = v/k times in every block, and so is observed

r = bs times in the experiment.

10.3.3 The Randomized Complete Block Design

A randomized complete block design is a design with v treatments (which may be factorial treatment

combinations) and with n = bv experimental units grouped into b blocks of k = v units in such a way

that units within a block are alike and units in different blocks are substantially different. The k = v

experimental units within each block are randomly assigned to the v treatments so that each treatment

is assigned one unit per block. Thus, each treatment appears once in every block (s = 1) and r = b

times in the design.

Example 10.3.1 Bread-baking experiment

An experimenter wishes to compare the shelf life of loaves made from v = 4 different bread doughs,

coded 1, 2, 3, 4. An oven with three shelves will be used, and each shelf is large enough to take four

baking tins. A temperature difference is anticipated between the different shelves but not in different

positions within a shelf. The oven will be used twice, giving a total of six blocks defined by shelf/run

of the oven, and the block size is k = 4 defined by the four positions on each shelf: FL, FR, BL, BR

(front left, front right, back left, back right).

Since the block size is the same as the number of treatments, a randomized complete block design

can be used. The experimental units (positions) in each block (shelf/run) are assigned at random to the

four levels of the treatment factor (doughs) using the procedure described in Sect. 3.2, p. 31, for each

block separately. For example, suppose we obtain the four 2-digit random numbers 74, 11, 39, 68 from

a computer random number generator, or from Table A.1, and associate them in this order with the four

treatments to be observed once each in block 1. If we now sort the random numbers into ascending

order, the treatment codes are sorted into the order 2, 3, 4, 1. We can then allocate the experimental

units in the order FL, FR, BL, BR to the randomly sorted treatments, and we obtain the randomized

block shown in the first row of Table 10.1. The other randomized blocks in Table 10.1 are obtained in

a similar fashion.

Notice that the randomization that we have obtained in Table 10.1 has allowed bread dough 1 to be

observed four times in the back right position, and that dough 2 is never observed in this position. If a

temperature difference in positions is present, then this could cause problems in estimating treatment

differences, and the randomized complete block design is not the correct design to use. Instead, a

row–column design (Chap. 12) should be used within each run of the oven. �

Table 10.1 Example of a

randomized complete

block design

Block Run Shelf FL FR BL BR

1 1 1 2 3 4 1

2 2 1 2 3 4

3 3 4 3 2 1

4 2 1 2 4 3 1

5 2 2 4 1 3

6 3 3 2 4 1

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_12
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10.3.4 The General Complete Block Design

A general complete block design is a design with v treatments (which may be factorial treatment

combinations) and with n = bvs experimental units grouped into b blocks of k = vs units in such

a way that units within a block are alike and units in different blocks are substantially different. The

k = vs experimental units within each block are randomly assigned to the v treatments so that each

treatment is assigned s units per block. Thus, each treatment appears s times in every block and r = bs

times in the design.

Example 10.3.2 DCIS experiment

An experiment was run by Matthew Darr, David Holman, Nasser Kashou, and Angela Wendel in 2006

to examine the variability of a Dynamic Inline Conveyor Scale (DCIS). The DCIS is an automated

system for weighing individual pieces of large fruit (for example, watermelons) while they are conveyed

from one location to another. The device uses an optical switch to trigger the weighing system, a load

cell to perform the weighing operation and a computer-based data recording system. The objective

of the experiment was to reduce the variability associated with the recorded weight of each piece of

fruit. The researchers decided to examine the effects of two treatment factors. Treatment factor A was

the length of time during which the weight was recorded (with three levels: 50, 75, 100, milliseconds;

coded 1, 2, 3). Treatment factor B was the position of the optical switch (with two levels; 1 inch

and 2 inches from the end of the scale plate; coded 1, 2). Thus there were six treatments (treatment

combinations), coded as follows:

(50 millisec, 1 inch) = 1, (50 millisec, 2 inch) = 2,

(75 millisec, 1 inch) = 3, (75 millisec, 2 inch) = 4,

(100 millisec, 1 inch) = 5, (100 millisec, 2 inch) = 6,

The currently employed setting was treatment 4 (time 75 milliseconds, switch at 2 inches from the scale

plate). The experimenters wished to see if there was a better setting, while taking into account a range

of possible lubrication levels of the conveyor system. Changing the lubrication levels was difficult

and time consuming, so the experiment was run in two blocks at the extreme levels of lubrication. In

block 1, the conveyor pan was completely saturated with oil lubricant and, in block 2, all lubricant was

removed from the conveyor pan. In each block, there were s = 2 observations on each treatment. A

random assignment of the k = sv = 12 experimental units (time slots) to the treatments within each

block gave the following observation order:

Block1 : 1 5 2 4 1 5 2 6 4 3 3 6

Block2 : 3 1 2 4 2 5 6 1 5 4 3 6

For each observation on a specified treatment in a block, the response was a function, called “uncer-

tainty”, of the standard deviation of 30 weighings of a watermelon. The data are shown in Table 10.8

and discussed in Example 10.6.1. �

10.3.5 How Many Observations?

If the block size k = sv is pre-determined, we can calculate the number of blocks b that are required

to achieve a confidence interval of given length, or a hypothesis test of desired power, in much the

same way as we calculated sample sizes in Chap. 6. If the number of blocks b is fixed, but the block

http://dx.doi.org/10.1007/978-3-319-52250-0_6
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sizes can be large, then the same techniques can be used to calculate s for a general complete block

design. A calculation of the required number of blocks using confidence intervals is illustrated for a

randomized complete block design in Sect. 10.5.2, and a calculation of the required block size using

the power of a test is done in Sect. 10.6.3 for a general complete block design.

10.4 Analysis of Randomized Complete Block Designs

10.4.1 Model and Analysis of Variance

The standard model for a randomized complete block design (with s = 1 observation on each treatment

in each block) is

Yhi = μ + θh + τi + ǫhi ,

ǫhi ∼ N (0,σ2) ,

ǫhi
′s are mutually independent ,

h = 1, . . . , b; i = 1, . . . , v ,

(10.4.1)

where μ is a constant, θh is the effect of the hth block, τi is the effect of the i th treatment, Yhi is

the random variable representing the measurement on treatment i observed in block h, and ǫhi is the

associated random error. We will call this standard model the block–treatment model.

Notice that the block–treatment model does not include a term for the interaction between blocks and

treatments. If interaction effects were to be included in the model, there would be no degrees of freedom

for error with which to estimate the error variance (cf. Sect. 6.7). In many blocked experiments, absence

of block×treatment interaction is a reasonable assumption. However, if interaction is suspected in a

given experiment, then the block size must be increased to allow its estimation (as in Sect. 10.6).

The block–treatment model (10.4.1) looks similar to the two-way main-effects model (6.2.3) for two

treatment factors in a completely randomized design with one observation per cell. Not surprisingly,

then, the analysis of variance table in Table 10.2 for the randomized complete block design looks

similar to the two-way analysis of variance table in Table 6.7, p. 170, for two treatment factors and one

observation per treatment combination. There is, however, an important difference. In a completely

randomized design, the experimental units are randomly assigned to the treatment combinations, and

Table 10.2 Analysis of variance: randomized complete block design

Source of variation Degrees of freedom Sum of squares Mean square Ratio

Block b − 1 ssθ msθ = ssθ
b−1

–

Treatment v − 1 ssT msT = ssT
v−1

msT
msE

Error bv − b − v + 1 ssE msE = ssE
bv−b−v+1

Total bv − 1 sstot

Computational formulae

ssθ = v
∑

h y2
h. − bvy2

.. sstot =
∑

h

∑

i y2
hi − bvy2

..

ssT = b
∑

i y2
.i − bvy2

.. ssE = sstot − ssθ − ssT

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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so to the levels of both factors. On the other hand, in a block design, although observations are taken

on all combinations of treatments and blocks, the experimental units are randomly assigned to the

levels of the treatment factor only. The levels of the block factor represent intentional groupings of

the experimental units. This leads to some controversy as to whether or not a test of equality of block

effects is valid. However, when blocks represent nuisance sources of variation, we do not need to know

much about the block effects since it is very unlikely that we can use the identical blocks again. So,

rather than testing for equality of block effects, we will merely compare the block mean square msθ

with the error mean square msE to determine whether or not blocking was beneficial in the experiment

at hand.

If msθ is considerably larger than msE, this suggests that the creation of blocks was worthwhile

in the sense of having reduced the size of the error mean square. If msθ is less than msE, then the

creation of blocks was not helpful and, in fact, has lowered the power of hypothesis tests and increased

the lengths of confidence intervals for treatment contrasts. The comparison of msθ and msE is not a

significance test. There is no statistical conclusion about the equality of block effects. The comparison

is merely an assessment of the usefulness of having created blocks in this particular experiment and

does provide some information for the planning of future similar experiments. Of course, if msθ is less

than msE, it is not valid to pretend that the experiment was designed as a completely randomized design

and to remove the block effects from the model—the randomization is not correct for a completely

randomized design.

For testing hypotheses about treatment effects, we can use the analogy with the two-way main-

effects model. The decision rule for testing the null hypothesis H0 : {τ1 = τ2 = · · · = τv},
that the treatments have the same effect on the response, against the alternative hypothesis

HA : {at least two of the τi differ} is

reject H0 if msT/msE > Fv−1,bv−b−v+1,α (10.4.2)

for some chosen significance level α, where msT and msE are defined in Table 10.2.

Example 10.4.1 Resting metabolic rate experiment

In the 1993 issue of Annals of Nutrition and Metabolism, R. C. Bullough and C. L. Melby describe

an experiment that was run to compare the effects of inpatient and outpatient protocols on the in-

laboratory measurement of resting metabolic rate (RMR) in humans. A previous study had indicated

measurements of RMR on elderly individuals to be 8% higher using an outpatient protocol than with an

inpatient protocol. If the measurements depend on the protocol, then comparison of the results of studies

conducted by different laboratories using different protocols would be difficult. The experimenters

hoped to conclude that the effect on RMR of different protocols was negligible.

The experimental treatments consisted of three protocols: (1) an inpatient protocol in which meals

were controlled—the patient was fed the evening meal and spent the night in the laboratory, then RMR

was measured in the morning; (2) an outpatient protocol in which meals were controlled—the patient

was fed the same evening meal at the laboratory but spent the night at home, then RMR was measured

in the morning; and (3) an outpatient protocol in which meals were not strictly controlled—the patient

was instructed to fast for 12 hours prior to measurement of RMR in the morning. The three protocols

formed the v = 3 treatments in the experiment.

Since subjects tend to differ substantially from each other, error variability can be reduced by using

the subjects as blocks and measuring the effects of all treatments for each subject. In this experiment,

there were nine subjects (healthy, adult males of similar age) and they formed the b = 9 levels of a

blocking factor “subject.” Every subject was measured under all three treatments (in a random order),

so the blocks were of size k = 3 = v. RMR readings were taken over a one-hour period shortly after

the subject arrived in the laboratory. The data collected during the second 30 minutes of testing are
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Table 10.3 Data for the resting metabolic rate experiment

Protocol

Subject 1 2 3

1 7131 6846 7095

2 8062 8573 8685

3 6921 7287 7132

4 7249 7554 7471

5 9551 8866 8840

6 7046 7681 6939

7 7715 7535 7831

8 9862 10087 9711

9 7812 7708 8179

Source Bullough and Melby (1993). Copyright © 1993 Karger, Basel. Reprinted with permission
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given in Table 10.3 and are plotted in Fig. 10.2. The figure clearly suggests large subject differences,

but no consistent treatment differences.

The analysis of variance is shown in Table 10.4. The value of msθ is 37 times larger than msE,

indicating that blocking by subject has greatly reduced the error variance estimate. So a block design

was a good choice for this experiment.

The null hypothesis of no difference in the protocols cannot be rejected at any reasonable selection

of α, since msT/msE = 0.23. The ratio tells us that the average variability of the measurements from

one protocol to another was four times smaller than the measurement error variability. This is unusual,

since measurements from one protocol to another must include measurement error. The p-value is

0.7950, indicating that there is only a 20% chance that we would see a value this small or smaller when

there is no difference whatsoever in the effects of the protocols. Thus, we should ask how well the model

fits the data—perhaps treatment–block interaction is missing from the model and has been included

incorrectly in the error variability. Even if this were the case, however, there is still no indication that

protocols 2 and 3 provide higher RMR readings than protocol 1—in fact, for six of the nine subjects,

one or both of these outpatient protocols resulted in lower readings than the inpatient protocol.

It is not possible to check the model assumptions of equal error variances for each cell because of

the small amount of data. But we can check the equal-variance assumptions for the different levels

of the treatment factor. We find that the variances of the unstandardized residuals are very similar for
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Table 10.4 Analysis of variance for the resting metabolic rate experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Subject 8 23,117,462.30 2,889,682.79 – –

Protocol 2 35,948.74 17,974.37 0.23 0.7950

Error 16 1,235,483.26 77,217.70

Total 26 24,388,894.30

the three protocols. The normality assumption seems to be reasonable. The only possible outlier is the

observation for protocol 1, subject 5, but its removal does not change the above conclusions.

In their article, the experimenters discuss possible reasons for the fact that their conclusions differ

from those of previous studies. Reasons included the different age of the subjects (27–29 years rather

than 64–67 years) and the fact that they provided transport to the laboratory for the outpatients, whereas

previous studies had not. �

10.4.2 Multiple Comparisons

Since the block–treatment model (10.4.1) for the randomized complete block design is similar to the

two-way main-effects model (6.2.3) for an experiment with two treatment factors and one observation

per cell, the least squares estimator for each μ + θh + τi (h = 1, . . . , b; i = 1, . . . , v) is similar to

the estimator for each μ + αi + β j (i = 1, . . . , a; j = 1, . . . , b) in (6.5.26), p. 161, without the third

subscript; that is,

μ̂ + θ̂h + τ̂i = Y h. + Y .i − Y .. . (10.4.3)

It follows that any contrast �ciτi (with �ci = 0) in the treatment effects is estimable in the randomized

complete block design and has least squares estimator

�ci τ̂i = �ci Y .i ,

and least squares estimate �ci y.i with corresponding variance σ2(�c2
i /b). As for the two-way main-

effects model, all of the multiple comparison procedures of Chap. 4 are valid for treatment contrasts

in the randomized complete block design. The formulae, adapted from (6.5.39), p. 166, are

∑

ciτi ∈
(

∑

ci y.i ± w

√

msE
∑

c2
i /b

)

, (10.4.4)

where the critical coefficients for the Bonferroni, Scheffé, Tukey, and Dunnett methods are, respec-

tively,

wB = tbv−b−v+1,α/2m ; wS =
√

(v − 1)Fv−1,bv−b−v+1,α ;
wT = qv,bv−b−v+1,α/

√
2 ; wD2 = |t |(0.5)

v−1,bv−b−v+1,α . (10.4.5)

Example 10.4.2 Resting metabolic rate experiment, continued

In the resting metabolic rate experiment, described in Example 10.4.1, p. 311, all three pairwise com-

parisons in the v = 3 protocol effects were of interest prior to the experiment, together with the

contrast that compares the inpatient protocol with the two outpatient protocols. This latter contrast

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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has coefficient list [1,− 1
2
,− 1

2
]. Suppose that the experimenters had wished to calculate simultaneous

95% confidence intervals for these four contrasts. The formula is given in (10.4.4) and there are several

possible choices for the critical coefficient. The Bonferroni method could be used for these specific

four contrasts, whereas the Scheffé method would allow for any number of contrasts to be examined.

From (10.4.5), the critical coefficients are

wS =
√

2F2,16,.05 =
√

2(3.63) = 2.694 and wB = t16,.05/(2m) = t16,.00625 ≈ 2.783 .

Hence, in this particular situation, the Scheffé method gives slightly tighter intervals as well as being

more flexible. An alternative is to divide α = 0.05 between a t interval for the fourth contrast and

Tukey intervals for the pairwise comparisons. For example, a 99% t interval and 96% Tukey intervals

would have critical coefficients

wt = t16,.01/2 = 2.9208 and wT = q3,16,.04/
√

2 = 3.8117/
√

2 = 2.6953 ,

and again the Scheffé method is prefable in this example.

For each pairwise comparison τi − τp, we have
∑

c2
i = 2, so using the Scheffé method of multiple

comparisons and msE = 77217.7 from Table 10.4, the interval becomes

τi − τp ∈
(

y.i − y.p ± 2.694
√

(77217.7)(2)/9
)

=
(

y.i − y.p ± 352.89
)

.

The treatment sample means are obtained from the data in Table 10.3 as

y.1 = 7927.7, y.2 = 8015.2, y.3 = 7987.0 ,

the biggest difference being y.2 − y.1 = 87.5. Since all three intervals contain zero, we can assert with

95% confidence that no two protocols differ significantly in their effects on the resting metabolic rate.

Similarly, the Scheffé confidence interval for τ1 − 1
2
(τ2 + τ3) is

τ1 − 1

2
(τ2 + τ3) ∈

(

y.1 − 1

2
(y.2 + y.3)

)

± 2.694
√

(77217.7)(1.5)/9

= (−73.44 ± 305.62) ,

and again the interval contains zero. These results are expected in light of the failure in Example 10.4.1

to reject equality of treatment effects in the analysis of variance. �

10.5 A Real Experiment—Cotton-Spinning Experiment

10.5.1 Design Details

The checklist for the cotton-spinning experiment was given in Sect. 2.3, p. 13. After considering

several different possible designs, the experimenters settled on a randomized complete block design.

Each experimental unit was the production of one full set of bobbins on a single machine with a single

operator. A block consisted of a group of experimental units with the same machine, the same operator,

and observed in the same week. Thus, the different levels of the blocking factor represented differences

due to combinations of machines, operators, environmental conditions, and raw material. The block

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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size was chosen to be six, as this was equal to the number of treatment combinations and also to the

number of observations that could be taken on one machine in one week.

The treatment combinations were combinations of levels of two treatment factors, “flyer” and

“degree of twist.” Flyer had two levels, “ordinary” and “special.” Twist had four levels, 1.63, 1.69,

1.78, and 1.90. For practical reasons, the combinations of flyer and twist equal to (ordinary, 1.63) and

(special, 1.90) were not observed. We will recode the six treatment combinations that were observed

as follows:
(ordinary, 1.69) = 1, (ordinary, 1.78) = 2, (ordinary, 1.90) = 3,

(special, 1.63) = 4, (special, 1.69) = 5, (special, 1.78) = 6.

The goal of the experiment was to investigate the effects of the flyers and degrees of twist on the

breakage rate of cotton.

10.5.2 Sample-Size Calculation

Since the experimenters were interested in all pairwise comparisons of the effects of the treatment

combinations, as well as some other special treatment contrasts, we will apply the Scheffé method of

multiple comparisons at overall confidence level 95%. The experimenters initially wanted a confidence

interval to indicate a difference in the effects of a pair of treatment combinations if the true difference

was at least 2 breaks per 100 pounds of material. We will calculate the number of blocks that are needed

to obtain a minimum significant difference of at most 2 for the Scheffé simultaneous confidence intervals

for pairwise comparisons. Using (10.4.4) with v = 6, α = 0.05, and �c2
i = 2, we need to find b such

that
√

5F5,5b−5,0.05

√

msE (2/b) ≤ 2 .

The error variability σ2 was expected to be about 7 breaks2, so we need to find the smallest value of b

satisfying

F5,5b−5,0.05 ≤ 4 × b

5 × 7 × 2
= 2b

35
.

Trial and error shows that b = 40 will suffice.

Each block took a week to complete, and it was not clear how many machines would be available

at any one time, so the experimenters decided that they would analyze the data after the first 13 blocks

had been observed. With b = 13, v = 6, and a value of σ2 expected to be about 7 breaks2, the Scheffé

95% confidence intervals for pairwise comparisons have minimum significant difference equal to

msd =
√

5F5,5(13−1),0.05

√

7 × (2/13) = 3.57 ,

nearly twice the target length. Thus, with msE = 7 and 13 blocks, a difference in treatment combinations

i and p will be indicated if their observed average difference is more than 3.57 breaks per 100 pounds

(with a probability of 0.95 of no false indications) rather than 2 breaks per 100 pounds.

10.5.3 Analysis of the Cotton-Spinning Experiment

The data for the first b = 13 blocks observed in the experiment were shown in Table 2.3 (p. 16) and

some of the data were plotted in Fig. 2.1. There is an indication of block differences over time. The

low number of breaks tend to be in block 1, and the high number of breaks in blocks 11, 12, and 13.

This suggests that blocking was worthwhile. This is also corroborated by the fact that msθ is nearly

three times as large as msE (see Table 10.5).

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 10.5 Analysis of variance for the cotton-spinning experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Block 12 177.155 14.763 –

Treatment 5 231.034 46.207 9.05 0.0001

Error 60 306.446 5.107

Total 77 714.635

The error assumptions for the block–treatment model (10.4.1) are satisfied apart from two outlying

observations for treatment 1 (from blocks 5 and 10). The two outliers cause the variances of the

unstandardized residuals to be unequal. Also, the normality assumption appears to be not quite satisfied.

Since the experiment was run a long time ago, we are not able to investigate possible causes of the

outliers. The best we can do is to run the analysis both with and without them. Here, we will continue

the analysis including the outliers, and in Exercise 17, we ask the reader to verify that the model

assumptions are approximately satisfied when the outliers are removed and that similar conclusions

can be drawn.

The analysis of variance table is shown in Table 10.5. Luckily, the error variance is smaller than

expected (the observed msE is 5.1), and consequently, the confidence intervals will not be as wide as

feared. The null hypothesis of equality of the treatment effects is rejected at significance level α = 0.01,

since the p-value is less than 0.01; equivalently,

msT/msE = 9.05 > F5,60,.01 = 3.34 .

The treatment sample means are

i : 1 2 3 4 5 6

y.i : 10.8000 9.2769 7.1846 6.7538 7.0846 5.6538

With b = 13 blocks and msE = 5.107, the minimum significant difference for a set of Scheffé’s

simultaneous 95% confidence intervals is

msd =
√

5F5,60,0.05

√

msE �c2
i /13 =

√

5(2.37)

√

5.107 �c2
i /13

= 3.442 × 0.6268

√

�c2
i = 2.158

√

�c2
i . (10.5.6)

For pairwise comparisons we have �i c
2
i = 2, so msd = 3.052. Comparing this value with differences

in treatment sample means, we see that treatment 1 (ordinary flyer, 1.69 twist) yields significantly

more breaks on average than all other treatment combinations except treatment 2 (ordinary flyer, 1.78

twist), and 2 is significantly worse on average than 6 (special flyer, 1.78 twist). This might lead one to

suspect that the special flyer might be better than the ordinary flyer.

The contrast 1
2
(τ1 + τ2) − 1

2
(τ5 + τ6) compares the two flyers, averaging over the common levels

(1.69 and 1.78) of twist. The corresponding confidence interval (still using Scheffé’s method at an

overall 95% confidence level and msd (10.5.6)) is

(

1

2
(y.1 + y.2) − 1

2
(y.5 + y.6) ± 2.158

√

�c2
i

)

= (3.670 ± (2.158 × 1.0))

= (1.512, 5.828) .
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This confidence interval suggests that averaged over the middle two levels of twist, the ordinary flyer

is worse than the special flyer, producing on average between about 1.5 and 5.8 more breaks per 100

pounds.

In Fig. 10.3, the treatment sample means y.i are plotted against the uncoded twist levels, with the

open symbols (labels 1, 2, 3) indicating those treatments with the ordinary flyer, and the black symbols

(labels 4, 5, 6) indicating the special flyer. This plot reveals informative patterns in the treatment means.

In particular, it appears as if the mean number of breaks per 100 pounds decreases almost linearly as

the amount of twist increases for the ordinary flyer (treatments 1, 2, 3), yielding consistently smaller

means for each amount of twist. Notice that the levels of twist are not equally spaced, so we cannot

use the contrast coefficients in Appendix A.2 to measure trends in the breakage rate due to increasing

twist. We could use the formula (4.2.4) p. 73 to obtain the linear trend coefficients, but since a different

three of the four levels of twist are observed for the two flyers, the analysis of a linear trend would be

more useful if done for each flyer separately. For example, for the three levels of the ordinary flyer, the

coefficients for the linear trend would be calculated as

13 × (xi − 1.79) = −1.300,−0.130, 1.430, respectively, where1.79 = x =
3

∑

i=1

13xi/39,

and these become -10, -1, 11, respectively, when multiplied by the choice of constant 100/13. Using

these integer coefficients, the estimate of the linear trend in the breakage rate due to increasing twist

for the ordinary flyer is
∑3

i=1 ci yi = −38.246 with corresponding estimated standard deviation

√

√

√

√msE

3
∑

i=1

c2
i /ri =

√
5.107 × 17.0767 = 9.3387 ,

giving a ratio of −38.246/9.3387 = −4.0954. If we test, at level α = 0.01, the hypothesis of no linear

trend in the breakages due to increasing amounts of twist using the ordinary flyer against the alternative

hypothesis that there is a decreasing linear trend, we would reject the null hypothesis in favor of the

alternative since −4.0954 < −t60,0.01 = −2.390.

Sections 10.9 and 10.10 illustrate the use of the SAS and R software for obtaining the analyses

presented in this section, together with corresponding analyses using either the factorial main effects

model or the analogous model treating twist as a linear regressor, and also the lack-of-fit test of the

latter model.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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10.6 Analysis of General Complete Block Designs

10.6.1 Model and Analysis of Variance

In this section we discuss general complete block designs with s > 1 observations on each treatment

in each block. Having every level of the treatment factor observed more than once per block gives

sufficient degrees of freedom to be able to measure a block×treatment interaction if one is anticipated.

Therefore, there are two standard models for the general complete block design, the block–treatment

model (without interaction)

Yhit = μ + θh + τi + ǫhit (10.6.7)

and the block–treatment interaction model, which includes the effect of block–treatment interaction:

Yhit = μ + θh + τi + (θτ )hi + ǫhit . (10.6.8)

In each case, the model includes the error assumptions

ǫhit ∼ N (0,σ2) ,

ǫhit ’s are mutually independent ,

t = 1, . . . , s ; h = 1, . . . , b ; i = 1, . . . , v.

The assumptions on these two models should be checked for any given experiment (see Sect. 10.7).

The block–treatment model (10.6.7) for a general complete block design is similar to the two-way

main-effects model (6.2.3), and the block–treatment interaction model (10.6.8) is like the two-way

complete model (6.2.2) for two treatment factors in a completely randomized design, each with s

observations per cell. Analogously, the analysis of variance tables (Tables 10.6 and 10.7) for the block–

treatment models, with and without interaction, look similar to those for the two-way main-effects and

two-way complete models (Tables 6.4 and 6.7, pp. 159 and 170).

The decision rule for testing the null hypothesis H T
0 : {τ1 = τ2 = · · · = τv} that the treatment

effects are equal against the alternative hypothesis H T
A that at least two of the treatment effects differ

is given by the decision rule

reject H T
0 if msT/msE > Fv−1,df,α , (10.6.9)

where α is the chosen significance level, and where msT, msE, and the error degrees of freedom, df,

are obtained from Tables 10.6 or 10.7 as appropriate.

Table 10.6 Analysis of variance for the general complete block design with negligible block×treatment interaction and

block size k = vs

Source of variation Degrees of freedom Sum of squares Mean square Ratio

Block b − 1 ssθ – –

Treatment v − 1 ssT msT = ssT
v−1

msT
msE

Error bvs − b − v + 1 ssE msE = ssE
bvs−b−v+1

Total bvs − 1 sstot

Computational formulae

ssθ = vs
∑

h y2
h.. − bvs y2

... sstot =
∑

h

∑

i

∑

t y2
hit − bvs y2

...

ssT = bs
∑

i y2
.i. − bvs y2

... ssE = sstot − ssθ − ssT

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 10.7 Analysis of variance for the general complete block design with block×treatment interaction and block size

k = vs

Source of variation Degrees of freedom Sum of squares Mean square Ratio

Block b − 1 ssθ – –

Treatment v − 1 ssT msT = ssT
(v−1)

msT
msE

Interaction (b − 1)(v − 1) ssθT msθT = ssθT
(b−1)(v−1)

msθT
msE

Error bv(s − 1) ssE msE = ssE
bv(s−1)

Total bvs − 1 sstot

Computational formulae

ssθ = vs
∑

h y2
h.. − bvs y2

... ssθT = s
∑

h

∑

i y2
hi. − bs

∑

i y2
.i.

ssT = bs
∑

i y2
.i. − bvs y2

... − vs
∑

h y2
h.. + bvs y2

...

ssE = sstot − ssθ − ssT − ssθT sstot =
∑

h

∑

i

∑

t y2
hit − bvs y2

...

Table 10.8 Data for the DCIS weighing system

Time, position (treatment)

Block 11 (1) 12 (2) 21 (3) 22 (4) 31 (5) 32 (6)

1 0.637 0.174 0.886 0.378 0.396 0.386

0.645 0.238 0.655 0.459 0.415 0.453

2 0.675 0.187 0.528 0.270 0.594 0.799

0.480 0.183 0.701 0.426 0.545 0.413

If the block×treatment interaction term is included in the model, a test of the hypothesis H θT
0 :

{(θτ )hi − (θτ )h. − (θτ ).i + (θτ ).. = 0 for all h, i} against the alternative hypothesis H θT
A that at least

one interaction contrast is nonzero is given by

reject H θT
0 if msθT/msE > F(b−1)(v−1),bv(s−1),α (10.6.10)

for some chosen significance level α, where msθT and msE are obtained from Table 10.7. As usual,

if the interaction is significantly different from zero, a test of equality of the treatment effects may not

be of interest (unless done within each block separately). An evaluation of the usefulness of blocking

in the experiment at hand can be made by comparing msθ with msE as in Sect. 10.4.1.

Example 10.6.1 DCIS experiment, continued

The objective of the DCIS experiment, described in Example 10.3.2, was to reduce the variability in

the DCIS weighing system. The setting currently employed was treatment 4 (time 75 milliseconds,

and switch at 2 inches from the scale plate). The experiment was run as a general block design with

s = 2 observations per treatment per block (the blocking factor levels were the amounts of conveyor

pan lubrication). The responses (“uncertainty” calculated as a function of the standard deviation of 30

repeated weighings of a watermelon) are shown in Table 10.8 and plotted in Fig. 10.4.

A block-treatment interaction model (10.6.8) was fitted, so the block-treatment interaction is exam-

ined first. Figure 10.4 suggests that there might be a small interaction between block and treatment

combination.

The analysis of variance table is shown in Table 10.9, and we see that msθT = 0.019 and

msE = 0.013. Using (10.6.10), the hypothesis H θT
0 of negligible interaction would be rejected
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Table 10.9 Analysis of variance for the DCIS experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Block 1 0.0003 – –

Treatment 5 0.6132 0.1226 9.41 0.0008

Block × Treatment 5 0.0952 0.0190 1.46 0.2726

Error 12 0.1563 0.0130

Total 23 0.8649

if msθT/msE = 1.46 is larger than F5,12,α for some chosen significance level α. However,

F5,12,.01 = 9.89, so there is not sufficient evidence to reject H θT
0 at level α = 0.01. Notice that

the p-value for the test is 0.2726, so in fact, no reasonable choice of α would lead to rejection of

H θT
0 . So the block×treatment interaction that appears in Fig. 10.4 could be due to error variability.

From Table 10.9, msT/msE = 9.41 > F5,12,0.01 = 5.06, and we conclude that, averaged over the two

blocks (levels of pan lubrication), there is a significant difference between the treatment combinations

at level α = 0.01. Figure 10.4 suggests that treatment 2 might be the best treatment in both blocks (and

better than the current treatment 4). The overall significance level of the two tests is at most 0.02. �

10.6.2 Multiple Comparisons for the General Complete Block Design

No Interaction Term in the Model

The Bonferroni, Scheffé, Tukey, and Dunnett methods described in Sect. 4.4 can all be used for obtaining

simultaneous confidence intervals for sets of treatment contrasts in a general complete block design.

Since the block–treatment model (10.6.7), without interaction, is similar to the two-way main-effects

model (6.2.3) with s observations per cell, formulae for multiple comparisons are similar to those given

in (6.5.39), p. 166, with a replaced by v and r replaced by s. Thus, a set of 100(1 −α)% simultaneous

confidence intervals for treatment contrast �ciτi is of the form

∑

ciτi ∈
(

∑

ci y.i. ± w

√

msE
∑

c2
i /bs

)

, (10.6.11)

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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where the critical coefficients for the four methods are, respectively,

wB = tdf,α/2m ; wS =
√

(v − 1)Fv−1,df,α ;
wT = qv,df,α/

√
2 ; wD2 = |t |(0.5)

v−1,df,α ,

where n = bvs and df = n − b − v + 1.

Interaction Term Included in the Model

The block–treatment interaction model (10.6.8) for the general complete block design is similar

to the two-way complete model (6.2.2), p. 142, for two treatment factors with s observations per

cell. Consequently, formulae for confidence intervals for treatment comparisons, averaging over the

block×treatment interaction, are similar to those given in (6.4.18), p. 152, with a replaced by v and r

replaced by s. The general formula for a set of 100(1 − α)% simultaneous confidence intervals for

treatment contrasts is given by (10.6.11) above, but where the number of error degrees of freedom df

in each of the critical coefficients is

df = (vbs − 1) − (b − 1)(v − 1) − (b − 1) − (v − 1) = bv(s − 1) = n − bv .

Treatment comparisons may not be of interest if treatments do interact with blocks, in which case

within-block comparisons are likely to be preferred instead. These are similar to the simple contrasts

of Sect. 6.3.1 and are most easily calculated via a cell-means representation of the model. If we write

ηhi = θh + τi + (θτ )hi , (10.6.12)

then the comparison of treatments i and p in block h is the contrast

ηhi − ηhp = (θh + τi + (θτ )hi ) − (θh + τp + (θτ )hp) .

In a general complete block design, there are equal numbers of observations on each treatment in each

block so, for block h, the least squares estimate of
∑

i chiηhi is
∑

i chi yhi. with corresponding variance

msE
∑

i c2
hi/s, giving confidence intervals for

∑

i chiηhi of the form

v
∑

i=1

chiηhi ∈

⎛

⎝

v
∑

i=1

chi yhi. ±

√

√

√

√msE

v
∑

i=1

c2
hi/s

⎞

⎠ .

The critical coefficients are as for (10.6.11) but again with df = n − bv error degrees of freedom.

Example 10.6.2 DCIS experiment, continued

In the analysis of the DCIS experiment in Example 10.6.1, the block-treatment interaction appeared to

be negligible, and so the experimenters had the choice of examining the treatment effects on the weight

“uncertainty” averaged over blocks or examining the difference in the treatment effects for each block

separately. The former would be of most interest if it is not possible to control the level of conveyor

pan lubrication in an industrial setting, while the latter would be of interest if the amount of lubrication

could be fixed. Here, as an example, we investigate the latter. Writing the effect of treatment i in block

h as in (10.6.12), we look at the difference between the effects of treatments 2 (apparent best) and 4

(currently used) for each block separately, which compares times 50 and 75 milliseconds at position 2

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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for each pan lubrication level. We also look at the differences in the effect of switch position averaged

over weighing time, again for each block separately; that is,

ηh2 − ηh4 and
1

3
(ηh1 + ηh3 + ηh5) − 1

3
(ηh2 + ηh4 + ηh6) for h = 1, 2 .

These have least squares estimates and standard errors as follows:

contrast �chi yhi.

√

msE �c2
hi/s

block 1, treatment 4-2 0.2125 0.1141

block 2, treatment 4-2 0.1630 0.1141

block 1, switch 1in vs 2in 0.2577 0.0659

block 2, switch 1in vs 2in 0.2075 0.0659

Using Bonferroni’s method at overall level at least 96%, the four confidence intervals are

η14 − η12 ∈ (0.2125 ± 0.1141t.005,12) = (0.2125 ± 0.1141 × 3.055) = (−.136, .561)

η24 − η22 ∈ (0.1630 ± 0.1141t.005,12) = (0.1630 ± 0.1141 × 3.055) = (−.186, .512)

1

3
(η11 + η13 + η15) − 1

3
(η12 + η14 + η16) ∈ (0.2577 ± 0.0659 × 3.055) = (.056, .459)

1

3
(η21 + η23 + η25) − 1

3
(η22 + η24 + η26) ∈ (0.2075 ± 0.0659 × 3.055) = (.006, .409)

Thus at overall confidence level of at least 96%, we cannot detect a difference between the effects

of treatment 2 and the current treatment 4 in either block. However, switch position 2 inches from the

end of the scale plate (averaged over weighing times) reduces “uncertainty” as compared with switch

position 1 inch by up to .4 in both blocks, and hence seems to be the better position. �

10.6.3 Sample-Size Calculations

A complete block design has n = bvs experimental units divided into b blocks of size k = vs. The block

size k and the number of blocks b must be chosen to accommodate the experimental conditions, the

budget constraints, and the requirements on the lengths of confidence intervals or powers of hypothesis

tests in the usual way. If the number of blocks is fixed, one can calculate the number of observations

s per treatment per block needed to achieve a prescribed power of a test of no treatment differences.

Analogous to the sample-size calculation for testing main effects of a factor in a two-way layout, s

must satisfy

s ≥ 2vσ2φ2

b�2
, (10.6.13)

where � is the minimum difference between the treatment effects that is to be detected. The tables for

power π(�) as a function of φ are in Appendix Table A.7. In (10.6.13), we can switch the role of s and

b, and instead, calculate the number of blocks needed if the block size is fixed.

For calculation of the sample size needed to achieve confidence intervals of specified length, we

specify the maximum allowed msd in (10.6.11) and solve for s or b.

An example of the calculation of b to achieve confidence intervals of given length was given for

the randomized complete block design in Sect. 10.5.2. In Example 10.6.3, we calculate, for a general

complete block design, the block size required to achieve a given power of a hypothesis test.
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Example 10.6.3 Colorfastness experiment

The colorfastness experiment was planned by D-Y Duan, H. Rhee, and C. Song in 1990 to investigate

the effects of the number of washes on the color change of a denim fabric. The experiment was to be

carried out according to the guidelines of the American Association of Textile Chemists and Colorists

Test 61-1980. The levels of the treatment factor were the number of times of laundering, and these

were selected to be 1, 2, 3, 4, and 5.

The experimenters anticipated that there would be systematic differences in the way they made their

color determinations, and consequently, they grouped the denim fabric swatches into blocks according

to which experimenter was to make the determination. Thus the levels of the blocking factor denoted

the experimenter, and there were b = 3 blocks. They decided to use a general complete block design

and allowed the block size to be k = vs = 5s, where s could be chosen. Rightly or wrongly, they did

not believe that experimenter fatigue would have a large effect on the results, and they were happy for

the block sizes to be large.

They planned to use a block–treatment interaction model (10.6.8), and they wanted to test the null

hypothesis of no treatment differences whether or not there was block×treatment interaction. Suppose

the test was to be carried out at significance level 0.05, and suppose the experimenters wanted to reject

the null hypothesis with probability 0.99 if there was a true difference of � = 0.5 or more in the effect

of the number of washes on color rating. They expected σ to be no larger than about 0.4.

We need to find the minimum value of s that satisfies equation (10.6.13); that is,

s ≥ 2vσ2φ2

b�2
= (2)(5)(0.4)2φ2

(3)(0.5)2
= 2.13φ2 .

The denominator (error) degrees of freedom for the block–treatment interaction model is ν2 =
bv(s −1) = 15(s −1). First we locate that portion of Appendix Table A.7 corresponding to numerator

degrees of freedom ν1 = v − 1 = 4 and α = 0.05. Then to achieve power π = 0.99, trial and error

starting with s = 100 gives

s 15(s − 1) φ s = 2.13φ2 Action

100 1485 2.25 10.78 Round up to s = 11
11 150 (use 120) 2.325 11.51 Round up to s = 12
12 165 (use 120) 2.325 11.51 Stop, and use s = 12

So about s = 12 observations per treatment per block should be taken.

Instead, suppose that s had been fixed at s = 4, so that blocks were to be of size k = vs = 20, then

the roles of b and s in (10.6.13) would have been reversed, so that

b ≥ (2)(5)(.4)2φ2

(4)(.5)2
= 1.6φ2 ,

with ν2 = (5)(3)b. Then trial and error would lead to approximately b = 9. �

10.7 Checking Model Assumptions

The assumptions on the block–treatment models (10.4.1) and (10.6.7) and on the block–treatment

interaction model (10.6.8) for complete block designs need to be checked as usual. The assumptions

on the error variables are that they have equal variances, are independent, and have a normal distribution.

The form of the model must also be checked.
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Table 10.10 Checking error assumptions for a complete block design

To check for: Plot residuals against:

Independence Order of observations (in space or time)

Equal variance, and Outliers Predicted values ŷhit , levels of treatment factor, levels of block factor

Normality Normal scores (also plot separately for each treatment if r is large and for

each block if k is large)

A visual check of an assumption of no block×treatment interaction can be made by plotting yhi.

against the treatment factor levels i for each block h in turn. If the lines plotted for each block are

parallel (as in plots (a)–(d) of Fig. 6.1, p. 140), then block×treatment interaction is likely to be absent,

and error variability is small. If the lines are not parallel, then either block×treatment interaction is

present or error variability is large.

For the block–treatment model (10.4.1) for the randomized complete block design, the (hi)th

residual is

êhi = yhi − ŷhi = yhi − yh. − y.i + y.. .

For the block–treatment model (10.6.7) for the general complete block design, the (hit)th residual is

similar; that is,

êhit = yhit − ŷhit = yhit − yh.. − y.i. + y... .

For the block–treatment interaction model (10.6.8), the (hit)th residual is

êhit = yhit − ŷhit = yhit − yhi. .

The error assumptions are checked by residual plots, as summarized in Table 10.10 and described in

Chap. 5.

10.8 Factorial Experiments

When the treatments are factorial in nature, the treatment parameter τi in the complete block design

models (10.4.1), (10.6.7), and (10.6.8) can be replaced by main-effect and interaction parameters. Sup-

pose, for example, we have an experiment with two treatment factors that is designed as a randomized

complete block design—a situation similar to that of the cotton-spinning experiment of Sect. 10.5. In

order not to confuse the number b of blocks with the number of levels of a treatment factor, we will

label the two treatment factors as C and D with c and d levels respectively. If we retain the two digit

codes for the treatment combinations, then the block–treatment model is

Yhi j t = μ + θh + τi j + ǫhi j t

with the usual assumptions on the error variables. We can then express τi j , the effect of treatment

combination i j , in terms of γi (the effect of C at level i), δ j (the effect of D at level j), and (γδ)i j (the

effect of their interaction when C is at level i and D at level j); that is,

Yhi j t = μ + θh + γi + δ j + (γδ)i j + ǫhi j t . (10.8.14)

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_5
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In a general complete block design with s > 1 observations per treatment combination per block,

we may include in the model some or all of the block×treatment interactions. For example, with two

treatment factors, the block–treatment interaction model can be expressed as

Yhi j t = μ + θh + γi + δ j + (γδ)i j + (θγ)hi (10.8.15)

+ (θδ)h j + (θγδ)hi j + ǫhi j t ,

In both (10.8.14) and (10.8.15), the model assumptions are

ǫhi j t ∼ N (0,σ2) ,

ǫhi j t ’s are mutually independent ,

t = 1, . . . , s ; h = 1, . . . , b ; i = 1, . . . , c ; j = 1, . . . , d.

If there are more than two factors, the additional main effects and interactions can be added to the

model in the obvious way.

Example 10.8.1 Banana experiment

The objectives section of the report of an experiment run in 1995 by K. Collins, D. Marriott, P. Kobrin,

G. Kennedy, and S. Kini reads as follows:

Recently a banana hanging device has been introduced in stores with the purpose of providing a place where

bananas can be stored in order to slow the ripening process, thereby allowing a longer time over which the

consumer has to ingest them. Commercially, bananas are picked from trees while they are fully developed but

quite green and are artificially ripened prior to transport. Once they are purchased and brought into the consumer’s

home, they are typically placed on a counter top and left there until they are either eaten or turn black, after which

they can be thrown away or made into banana bread. Considering that the devices currently being marketed to

hang bananas cost some money and take up counter space, it is of interest to us to determine whether or not they

retard the ripening process.

While there exist many ways to measure the degree of banana ripening, perhaps the simplest method is via visual

inspection. The banana undergoes a predictable transition from the unripened green color to yellow then to yellow

speckled with black and finally to fully black. The percentage of black color can be quantified through computer

analysis of photographs of the skins of the bananas.

The major objective of our experiment, then, is to determine whether or not any differences in the percentage of

black skin exist between bananas that are treated conventionally, i.e., placed on a counter, and bananas that are

hung up. As a minor objective, we would like to determine whether or not any difference exists in the percentage

of black skin between bananas allowed to ripen in a normal day/night cycle versus those ripening in the dark such

as might occur if placed in a pantry.

The unripened bananas were bought as a single batch from a single store. They were assigned

at random to four treatment combinations, consisting of combinations of two 2-level factors. Factor

C was Lighting conditions (1 = day/night cycle, 2 = dark closet). Factor D was Storage method

(1 = hanging, 2 = counter-top). Twelve bananas were assigned at random to each treatment com-

bination. After five days, the bananas were peeled and the skin photographed. The images from the

photographic slides were traced by hand, and the percentage of blackened skin was calculated using

an image analyzer on a computer. Three of the experimenters prepared the images for the image ana-

lyzer and, since they were unskilled, they decided to regard themselves as blocks in order to remove

experimenter differences from the comparisons of the treatment combinations. They selected a general

complete block design and assigned the treated bananas in such a way that s = 4 observations on

each treatment combination were obtained by each experimenter. The treatment combinations were

observed in a random order, and the resulting data are shown in Table 10.11.

Since the experimenters did not anticipate a block×treatment interaction, they selected block–

treatment model (10.8.14) to represent the data. The decision rule for testing the hypothesis H CD
0 of

no interaction between the treatment factors Light and Storage (averaged over blocks), using a Type I
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Table 10.11 Percentage blackened banana skin

Experimenter (Block) Light C Storage D yhi j t , percentage of blackened skin

I 1 1 30 30 17 43

1 2 43 35 36 64

2 1 37 38 23 53

2 2 22 35 30 38

II 1 1 49 60 41 61

1 2 57 46 31 34

2 1 20 63 64 34

2 2 40 47 62 42

III 1 1 21 45 38 39

1 2 42 13 21 26

2 1 41 74 24 51

2 2 38 22 31 55

Table 10.12 Analysis of variance for the banana experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Block (Experimenter) 2 1255.79 627.89 –

C (Light) 1 80.08 80.08 0.42 0.5218

D (Storage) 1 154.08 154.08 0.80 0.3754

CD 1 24.08 24.08 0.13 0.7250

Error 42 8061.88 191.95

Total 47 9575.92

error probability of α = 0.01, is

reject H CD
0 if

ms(CD)

msE
> F(c−1)(d−1),df,0.01 ,

where ms(CD) = ss(CD)/(c −1)(d −1) and both ss(CD) and the number of error degrees of freedom

df are given in Table 10.12. Since there are equal numbers of observations per cell, these values can be

obtained from rule 4 of Chap. 7, p. 209; that is,

ss(CD) = bs
∑

i

∑

j

y2
.i j. − bds

∑

i

y2
.i.. − bcs

∑

j

y2
.. j. + bcds y2

.... = 24.0833,

and

df = (bcds − 1) − (b − 1) − (c − 1) − (d − 1) − (c − 1)(d − 1)

= 47 − 2 − 1 − 1 − 1 = 42 .

Other sums of squares are obtained similarly. From Table 10.12, we can see that the mean square for

blocks is much larger than the error mean square, so it was worthwhile designing this experiment as

a block design. We also see that the mean square for the Light×Storage interaction is a lot smaller

than the error mean square. As mentioned in the context of the resting metabolic rate experiment

(Example 10.4.1, p. 311), this is unusual when the model fits well since the Light and Storage

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Fig. 10.5 Interaction plot for the banana experiment

measurements include the error measurement. It suggests that the error mean square may have been

inflated by some other source of variability, such as block×treatment interaction, that has been omitted

from the model.

Interaction plots of the two factors Light and Storage (averaged over blocks) are shown in Fig. 10.5.

There is no indication that hanging bananas (Storage level 1) might retard the ripening process. In

fact, Storage level 1 seems to have given a higher percentage of blackened skin on average than

Storage level 2. However, this apparent difference may be due to chance, as the treatment effects

are not significantly different from each other. The experimenters commented that it was difficult to

select the correct threshold levels for the image analysis and also that the bananas themselves seemed

extremely variable. The experimenters felt that rather than draw firm conclusions at this stage, it might

be worthwhile working to improve the experimental procedure to reduce variability and then to repeat

the experiment. �

10.9 Using SAS Software

The analysis of variance table for a complete block design can be obtained from any computer package

that has an analysis of variance routine or a regression routine. It is good practice to enter the block

term into the model before the terms for the treatment factors. Although the order does not matter for

complete block designs, it does matter for the incomplete block designs in the next chapter.

Computer programs do not distinguish between block and treatment factors, so a test for the hypoth-

esis of no block effects will generally be listed in the output. We suggest that the latter be ignored, and

that blocking be considered to have been effective for the current experiment if msθ exceeds msE (see

Sect. 10.4.1).

Table 10.13 contains a SAS program illustrating analysis of a complete block design, using the data

of the cotton-spinning experiment (Sect. 2.3, p. 13). Following input of the data, the first call of PROC

GLM fits a block–treatment model to the data. Selected output is shown in Fig. 10.6. The TYPE I sums

of squares (not shown) are equal to the TYPE III sums of squares since there is an equal number

(s = 1) of observations per block–treatment combination. If the block×treatment interaction term

had been included in the model, this would have been entered in the usual way as BLOCK*TRTMT.

The first LSMEANS statement in Table 10.13 applies Tukey’s method for comparing pairs of treatment

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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Table 10.13 A SAS program for analysis of the cotton-spinning experiment

DATA COTTON;
INPUT BLOCK TRTMT FLYER TWIST BREAK;
LINES;
1 12 1 1.69 6.0
2 12 1 1.69 9.7
: : : : :

13 23 2 1.78 6.4
;
* Block-treatment model for a complete block design;
PROC GLM;
CLASS BLOCK TRTMT;
MODEL BREAK = BLOCK TRTMT;
LSMEANS TRTMT / PDIFF = ALL CL ADJUST = TUKEY ALPHA = 0.05;
ESTIMATE ’FLYER 1-2 COMN TWST’ TRTMT 0.5 0.5 0 0 -0.5 -0.5;
ESTIMATE ’LIN TWIST ORD FLYER’ TRTMT -10 -1 11 0 0 0;

* Factorial main effects model plus blocks;
PROC GLM;
CLASS BLOCK FLYER TWIST;
MODEL BREAK = BLOCK FLYER TWIST;
LSMEANS FLYER / PDIFF CL ALPHA=0.05;
LSMEANS TWIST / PDIFF = ALL CL ADJUST = BON ALPHA = 0.05;

* Model with twist as a linear regressor variable;
PROC GLM;
CLASS BLOCK FLYER;
MODEL BREAK = BLOCK FLYER TWIST / SOLUTION;
ESTIMATE ’FLYER 1-2’ FLYER 1 -1;

* Testing lack of fit of reduced model;
PROC GLM;
CLASS BLOCK FLYER TRTMT;
MODEL BREAK = BLOCK FLYER TWIST TRTMT;

Fig. 10.6 SAS selected

output for the

block–treatment

model—cotton-spinning

experiment
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Fig. 10.7 SAS selected

output for the factorial

main-effects

model—cotton-spinning

experiment

effects (output not shown). The two ESTIMATE statements reproduce the calculations in Sect. 10.5

for comparing the two flyers at common levels of twist, and evaluating the linear trend in twist for the

ordinary flyer.

The second call of PROC GLM in Table 10.13 replaces the treatment combination factor TRTMT
with main-effects of FLYER and TWIST; this removes their interaction effect from the model. Selected

output is shown in Fig. 10.7. Since not every combination of FLYER and TWIST was observed, the

TYPE I andTYPE III sums of squares for the individual factors are not equal. TheTYPE III sums

of squares are used for hypothesis testing, and LSMEANS statements are used for confidence intervals.

The reader may verify that the Bonferroni method provides tighter simultaneous 95% confidence

intervals for TWIST pairwise comparisons than Scheffé’s method (results not shown).

The plot of the mean response against twist for both flyer types in Fig. 10.3, p. 317, suggested the

possibility that the number of breaks per 100 pounds could be modeled by a flyer effect and a linear

twist effect. This can be evaluated by comparing the fit of the block–treatment model,

Yhi = μ + θh + τi + ǫhi

(i = 1, . . . , 6; h = 1, . . . , 13), with the fit of the reduced model,

Yh j x = μ + θh + α j + γx + ǫh j x ,

where α j is the effect of flyer j ( j = 1, 2) and x is the uncoded amount of twist (cf. Chaps. 8 and 9).

The fit of these models can easily be compared via the SAS software, either using two calls of the GLM

procedure, one for each model, or using one call that sequentially includes both models. The first call

of PROC GLM in Table 10.13 fitted the full block–treatment model, and the third call of PROC GLM
fits the reduced model that includes the flyer effect and a linear regression in the levels of twist. Notice

the similarity of the third call with the factorial main-effects model in the second call. The difference is

that when TWIST is to be regarded as a linear regressor, it is omitted from the CLASS statement. The

reduced model fits parallel linear regression lines, with intercepts adjusted for block and flyer effects.

Selected output for the reduced model is shown in Fig. 10.8. Again, the TYPE I and TYPE III sums

of squares are unequal, indicating that FLYER and TWIST cannot be estimated independently. The

fourth call of PROC GLM sequentially includes both models and will be discussed shortly.

In the third call of PROC GLM in Table 10.13, the SOLUTION option requests that the solution to

the normal equations is printed. The NOTE at the bottom of the SAS output in Fig. 10.8 alerts us to

http://dx.doi.org/10.1007/978-3-319-52250-0_8
http://dx.doi.org/10.1007/978-3-319-52250-0_9
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Fig. 10.8 SAS program

output for the reduced

model—cotton-spinning

experiment

the fact that the individual flyer effect parameters are not estimable, and the numbers given just above

the note and labeled B are nonunique solutions to the normal equations. The contrast representing

the difference in the effects of the two flyers is estimable, and we can obtain its unique least squares

estimate by taking the difference in the two values given for the individual flyers. This gives 3.8587,

which matches the value obtained from the ESTIMATE statement. The difference in the effects of the

two flyers is declared to be significantly different from zero, since the corresponding p-value is at most

0.0001. The slope coefficient of TWIST is estimated to be −14.1003, which, being negative, suggests

that the breakages decrease as the twist increases. This slope is declared to be significantly different

from zero, since the test of H0 : γ = 0 versus HA : γ 	= 0 has p-value at most 0.0001.

To test for lack of fit of the reduced model, the difference in the error sum of squares for the full and

reduced models divided by the difference in the error degrees of freedom is the mean square for lack

of fit, msLF (see Chap. 8). It provides the numerator of the test statistic for testing the null hypothesis

H R
0 : {the reduced model is adequate} against the alternative hypothesis that the reduced model is not

adequate. The decision rule is

reject H R
0 if msLF/msE > F3,60,α,

http://dx.doi.org/10.1007/978-3-319-52250-0_8
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where

msLF = [ssE(reduced) − ssE(full)] / [df(reduced) − df(full)] .

For the cotton-spinning experiment,

msLF = (319.854 − 306.446)/(63 − 60) = 4.469.

Since msLF/msE = 4.469/5.10744 = 0.88 < 1, we cannot reject H R
0 for any reasonable significance

level α. Hence, the reduced model appears to provide an adequate fit to the data, making interpretation

of the parameters in the reduced model meaningful.

One can obtain these calculations from SAS software directly. The model

MODEL BREAK = BLOCK FLYER TWIST TRTMT;

in the fourth call of GLM in Table 10.13 sequentially includes both models, as the first three terms

of the model give the reduced model, then the full model is obtained by inclusion of TRTMT. Since

TRTMT has been entered into the model last, its Type I and III sums of squares will be the same, and

the corresponding F-test

Source DF Type III SS Mean Square F Value Pr > F
TRTMT 3 13.4082028 4.4694009 0.88 0.4591

is the test for lack of fit conducted above.

We note that this has been an exercise in model-building, and we can use the model to predict the

breakage rates with either flyer over a range of values of twist. However, the model may not fit well

for flyer 2 below a twist of 1.69 (see Fig. 10.3).

10.10 Using R Software

The analysis of variance table for a complete block design can be obtained from any computer package

that has an analysis of variance routine or a regression routine. It is good practice to enter the block

term into the model before the terms for the treatment factors. Although the order does not matter for

complete block designs, it does matter for the incomplete block designs in the next chapter.

Computer programs do not distinguish between block and treatment factors, so a test for the hypoth-

esis of no block effects will generally be listed in the output. We suggest that the latter be ignored, and

that blocking be considered to have been effective for the current experiment if msθ exceeds msE (see

Sect. 10.4.1).

Tables 10.14, 10.15, 10.16 and 10.17 contain statements of an R program and selected output illus-

trating analysis of a complete block design, using the data of the cotton-spinning experiment (Sect. 2.3,

p. 13). In Table 10.14, following input of the data from the file cotton.spinning.txt and the

creation of factor variables fBlock, fTrtmt, fFlyer, and fTwist, the call of the linear models

function lm fits a block–treatment model to the data. If the block×treatment interaction term had been

included in the model, this would have been entered in the usual way as fBlock:fTrtmt. The

anova statement generates the analysis of variance table shown. A drop1 statement (see Sects. 6.9

and 7.7) would have produced the same results since there is one observation per block–treatment com-

bination. Thelsmeans function and first correspondingsummary(contrast…) statement applies

Tukey’s method for comparing the treatment effects pairwise (results not shown). The second corre-

sponding summary(contrast…) statement reproduces the calculations in Sect. 10.5 for comparing

http://dx.doi.org/10.1007/978-3-319-52250-0_2
http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 10.14 An R program and selected output for analysis of the cotton-spinning experiment: data input and analysis

of block–treatment model

> cotton.data = read.table("data/cotton.spinning.txt", header=T)
> head(cotton.data, 3)
Block Trtmt Flyer Twist Break

1 1 12 1 1.69 6.0
2 2 12 1 1.69 9.7
3 3 12 1 1.69 7.4
> tail(cotton.data, 3)
Block Trtmt Flyer Twist Break

78 13 23 2 1.78 6.4

> cotton.data = within(cotton.data,
+ {fBlock = factor(Block); fTrtmt = factor(Trtmt);
+ fFlyer = factor(Flyer); fTwist = factor(Twist) })

> # Analysis for randomized complete block design
> model1 = lm(Break ˜ fBlock + fTrtmt, data=cotton.data)
> anova(model1)

Analysis of Variance Table

Response: Break
Df Sum Sq Mean Sq F value Pr(>F)

fBlock 12 177 14.8 2.89 0.0033
fTrtmt 5 231 46.2 9.05 0.0000019
Residuals 60 306 5.1

> library(lsmeans)
> lsmTrtmt = lsmeans(model1, ˜ fTrtmt)
> summary(contrast(lsmTrtmt, method="pairwise", infer=c(T,T)))
> summary(contrast(lsmTrtmt,
+ list(Flyer1m2AtComnTwst=c(0.5, 0.5, 0, 0, -0.5, -0.5),
+ LinTwistOrdFlyer=c(-10, -1, 11, 0, 0, 0))),
+ infer=c(T,T), level=0.95, side="two-sided")
contrast estimate SE df lower.CL upper.CL t.ratio p.value
Flyer1m2AtComnTwst 3.6692 0.6268 60 2.4154 4.923 5.854 <.0001
LinTwistOrdFlyer -38.2462 9.3391 60 -56.9272 -19.565 -4.095 0.0001

Results are averaged over the levels of: fBlock
Confidence level used: 0.95

the two flyers at common levels of twist, and evaluating the linear trend in twist for the ordinary flyer.

An additional call of lm, shown in Table 10.15, replaces the treatment combination factor variable

fTrtmtwith main-effect factor variables fFlyer and fTwist; this removes their interaction effect

from the model. Since not every combination of flyer and twist was observed, the drop1 command

and resulting type 3 sums of squares are used for hypothesis testing. The lsmeans function and

correspondingsummary(contrast…) statements again generate multiple comparisons results. The

reader may verify that the Bonferroni method provides tighter simultaneous 95% confidence intervals

for twist pairwise comparisons than Scheffé’s method (results not shown).
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Table 10.15 An R program and selected output, continued, for analysis of the cotton-spinning experiment: analysis of

factorial main-effects model

> # Analysis with additive main effects
> model2 = lm(Break ˜ fBlock + fFlyer + fTwist, data=cotton.data)
> drop1(model2, ˜., test="F")

Single term deletions

Model:
Break ˜ fBlock + fFlyer + fTwist

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 306 141
fBlock 12 177 484 152 2.94 0.00281
fFlyer 1 175 481 174 34.84 1.7e-07
fTwist 3 100 407 157 6.65 0.00059

> lsmFlyer = lsmeans(model2, ˜ fFlyer)
> summary(contrast(lsmFlyer, method="pairwise"), infer=c(T,T))
> lsmTwist = lsmeans(model2, ˜ fTwist)
> summary(contrast(lsmTwist, method="pairwise", adjust="bonf"),
+ infer=c(T,T))

The plot of the mean response against twist for both flyer types in Fig. 10.3, p. 317, suggested the

possibility that the number of breaks per 100 pounds could be modeled by a flyer effect and a linear

twist effect. This can be evaluated by comparing the fit of the block–treatment model,

Yhi = μ + θh + τi + ǫhi

(i = 1, . . . , 6; h = 1, . . . , 13), with the fit of the reduced model,

Yh j x = μ + θh + α j + γx + ǫh j x ,

where α j is the effect of flyer j ( j = 1, 2) and x is the uncoded amount of twist (cf. Chaps. 8 and 9).

Comparing the fit of these models can be done easily in the R software, either using two calls of the

lm function, one for each model, or using one call that sequentially includes both models. The call

of lm in the center of Table 10.14 fitted the full block–treatment model, and the call of lm at the

top of Table 10.16 fits the reduced model that includes the flyer effect and a linear regression in the

levels of twist. This second lm call is similar to that in Table 10.15 for the the factorial main-effects

model. The difference is that when twist is to be regarded as a linear regressor, it is entered as a

numeric variable Twist—not as the factor variable fTwist. The reduced model fits parallel linear

regression lines, with intercepts adjusted for block and flyer effects. Output for the reduced model is

shown in Table 10.16. The type 1 and type 3 sums of squares generated by the respective anova and

drop1 commands are unequal, indicating that effects of fFlyer and fTwist cannot be estimated

independently.

The summary command in Table 10.16 causes display of the least squares estimates of the model

parameters. We only show one. The slope coefficient of Twist is estimated to be −14.100, which,

being negative, suggests that the breakages decrease as the twist increases. This slope is declared to

http://dx.doi.org/10.1007/978-3-319-52250-0_8
http://dx.doi.org/10.1007/978-3-319-52250-0_9
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Table 10.16 An R program and selected output, continued, for analysis of the cotton-spinning experiment: analysis of

reduced model

> # Analysis of covariance: Twist as covariate
> model3 = lm(Break ˜ fBlock + fFlyer + Twist, data=cotton.data)
> anova(model3) # to get sse for LOF test

Analysis of Variance Table
Response: Break

Df Sum Sq Mean Sq F value Pr(>F)
fBlock 12 177 14.8 2.91 0.00294
fFlyer 1 131 130.8 25.76 0.0000037
Twist 1 87 86.8 17.11 0.00011
Residuals 63 320 5.1

> drop1(model3, ˜., test="F")

Single term deletions
Model:
Break ˜ fBlock + fFlyer + Twist

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 320 140
fBlock 12 177.2 497 150 2.91 0.00294
fFlyer 1 213.2 533 178 42.00 1.6e-08
Twist 1 86.8 407 157 17.11 0.00011

> summary(model3)

Call:
lm(formula = Break ˜ fBlock + fFlyer + Twist, data = cotton.data)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

: : : :
Twist -14.100 3.409 -4.14 0.00011

> lsmFlyer = lsmeans(model3, ˜ fFlyer)
> summary(contrast(lsmFlyer, method="pairwise"), infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 3.8588 0.59541 63 2.6689 5.0486 6.481 <.0001

Results are averaged over the levels of: fBlock
Confidence level used: 0.95

be significantly different from zero, since the t-test of H0 : γ = 0 versus HA : γ 	= 0 has p-value

0.00011.

The lsmeans function and corresponding summary(contrast…) command compute and dis-

play the least squares estimate of the pairwise contrast in the flyer effects and related statistics. The

difference in the effects of the two flyers is declared to be significantly different from zero, since the

p-value for the t test is less than 0.0001. Likewise, the 95% confidence interval also excludes zero.

The difference in the error sum of squares for the full and reduced models divided by the difference

in the error degrees of freedom is the mean square for lack of fit, msLF (cf. Chap. 8). It provides the

http://dx.doi.org/10.1007/978-3-319-52250-0_8
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Table 10.17 An R program and selected output, continued, for analysis of the cotton-spinning experiment: testing for

lack of fit

> # Testing LOF of ancova model: 2 ways
> anova(model3, model1)

Analysis of Variance Table

Model 1: Break ˜ fBlock + fFlyer + Twist
Model 2: Break ˜ fBlock + fTrtmt
Res.Df RSS Df Sum of Sq F Pr(>F)

1 63 320
2 60 306 3 13.4 0.88 0.46

> model4 = lm(Break ˜ fBlock + fFlyer + Twist + fTrtmt, data=cotton.data)
> anova(model4)

Analysis of Variance Table

Response: Break
Df Sum Sq Mean Sq F value Pr(>F)
: : : : :

fTrtmt 3 13.4 4.5 0.88 0.45914

numerator of the test statistic for testing the null hypothesis H R
0 : {the reduced model is adequate}

against the alternative hypothesis that the reduced model is not adequate. The decision rule is

reject H R
0 if msLF/msE > F3,60,α,

where

msLF = [ssE(reduced) − ssE(full)] / [df(reduced) − df(full)] .

For the cotton-spinning experiment,

msLF = (320 − 306)/(63 − 60) = 4.667,

although one would obtain the value 4.533 if less rounding of ssE(reduced) and ssE(full) were used.

Since msLF/msE = 4.533/5.1 = 0.88 < 1, we cannot reject H R
0 for any reasonable significance

level α. Hence, the reduced model appears to provide an adequate fit to the data, making interpretation

of the parameters in the reduced model meaningful.

One can obtain these calculations from R directly in a couple of ways, as illustrated in Table 10.17.

The most direct is the statement

anova(model3, model1)

which provides just the F-test for lack of fit, comparing the fit of the reduced and full models. Alter-

natively, the statement

model4 = lm(Break ˜ fBlock + fFlyer + Twist + fTrtmt, data=cotton.data)
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Table 10.18 Respiratory exchange ratio data

Protocol

Subject 1 2 3

1 0.79 0.80 0.83

2 0.84 0.84 0.81

3 0.84 0.93 0.88

4 0.83 0.85 0.79

5 0.84 0.78 0.88

6 0.83 0.75 0.86

7 0.77 0.76 0.71

8 0.83 0.85 0.78

9 0.81 0.77 0.72

Source Bullough and Melby (1993). Copyright © 1993 Karger, Basel. Reprinted with permission

sequentially includes both models, as the first three terms of the model give the reduced model, then

the full model is obtained by inclusion of fTrtmt. Since fTrtmt has been entered into the model

last, its type 1 and 3 sums of squares will be the same, and the corresponding F-test is the desired

lack-of-fit test. The command anova(model4) generates the type 1 sums of squares, including that

for fTrtmt which is the test for lack of fit conducted above.

We note that this has been an exercise in model-building, and we can use the model to predict the

breakage rates with either flyer over a range of values of twist. However, the model may not fit well

for flyer 2 below a twist of 1.69 (see Fig. 10.3).

Exercises

1. Randomization

Conduct a randomization for a randomized complete block design with v = 4 treatments observed

once (s = 1) in each of b = 5 blocks.

2. Randomization

Conduct a randomization for a general complete block design for v = 3 treatments each observed

twice (s = 2) in each of b = 4 blocks.

3. DCIS experiment randomization

Suppose the DCIS experiment of Example 10.3.2, p. 309, had been designed as a randomized

complete block designs with b = 4 blocks of size k = v = 6, so that each treatment is observed

s = 1 time per block. Conduct a randomization of the treatments within each block and present

the final design.

4. Respiratory exchange ratio experiment

In the resting metabolic rate experiment introduced in Example 10.4.1, p. 311, the experimenters

also measured respiratory exchange ratio, which is another measure of energy expenditure. The

data for the second 30 minutes of testing are given in Table 10.18.

(a) Evaluate the assumptions of the block–treatment model (10.4.1) for these data.

(b) Construct an analysis of variance table and test for equality of the effects of the protocols on

respiratory exchange ratio.
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Table 10.19 Resistances for the light bulb experiment. Low resistance implies high illumination. (Order of observations

is shown in parentheses.)

Treatments

Block 1 2 3 4 5 6

I 314 (12) 285 (3) 350 (6) 523 (2) 460 (1) 482 (7)

(60 watt) 300 (13) 296 (9) 339 (8) 497 (4) 470 (5) 498 (11)

310 (15) 301 (10) 360 (14) 520 (18) 488 (17) 505 (19)

290 (22) 292 (24) 333 (16) 510 (20) 468 (21) 490 (23)

II 214 (28) 196 (27) 235 (42) 303 (26) 341 (32) 342 (25)

(100 watt) 205 (31) 201 (29) 247 (44) 319 (30) 350 (38) 347 (33)

197 (35) 197 (39) 233 (46) 305 (34) 323 (41) 352 (37)

204 (47) 215 (40) 244 (48) 316 (36) 343 (45) 323 (43)

(c) Evaluate the usefulness of blocking.

(d) Use the Scheffé method of multiple comparisons to construct simultaneous 99% confidence

intervals for all pairwise comparisons of the protocols as well as the inpatient versus outpatient

protocols corresponding to the contrast coefficient list [ 1,− 1
2
,− 1

2
].

5 Light bulb experiment

P. Bist, G. Deshpande, T.-W. Kung, R. Laifa, and C.-H. Wang ran an experiment in 1995 to compare

the light intensities of three different brands of light bulbs (coded 1, 2, 3), together with the effect

of the percentage capacity (100% and 50%) of the bulb, the latter being controlled by a dimmer

switch. Thus, there were v = 6 treatment combinations in total:

(100%, Brand 1) = 1, (100%, Brand 2) = 2, (100%, Brand 3) = 3,

(50%, Brand 1) = 4, (50%, Brand 2) = 5, (50%, Brand 3) = 6.

Two blocks were used (one per day), with all 60 watt bulbs observed in one block, and all 100 watt

bulbs in the other. Four observations were taken on each of the v = 6 treatment combinations in

each block. The response variable was the observed resistance of a photoresistor connected to the

bulb, where high illumination corresponds to low resistance. The data (resistances) are shown in

Table 10.19.

(a) Fit a block-treatment-interaction model to the data and calculate an analysis of variance table.

(b) Show that the null hypothesis of no block×treatment interaction would be rejected at level

α = 0.005.

(c) Calculate a set of confidence intervals for pairwise differences in the treatments for each block

separately. Specify the method that you are using and the overall confidence level.

(d) In terms of the six treatment parameters, write down two contrasts representing the interaction

between brand and percentage capacity (averaged over blocks). Test whether these contrasts

are significantly different from zero.

(e) Suppose that the purpose of the experiment was to determine the best brand (in terms of

illumination) for each percentage capacity and for 100 watt bulbs. Which brand(s) would you

recommend and why?
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Table 10.20 Time in seconds for the water heating experiment; order of observation within each block in parentheses

Treatment combination Block

1 2 3 4

111 261.0 (1) 279.0 (12) 296.7 (6) 282.8 (5)

112 259.4 (12) 249.4 (5) 280.7 (10) 259.9 (4)

121 300.0 (3) 331.8 (10) 308.3 (12) 314.2 (11)

122 286.6 (10) 281.3 (1) 287.7 (4) 276.3 (7)

211 255.7 (2) 304.4 (7) 286.8 (1) 276.4 (12)

212 245.6 (7) 254.7 (9) 249.1 (2) 263.6 (10)

221 266.1 (4) 291.5 (11) 285.7 (8) 294.5 (2)

222 256.4 (6) 262.2 (8) 259.2 (3) 264.0 (8)

311 162.2 (8) 168.1 (4) 147.8 (7) 132.2 (1)

312 137.0 (9) 168.1 (3) 151.9 (9) 169.9 (9)

321 109.6 (5) 109.3 (2) 109.3 (5) 294.5 (3)

322 108.2 (11) 135.3 (6) 111.2 (11) 110.0 (6)

6. Water heating experiment

The purpose of the experiment run by M. Weber, R. Zielinski, J. Y. Lee, S. Xia, and Y. Guo in

2010 was to determine the best way to heat 3 cups of water (for preparation of boxed meals) to

90oF on a kitchen stove as qsuickly as possible. In this experiment, only one stove was used, and

the three treatment factors were

C: diameter of pot (5.5, 6.25 and 8.625 inches; coded 1, 2, 3)

D: burner size (small, large; coded 1, 2)

E: cover (no, yes; coded 1, 2).

(a) Write out a checklist for such an experiment. Be careful to think about all sources of variation

and how to control for them.

(b) A pilot experiment suggested that the error variance σ2 would be no larger than 318.9 sec2.

The experimenters wanted to be able to test the hypothesis of no differences in the effects of

heating time due to the 12 treatments, with a probability of 0.9 of rejecting the hypothesis if

the true difference was � = 60 secs. The test was to be done at level α = 0.05. Calculate the

number of observations that should be taken on each of the 12 treatments.

(c) The experimenters ultimately decided that they would use a randomized complete block design

with b = 4 blocks for the experiment, where each block was defined by experimenter and day.

The data are shown in Table 10.20. Using the block–treatment model (10.4.1), p. 310, for a

randomized complete block design, check the assumptions on the model and test the hypothesis

of no effects on the heating time due to treatments.

(d) Using the factorial form of the block–treatment model similar to (10.8.15), p. 325, but with

three treatment factors, test the hypotheses of no interactions between pairs of treatment factors,

each test done at level 0.01.

(e) Taking into account any interactions discovered in part (d), list the contrasts that are of interest

to you and, using the Scheffé method, calculate a set of 95% confidence intervals for the

contrasts of interest.
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Table 10.21 Number of characters recalled for the memory recall experiment

C 1 C 2

D 1 D 2 D 3 D 1 D 2 D 3

Block E 1 E 2 E 1 E 2 E 1 E 2 E 1 E 2 E 1 E 2 E 1 E 2

I F 1 5 33 30 34 2 9 7 18 20 1 35 32

F 2 22 16 11 10 3 29 21 17 24 23 15 12

F 3 27 14 28 13 25 8 36 19 4 31 6 26

II F 1 35 3 16 25 6 31 19 14 10 23 13 27

F 2 24 5 33 11 8 20 18 34 4 36 9 12

F 3 32 30 28 7 15 29 17 1 26 21 22 2

III F 1 10 34 18 33 3 4 19 7 6 15 28 24

F 2 27 32 26 16 14 22 23 21 11 25 12 36

F 3 29 5 2 20 35 7 8 31 17 13 1 30

IV F 1 24 21 16 36 9 18 23 26 28 31 30 11

F 2 13 10 29 34 15 1 35 12 4 19 14 33

F 3 5 7 22 2 8 17 27 20 32 7 25 3

V F 1 20 12 13 21 34 7 9 4 14 23 24 36

F 2 10 28 18 25 29 31 26 4 16 11 6 22

F 3 33 2 15 5 30 27 19 8 35 17 32 1

7. Memory recall experiment

The memory recall experiment was run in 2007 by C. Lucas, A. Moczdlowski, M. Salwan,

X. Wang, and J. Williams to investigate effects of various factors that might possibly be important

for reaching consumers through print advertisements. The experiment was run as a randomized

complete block design and involved b = 5 subjects, each of whom formed a block of the design.

For each treatment combination, each subject was shown a grid of 25 characters. After studying

the grid for a specified length of time, each subject was asked to recall the placement of characters

on the grid. The number of characters correctly recalled in the correct location on the grid formed

the response. The treatment factors were:

C: Paper (neon green or white, coded 1, 2)

D: Time for studying the grid (30, 60, 90 seconds, coded 1, 2, 3)

E: Background music (no music or classical music, coded 1, 2)

F: Character type (letters, numbers, or combination of both, coded 1, 2, 3)

The grids were randomly generated with characters according to the level of factor F . The data

are shown in Table 10.21.

(a) Fit a block-treatment model to the data.

(b) Since the data are counts, one should be concerned whether the normality and equal variance

assumptions on the errors are approximately satisfied. Also there may be a time order effect

as the subject tires or gets better at the task (–the time orders are given in the data set on

the website, p. 54, for the book). By examining some relevant residual plots, show that the

assumptions on your model are approximately satisfied.

(c) Calculate an analysis of variance table and explain what conclusions you can draw. Give your

reasons, including explicit hypotheses being tested and your Type I error rates.
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Table 10.22 Data for the hypothetical chemical experiment

Lab (Block) Treatment combinations

111 112 121 122 211 212 221 222

1 7.3 9.5 13.8 15.4 16.0 18.7 11.3 14.5

2 8.8 11.3 15.3 17.7 17.9 20.8 12.0 15.4

3 11.7 14.1 17.2 22.3 22.6 24.8 16.9 18.5

4 6.2 8.3 11.2 15.4 16.8 17.4 8.2 12.5

(d) At a significance level of 0.01, test the hypothesis that there is no quadratic trend in the number

of characters recalled as the length of the study time increases.

(e) Suppose that you (pre-)planned to calculate a set of 99% simultaneous confidence intervals

for the pairwise comparisons of the three times of study. Explain whether you would use

Bonferroni, Tukey, Scheffé, or Dunnett’s method.

(f) Calculate a 90% upper bound for the true value of σ2.

(g) Write down the formula for a 95% confidence interval which compares the effect of no music

versus classical music on the number of symbols recalled (averaged over the other factors).

(h) Suppose now that you wished to design a larger experiment for the future, but with the same

treatment combinations. The design will be a randomized complete block design with each of

subjects seeing all 36 treatment combinations in a random order. If you require the confidence

interval in part (g) to be no wider than 2.0, how many subjects would you recommend?

8. Hypothetical chemical experiment

An experiment to examine the yield of a certain chemical was conducted in b = 4 different

laboratories. The treatment factors of interest were

A : acid strength (80% and 90%, coded 1, 2)

B : time allowed for reaction (15 and 30 min, coded 1, 2)

C : temperature (50◦ and 75 ◦C, coded 1, 2)

The experiment was run as a randomized complete block design with the laboratories as the levels

of the blocking factor. The resulting data (yields in grams) are shown in Table 10.22. The goal of

the experiment was to find the treatment combination(s) that give(s) the highest average yield.

(a) Plot the data and comment on your chosen plots.

(b) Fit a block–treatment model to these data and show that the assumptions on the model are

approximately satisfied.

(c) Suppose that the pre-plan was to calculate a 99% set of pairwise comparisons between the

treatment combinations using Tukey’s method, to calculate 99.5% intervals for the comparisons

between the levels of A, B and C if these were not involved in interactions and a set of 99%

intervals using Scheffé’s method for any other contrasts that look interesting. The overall

confidence level would then be at least 96.5%. List any contrasts that you would like to

examine further after looking at the plots in part (a).

(d) Calculate an analysis of variance table and test any hypotheses of interest, each at level 0.01.

State your conclusions clearly.

(e) Calculate confidence intervals for the contrasts specified in part (c), and state your conclusions.

(f) The objective of the experiment was to find the combination that gives the highest yield.

Using all the information that you have gathered, which treatment combination would you

recommend?
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9. Reaction time experiment, continued, (sample size)

The reaction time pilot experiment was described in Exercise 4, p. 100, and analyzed in Exam-

ples 6.4.3 and 6.4.5, pp. 153 and 160. The experiment was run to compare the speed of response

of a human subject to audio and visual stimuli. The two treatment factors were “Cue Stimulus”

at two levels “auditory” and “visual” (Factor A, coded 1, 2), and “Cue Time” at three levels 5,

10, and 15 seconds between cue and stimulus (Factor B, coded 1, 2, 3), giving a total of v = 6

treatment combinations. The pilot experiment used only one subject, for whom msE = 0.00029

seconds2 based on 12 degrees of freedom. An upper 95% confidence bound for the error variance

was calculated in Example 6.4.2, p. 151, as σ2 ≤ 0.000664 seconds2. To be able to draw con-

clusions about these six treatment combinations, it is important for the main experiment to use a

random sample of subjects from the population.

(a) Consider using a randomized complete block design with b subjects representing blocks for

the main experiment. Let the block sizes be k = 6, so that each treatment combination can be

observed once for each subject. How many subjects are needed if the widths of simultaneous

99% confidence intervals for the pairwise comparisons of the treatment combinations need to

be less than 0.01 seconds to be useful (that is, we require msd < 0.005 seconds)?

(b) If b = 4 subjects were available, and a general complete block design were used with block

size k = 6s, how many observations would be needed on each treatment in each block to

satisfy the requirements of the confidence intervals in part (a)?

10. Length perception experiment

The experiment was run by B. Millen, R. Shankar, K. Christoffersen, and P. Nevathia in 1996 to

explore subjects’ ability to reproduce accurately a straight line of given length. A 5 cm line (1.9685

inches) was drawn horizontally on an 11 × 8.5 in sheet of plain white paper. The sheet was affixed

at eye level to a white projection screen located four feet in front of a table at which the subject

was asked to sit. The subject was asked to reproduce the line on a sheet of white paper on which a

border had been drawn. Subjects were selected from a population of university students, both male

and female, between 20 and 30 years of age. The subjects were all right-handed and had technical

backgrounds.

There were six different borders representing the combinations of three shapes—square, circle,

equilateral triangle (levels of factor C , coded 1, 2, 3) and two areas—16 in2 and 9 in2 (levels of

factor D, coded 1, 2). The purpose of the experiment was not to see how close to the 5 cm that

subjects could draw, but rather to compare the effects of the shape and area of the border on the

length of the lines drawn. The subjects were all able to draw reasonably straight lines by hand,

and one of the experimenters measured, to the nearest half millimeter, the distance between the

two endpoints of each line drawn. Data from 14 of the subjects are shown as deviations from the

target 5 cm in Table 10.23.

(a) Fit a block–treatment model to the data using subjects as blocks and with six treatments

representing the shape–area combinations. Check the error assumptions on your model.

(b) Draw at least one graph and examine the data.

(c) Write down contrasts in the six treatment combinations representing the following compar-

isons:

(i) differences in the effects of area for each shape separately,

(ii) average difference in the effects of area,

(iii) average difference in the effects of shape.

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 10.23 Data for the length perception experiment

Subject Treatment combinations (shape, area)

11 12 21 22 31 32

1 0.20 −0.25 0.85 −0.50 0.40 0.05

2 1.70 0.30 1.80 0.40 1.40 1.80

3 −0.60 −0.90 −0.90 −0.50 −0.70 −0.50

4 0.60 0.10 0.70 0.20 0.70 0.60

5 0.50 0.40 0.30 0.70 0.50 0.60

6 0.20 −0.60 0.00 −1.40 −0.60 −1.20

7 1.30 −0.10 −0.40 0.50 −0.15 0.30

8 −0.85 −1.30 −0.40 −1.55 −0.85 −1.30

9 0.80 0.05 0.55 1.25 1.30 0.20

10 0.10 −0.10 −0.30 0.95 0.30 −0.95

11 −0.20 −0.40 −0.50 −0.30 −0.40 −0.40

12 0.05 −0.20 0.55 0.60 0.10 0.10

13 0.80 −0.60 0.20 −0.60 −0.60 −0.30

14 −0.25 −0.70 0.00 −0.70 −0.10 −0.95

(d) Give a set of 97% simultaneous confidence intervals for the contrasts in (c)(i). State your

conclusions.

(e) Under what conditions would the contrasts in (c)(ii) and (iii) be of interest? Do these conditions

hold for this experiment?

11. Load-carrying experiment

The purpose of the experiment run by M. Flannery, C. Lee, E. Nelson, and P. Sparto in 1993

was to investigate the load-carrying capability of the human arm. Subjects were selected from a

population of healthy males. The maximum torque generated at the elbow joint was measured (in

newtons) using a dynamometer for each subject in a 5 min exertion for nine different arm positions

(in a random order). The nine arm positions were represented by v = 9 treatment combinations

consisting of levels of the two factors “flex” with levels 0◦, 45◦, 90◦ of elbow flexion, coded 0, 1,

2, and “rotation” with levels 0◦, 45◦, 90◦ of shoulder rotation, coded 0, 1, 2.

The experiment was run as a randomized complete block design with four blocks, each block being

defined by a different subject. The subjects were selected from the populations of male students

in the 20–30 year range in a statistics class.

(a) Identify your proposed analysis, including your model, any hypotheses you would propose

testing, and any confidence intervals you would propose calculating. What are your overall

significance level and confidence level?

(b) The experimenters decided that they required Scheffé’s 95% confidence intervals for any

normalized contrast in the main effects of each factor separately to be no wider than 10

newtons. How many subjects would have been needed to satisfy this requirement if the error

variance is similar to the value msE = 670 newtons2 that was obtained in the pilot experiment?

(c) The data are shown in the order collected in Table 10.24. Plot the data. Are there any other

contrasts that you would like to examine in addition to any pre-planned contrasts that you

identified in (a)?
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Table 10.24 Data and order of collection for the load-carrying experiment

Order 1 2 3 4 5 6 7 8 9

Treat. Comb. 31 21 23 11 22 13 12 32 33

Subj 1 250 230 170 160 240 160 150 200 180

Treat. Comb. 11 22 31 32 23 21 12 33 13

Subj 2 230 260 260 220 250 270 230 190 210

Treat. Comb. 21 13 31 32 11 22 12 33 23

Subj 3 230 180 210 190 150 190 140 160 180

Treat. Comb. 31 11 33 22 13 32 21 12 23

Subj 4 360 200 380 290 240 310 280 350 210

Table 10.25 Data for the biscuit experiment (percentage of original height)

Treatment combination

Block 11 12 13 21 22 23 31 32 33

1 350.0 375.0 362.5 237.5 237.5 256.3 191.7 216.7 208.3

300.0 362.5 312.5 231.3 231.3 243.8 200.0 212.5 225.0

2 362.8 350.0 367.5 250.0 262.5 250.0 245.8 212.5 241.7

412.5 350.0 387.5 268.8 231.3 237.5 225.0 250.0 225.0

3 350.0 387.5 425.0 300.0 275.0 231.3 204.4 187.5 187.5

337.5 362.5 400.0 262.5 206.3 262.5 204.2 204.2 208.3

4 375.0 362.5 400.0 318.8 250.0 243.8 200.0 216.7 212.5

350.0 337.5 350.0 256.3 243.8 250.0 150.0 183.3 187.5

(d) Are the assumptions on block–treatment model (10.4.1) approximately satisfied for these data?

Pay particular attention to outliers. If the assumptions are satisfied, analyze the experiment. If

they are not satisfied, what information can you gather from the data?

(e) Do your conclusions apply to the whole human population? Explain.

12. Biscuit experiment

The biscuit experiment was run in 1994 by N. Buurma, K. Davis, M. Gross, M. Kresja, and

K. Zitoun in order to determine how to make fluffy biscuits. The two treatment factors of interest

were “height of uncooked biscuit” (0.25, 0.50, or 0.75 inches, coded 1, 2, and 3) and “kneading

time” (number of times: 7, 14, or 21, coded 1, 2, and 3). The design used was a general complete

block design with b = 4 blocks, consisting of the four runs of an oven. The experimental units

consisted of k = 18 positions on a baking pan. Each of the v = 9 treatment combinations was

observed s = 2 times per block. The resulting observations are “percentage of original height”

(so, for example, 362.5 means the height of the cooked biscuit is 3.625 times the height of the

uncooked biscuit). The data are shown in Table 10.25.

(a) State a suitable model for this experiment and check that the assumptions on your model hold

for these data.

(b) Evaluate whether blocking was worthwhile in this experiment.

(c) Use an appropriate multiple comparisons procedure to evaluate which treatment combination

yields the largest percentage increase in height.

(d) Write down the contrast that measures the linear trend in the response as the kneading time

increases. Test whether this contrast is significantly different from zero.
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Table 10.26 Dissolving time for the effervescent experiment (Order of observation in parentheses)

Treatment combination

Block 11 12 13 21 22 23

I 75.525 (8) 68.125 (3) 44.825 (7) 78.350 (1) 40.575 (2) 27.450(18)

70.325 (9) 47.525 (4) 36.200(10) 76.050(12) 40.000 (5) 26.600(19)

69.925(17) 61.475 (6) 39.350(11) 78.425(15) 39.500(20) 24.950(21)

69.800(23) 58.625(14) 37.425(13) 71.525(16) 40.400(22) 26.325(24)

II 83.475(34) 71.759(36) 51.975(28) 92.725(31) 42.275(30) 25.400(25)

86.800(41) 70.825(37) 50.100(29) 77.957(35) 44.425(32) 26.333(26)

83.750(44) 73.925(42) 51.225(33) 85.425(39) 42.475(38) 25.875(27)

79.575(46) 71.550(48) 53.700(47) 87.333(45) 44.300(42) 26.650(40)

13. Effervescent experiment

The effervescent experiment was run by B. Bailey, J. Lewis, J. Speiser, Z. Thomas, and S. White

in 2011 to compare dissolving times of two different brands (name brand, store brand, coded 1, 2)

of cold medicine tablets in three different equally spaced water temperatures (6oC, 23oC, 40oC,

coded 1, 2, 3). A complete block design with b = 2 blocks was selected with s = 4 observations

on each of the v = 6 treatment combinations in each block. In Block I, the liquid was stirred using

a magnetic sirring plate at 350 revolutions per minute. In Block II, the liquid was not stirred.

The dissolving time was measured from the time a tablet was dropped (from a fixed height) into

60 mL of water to the time the tablet was completely dissolved. The recorded observation was

taken as an average of the times as measured by four experimenters and the data are shown in

Table 10.26.

(a) Plot the data and comment on any interesting features.

(b) Fit the block-treatment model to the data and check the assumptions on the model, paying

particular attention to outliers and equal variances.

(c) Investigate the effects on the dissolving time due to the different temperatures, including

pairwise comparisons, and linear and quadratic trends (assuming that these investigations are

pre-planned).

14. Colorfastness experiment, continued

The colorfastness experiment was described in Example 10.6.3, p. 323. There were 5 levels of the

treatment factor “number of times of laundering” and three blocks formed by the experimenters.

The ideal number of observations was calculated in Example 10.6.3 to be s = 12 observations per

treatment per block so a total of k = vs = 60 swatches of material were evaluated for color by

each experimenter.

The experiment was carried out according to the guidelines of the American Association of Textile

Chemists and Colorists Test 61-1980. The measurements that are given in Table 10.27 were made

using the Gray Scale for Color Change. This scale is measured using the integers 1–5, where 5

represents no change from the original color. Using their own continuous version of the Gray

Scale, each of the b = 3 experimenters made color determinations on s = 12 swatches of fabric

for each of the v = 5 treatments (numbers of washes) in a random order and without knowledge

of which treatment was being evaluated —a “blind study”.
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Table 10.27 Data for the colorfastness experiment

Block (Experimenter) Number of washes yhit (Measurement on the gray scale)

1 1 3.8, 4.0, 4.0, 3.9, 3.8, 3.7, 3.9, 4.0, 4.0, 4.0, 3.9, 4.0

2 3.0, 3.7, 3.8, 3.0, 3.7, 4.0, 2.9, 3.5, 3.2, 3.5, 4.0, 3.5

3 3.7, 3.3, 3.5, 3.6, 3.1, 3.0, 3.2, 3.7, 3.8, 3.7, 3.6, 3.6

4 3.0, 3.6, 3.9, 3.8, 3.8, 3.1, 3.6, 3.4, 4.0, 3.2, 3.0, 3.8

5 3.6, 3.1, 3.8, 3.4, 3.9, 3.4, 3.5, 4.0, 3.4, 3.9, 3.0, 3.3

2 1 4.5, 3.8, 3.5, 3.5, 3.6, 3.8, 4.6, 3.9, 4.0, 3.9, 3.8, 4.2

2 3.7, 3.6, 3.8, 3.5, 3.8, 4.0, 3.6, 3.6, 3.4, 3.7, 3.4, 3.3

3 3.0, 3.7, 2.8, 3.0, 3.6, 3.4, 3.8, 3.6, 3.4, 3.7, 3.9, 3.8

4 4.2, 3.8, 3.1, 2.8, 3.2, 3.0, 3.7, 3.0, 3.7, 3.5, 3.2, 3.9

5 3.2, 3.5, 3.1, 3.3, 2.8, 3.5, 3.5, 3.2, 3.6, 3.7, 3.2, 3.2

3 1 4.0, 4.2, 3.8, 3.8, 4.2, 4.2, 3.8, 4.2, 4.2, 3.8, 4.2, 3.9

2 3.2, 2.8, 2.8, 4.0, 3.0, 3.2, 3.8, 3.5, 4.0, 3.2, 3.5, 3.4

3 3.8, 4.0, 3.8, 3.4, 4.2, 3.4, 4.0, 3.8, 4.2, 3.9, 3.9, 3.1

4 4.2, 3.8, 3.5, 3.4, 4.2, 2.9, 3.5, 3.2, 3.5, 4.0, 3.2, 3.9

5 3.5, 3.8, 2.8, 4.2, 4.0, 3.8, 3.9, 2.9, 3.9, 3.2, 3.5, 3.5

(a) Plot the treatment averages for each block. Comment on a possible interaction between exper-

imenter and number of washes, and also on any surprising features of the data.

(b) Fit a block–treatment-interaction model (10.6.8) to these data. Check the assumptions of nor-

mality, equal variance, and independence of the error variables.

(c) Using only the data from experimenters 1 and 2, repeat part (b). Under what circumstances

could you justify ignoring the results of experimenter 3?

(d) Investigate the linear and quadratic trends in the effect on color of the number of washes. If

necessary, use Satterthwaite’s approximation for unequal variances.

15. Insole cushion experiment

The insole cushion experiment was run in the Gait Laboratory at The Ohio State University by

V. Agresti, S. Decker, T. Karakostas, E. Patterson, S. Schwartz, 1995. The objective of the exper-

iment was to compare the effect on the force with which the foot hits the ground of a regular shoe

insole cushion and a heel cushion (factor C , coded 1, 2, respectively) available both as brand name

and a store name (factor D, coded 1, 2, respectively).

Only one subject (and one pair of shoes) was used. A pilot experiment indicated that fatigue would

not be a factor. The natural walking pace of the subject was measured before the experiment. This

same pace was maintained throughout the experiment by use of a metronome.

The experiment was divided into two days (blocks). On one day, measurements were taken on the

subject’s dominant leg (kicking leg) and the nondominant leg was examined on the second day.

Each of the v = 4 treatment combinations were measured s = 5 times per block in a randomized

order. For each treatment combination, the subject was instructed to walk naturally along the walk-

way of the laboratory without looking down. As the foot hit the “force plate,” an analog signal was

sent to a computer, which then converted the signal to a digital form. The response variable, shown

in Table 10.28, is the maximum deceleration of the vertical component of the ground reaction force

measured in newtons.
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Table 10.28 Data for the insole cushion experiment

Block I (Right leg)

C D Response in Newtons (order)

1 1 899.99 (3) 910.81 (5) 927.79 (10) 888.77 (11) 911.93 (16)

1 2 924.92 (2) 900.10 (6) 923.55 (12) 891.56 (17) 885.73 (20)

2 1 888.09 (4) 954.11 (7) 937.41 (9) 911.85 (14) 908.41 (18)

2 2 884.01 (1) 918.36 (8) 880.23 (13) 891.16 (15) 917.16 (19)

Block II (Left Leg)

C D Response in Newtons (order)

1 1 852.94 (22) 866.28 (27) 886.65 (28) 851.14 (33) 869.80 (34)

1 2 882.95 (21) 865.58 (24) 868.15 (25) 893.82 (37) 875.98 (38)

2 1 920.93 (26) 880.26 (31) 897.10 (35) 893.78 (39) 885.80 (40)

2 2 872.50 (23) 892.76 (29) 895.93 (30) 899.44 (32) 912.00 (36)

(a) Fit a model that includes a block×treatment interaction. Prepare an analysis of variance table.

What can you conclude?

(b) Draw interaction plots for the CD interaction, C× block interaction, D× block interaction, and

Treatment Combination×block interaction. Which contrasts would be of interest to examine?

(c) Calculate confidence intervals for any means or contrasts that you identified in part (b), after

having looked at the data.

(d) Check the assumptions on the model. There are two possible outliers. Re-examine the data

without either or both of these observations. Do any of your conclusions change? Which

analysis would you report?

16. Yeast experiment

The investigators (K. Blenk, M. Chen, G. Evans, J. Chen Ibinson, J. Lamack, and E. Scott, 2000)

planned an experiment to investigate how rapid rise yeast and regular yeast differ in terms of their

rate of rising. They were also interested in finding out whether temperature had significant effect

on the rising rate. For each observation, 0.3 gm of yeast and 0.45 gm sugar were mixed together

and added to a test tube, together with 6ml of water. The test tube was placed into a water bath of

specified temperature. The level (height) of the mixture in the test tube was recorded immediately

and then again after 15 minutes. Each response is the percentage gain in height of the mixture in

the test tube after the 15 minutes. There were three treatment factors:

Factor C: Initial temperature of water mixed with the yeast and flour

(3 levels: 100◦F, 115◦F, 130◦F)

Factor D: Type of yeast (2 levels: Rapid rise, Regular)

Factor E: Temperature of water bath (2 levels: 70◦F, 85◦F)

There were b = 3 blocks with each experimenter-team forming a block. Each team took s = 2

observations on each of the v = 12 treatment combinations. The factorial form of the block–

treatment model similar to (10.8.15), but with three treatment factors, was selected.

(a) Explain in at most two sentences why the treatment combinations should be randomly ordered

in each block before they are observed.
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Table 10.29 Data for the yeast experiment (percentage rise). Treatment combinations are the levels of (water temper-

ature, yeast, bath temperature)

Block 1 Block 2 Block 3

water/yeast/bath yhi jk1 yhi jk2 yhi jk1 yhi jk2 yhi jk1 yhi jk2

111 8.2 2.7 10.9 1.8 11.4 4.8

112 30.0 39.8 31.8 36.0 42.4 20.0

121 12.6 17.7 3.5 3.4 3.4 8.5

122 64.7 73.9 42.0 32.6 34.5 30.0

211 18.1 5.4 12.3 18.3 8.5 8.0

212 63.5 66.3 23.7 57.5 30.6 45.3

221 4.2 12.2 7.7 8.3 6.0 8.2

222 96.8 71.1 34.1 40.9 49.3 46.0

311 44.4 16.4 5.0 4.8 8.5 3.3

312 58.2 63.3 29.2 27.8 37.5 18.2

321 19.8 9.4 4.8 6.7 6.4 12.9

322 99.7 92.3 53.2 58.9 43.9 73.7

(b) Why would you check for normality of the residuals in general, and in this experiment in

particular?

(c) Before the experiment, the experimenters had planned to calculate a set of 99% confidence

intervals for the pairwise comparisons of the treatment combinations (averaged over blocks).

A pilot experiment indicated that the normality assumption is approximately satisfied and that

the error variance would be about 9 percent2. They wished to have confidence intervals of

half-width at most 5 percent. How many observations per treatment combination per block

would this have required?

(d) Due to time considerations, the experimenters were only able to take 2 observations per treat-

ment combination per block as shown in Table 10.29. Calculate an analysis of variance table

and explain what conclusions you can draw from it. Be careful about interpreting main effects

in the presence of interactions, and be careful about your levels of significance.

(e) Illustrate the main points about the treatment factor effects (averaged over the blocks) that you

mentioned in part (d) by sketching two plots. Choose these plots carefully and explain why

you chose them.

(f) Test at significance level 0.01 whether or not there is a significant linear trend in the “percent-

gain in height” as the level of initial water temperature increases (averaged over all the other

variables). State your conclusions.

17. Cotton-spinning experiment

In the cotton-spinning experiment of Sect. 10.5, p. 314, the two observations on treatment 1 (ordi-

nary flier, 1.69 twist) arising from blocks 5 and 10 appear to be outliers.

(a) Using a computer package, repeat the analysis of Sect. 10.5 without these two observations.

(b) Show that the assumptions on the block–treatment model (10.4.1) are approximately satisfied

when these two outliers are omitted.

(c) Draw conclusions about the fliers and degrees of twist from your analysis. Do any of your

conclusions contradict those drawn when the outliers were included?

(d) Which analysis do you prefer and why?
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11.1 Introduction

When an experiment needs to be run in blocks but, for practical reasons, the block size cannot be a

multiple of the number of treatments, then a complete block design (Chap. 10) cannot be used—an

incomplete block design needs to be used instead. The incomplete block designs discussed in this

chapter have block size smaller than the number of treatments, but larger block sizes can be obtained

by adding one or more complete set of treatments to every block.

In Sect. 11.2, we discuss basic design issues of block size, randomization and estimability. Then,

in Sect. 11.3, three useful and efficient types of incomplete block designs (balanced incomplete block

designs, group divisible designs, and cyclic designs) are introduced. Analysis of incomplete block

designs is described in Sect. 11.4, including some specific formulae for balanced incomplete block

designs and group divisible designs. In Sect. 11.5, we describe and analyze an experiment that was

designed as a cyclic group divisible design. Sample-size calculations are discussed in Sect. 11.6, and

factorial experiments in incomplete block designs are considered in Sect. 11.7. In general, since not

every combination of treatment and block is observed, incomplete block designs are most easily

analyzed using computer software. Illustrations are given in Sect. 11.8 by SAS software and in Sect. 11.9

by R.

11.2 Design Issues

11.2.1 Block Sizes

Block sizes are dictated by the availability of groups of similar experimental units. For example, in the

breathalyzer experiment examined in Sect. 10.3.1, p. 306, the block size was chosen to be k = 5. This

choice was made because the pilot experiment indicated that experimental conditions were fairly stable

over a time span of five observations taken close together, and also because five observations could be

taken by a single technician in a shift. In other experiments, the block size may be limited by the capacity

of the experimental equipment, the availability of similar raw material, the length of time that a subject

will agree to remain in the study, the number of observations that can be taken by an experimenter

before fatigue becomes a problem, and so on. Such restrictions on the block size may result in the

blocks being too small for every treatment to be observed the same number of times in every block. The

breathalyzer experiment required the comparison of v = 36 treatment combinations (twelve different
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Table 11.1 An incomplete block design with b = 8, k = 3, v = 8, r = 3

Block Block

I 1 3 8 V 5 7 4

II 2 4 1 VI 6 8 5

III 3 5 2 VII 7 1 6

IV 4 6 3 VIII 8 2 7

alcohol concentrations combined with three air-intake ports) of which only five would be observed per

block. Skill was then needed in selecting the best design that would still allow all treatment contrasts

to be estimable with high precision.

11.2.2 Design Plans and Randomization

All the designs that we discuss in this chapter are equireplicate; that is, every treatment (or treatment

combination) is observed r times in the experiment. These tend to be the most commonly used designs,

although nonequireplicate designs are occasionally used in practice.

We use the symbol nih to denote the number of times that treatment i is observed in block h. In

general, it is better to observe as many different treatments as possible in a block, since this tends to

decrease the average variance of the contrast estimators. Therefore, when the block size is smaller than

the number of treatments, each treatment should usually be observed either once or not at all in a block.

Such block designs are called binary, and every nih is either 0 or 1. For most purposes, the best binary

designs are those in which pairs of treatments occur together in the same number (or nearly the same

number) of blocks. These designs give rise to equal (or nearly equal) lengths of confidence intervals

for pairwise comparisons of treatment effects.

There are three stages in designing an experiment with incomplete blocks. The first stage is to obtain

as even a distribution as possible of treatment labels within the blocks. This results in an experimental

plan. The plan in Table 11.1, for example, shows a design with b = 8 blocks (labeled I, II, . . . , VIII)

each of size k = 3, which can be used for an experiment with v = 8 treatments (labeled 1, . . . , 8) each

observed r = 3 times. The treatment labels are evenly distributed in the sense that no label appears

more than once per block and pairs of labels appear together in a block either once or not at all, which

is “as equal as possible”.

The experimental plan is often called the “design,” even though it is not ready for use until the random

assignments have been made. There are three steps to the randomization procedure, as follows.

(i) Randomly assign the block labels in the plan to the levels of the blocking factor(s).

(ii) Randomly assign the experimental units in a block to those treatment labels allocated to that block.

(iii) Randomly assign the treatment labels in the plan to the actual levels of the treatment factor.

The randomization procedure is illustrated in the following example.

Example 11.2.1 Metal alloy experiment

Suppose an experiment is to be run to compare v = 7 compositions of a metal alloy in terms of tensile

strength. Further, suppose that only three observations can be taken per day, and that the experiment

must be completed within seven days. It may be thought advisable to divide the experiment into blocks,

with each day representing a block, since different technicians may work on the experiment on different



11.2 Design Issues 351

Table 11.2 Randomization of an incomplete block design

Block label Unrandomized design Block label Day Design after step (i) Design after step (ii)

I 1 2 4 VI 1 6 7 2 2 7 6

II 2 3 5 II 2 2 3 5 5 3 2

III 3 4 6 III 3 3 4 6 4 3 6

IV 4 5 7 I 4 1 2 4 2 1 4

V 5 6 1 V 5 5 6 1 1 5 6

VI 6 7 2 IV 6 4 5 7 4 5 7

VII 7 1 3 VII 7 7 1 3 7 3 1

days and the laboratory temperature may vary from day to day. Thus, an incomplete block design with

b = 7 blocks of size k = 3 and with v = 7 treatment labels is needed. The plan shown in the first two

columns of Table 11.2 is of the correct size. It is binary, with every treatment appearing 0 or 1 times

per block and r = 3 times in total. Also, all pairs of treatments occur together in a block exactly once,

so the treatment labels are evenly distributed over the blocks. Randomization now proceeds in three

steps.

Step (i): The block labels need to be randomly assigned to the 7 days. Suppose we obtain the

following pairs of random digits from a random number generator or from Table A.1 and associate

them with the blocks:
Random digits: 71 36 65 93 92 02 97

Block labels: I II III IV V VI VII

Then, sorting the random numbers into ascending order, the blocks of the plan are assigned to the seven

days as in columns 3–5 of Table 11.2.

Step (ii): Now we randomly assign time slots within each day to the treatment labels. Again, using

pairs of random digits either from a random number generator or from where we left off in Table A.1,

we associate the random digits with the treatment labels as we illustrate here for the first three days:

Day: Day 1 Day 2 Day 3

Block: (Block VI) (Block II) (Block III)

Random digits: 50 29 03 65 34 30 74 56 88

Treatment labels: 6 7 2 2 3 5 3 4 6

Sorting the random numbers into ascending order for each day separately gives the treatment label

order 2, 7, 6 for day 1, and 5, 3, 2 for day 2, and 4, 3, 6 for day 3, and so on. The design after step (ii)

is shown in the last column in Table 11.2. A third set of random digits is now required to associate the

treatment numbers in the plan with the 7 compositions of metal alloy. �

11.2.3 Estimation of Contrasts

The importance of selecting an experimental plan with an even distribution of treatment labels within

the blocks, such as those in Tables 11.1 and 11.2, is to ensure that all treatment contrasts are estimable

and that pairwise comparison estimators have similar variances. The plan shown in Table 11.3 is poor.

Although all treatments appear r = 3 times in the design, some pairs of treatment labels (such as 1

and 3) occur together in two blocks, while other pairs (such as 1 and 2) never appear together. Worse
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Table 11.3 A disconnected incomplete block design with b = 8, k = 3, v = 8, r = 3

Block Block

I 1 3 5 V 5 7 1

II 2 4 6 VI 6 8 2

III 3 5 7 VII 7 1 3

IV 4 6 8 VIII 8 2 4

Fig. 11.1 Connectivity

graphs to check

connectedness of designs

1

8

6 4

3 5

7

2

(a) Disconnected design of Table 11.3
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(b) Connected design in Table 11.1

still, is that some blocks contain all the even-numbered treatment labels, and the other blocks contain

all the odd-numbered labels. The result is that every pairwise comparison between an even-numbered

and an odd-numbered treatment is not estimable. The design is said to be disconnected.

Disconnectedness can be illustrated through a connectivity graph as follows. Draw a point for each

treatment and then draw a line between every two treatments that occur together in any block of the

design. The connectivity graph for the disconnected design in Table 11.3 is shown in Fig. 11.1a. Notice

that the graph falls into two pieces. There is no line between any of the odd-labeled treatments and the

even-labeled treatments.

A design is connected if every treatment can be reached from every other treatment via lines in

the connectivity graph. The connectivity graph for the connected design in Table 11.1 is shown in

Fig. 11.1b and it can be verified that there is a path between every pair of treatments. For example,

although treatments 1 and 5 never occur together in a block and so are not connected by a line, there

is nevertheless a path from 1 to 4 to 5. All contrasts in the treatment effects are estimable in a design

if and only if the design is connected. The connectivity graph therefore provides a simple means of

checking estimability.

Although disconnected designs will be useful in Chap. 13 for single-replicate (r = 1) factorial

experiments arranged in blocks, they need never be used for experiments with at least two observations

per treatment. All balanced incomplete block designs are connected, and so are most group divisible

designs and cyclic designs. These three types of design are described next.

11.3 Some Special Incomplete Block Designs

11.3.1 Balanced Incomplete Block Designs

A balanced incomplete block design is a design with v treatment labels, each occurring r times, and

with bk experimental units grouped into b blocks of size k < v in such a way that the units within a

http://dx.doi.org/10.1007/978-3-319-52250-0_13
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Table 11.4 A balanced incomplete block design with v = 8, r = 7, b = 14, k = 4, λ = 3

Block Treatments Block Treatments

I 1 2 3 4 VIII 2 3 5 8

II 1 2 5 6 IX 2 3 6 7

III 1 2 7 8 X 2 4 5 7

IV 1 3 5 7 XI 2 4 6 8

V 1 3 6 8 XII 3 4 5 6

VI 1 4 5 8 XIII 3 4 7 8

VII 1 4 6 7 XIV 5 6 7 8

block are alike and units in different blocks are substantially different. The plan of the design satisfies

the following conditions:

(i) Each treatment label appears either once or not at all in a block (that is, the design is binary).

(ii) Each pair of labels appears together in λ blocks, where λ is a fixed integer.

Block design randomization is carried out as illustrated in Sect. 11.2.2.

All balanced incomplete block designs have the desirable properties that all treatment contrasts are

estimable and all pairwise comparisons of treatment effects are estimated with the same variance so

that their confidence intervals are all the same length. Balanced incomplete block designs also tend

to give the shortest confidence intervals on the average for any large number of contrasts. For these

reasons, the balanced incomplete block design is a popular choice among experimenters. The main

drawback is that such designs exist only for some choices of v, k, b, and r .

The design in Table 11.2 is a balanced incomplete block design for v = 7 treatments and b = 7

blocks of size k = 3. It can be seen that conditions (i) and (ii) are satisfied, with every pair of labels

appearing together in exactly λ = 1 block. A second example of a balanced incomplete block design,

prior to randomization, is shown in Table 11.4 for v = 8 treatments in b = 14 blocks of size k = 4.

Again, conditions (i) and (ii) are satisfied, this time with λ = 3.

We can verify that the design in Table 11.1 (p. 350) with v = b = 8, r = k = 3 is not a balanced

incomplete block design. Label 2, for example, appears in one block with each of labels 1, 3, 4, 5,

7, and 8 but never with label 6. The following simple argument shows that no balanced incomplete

block design can possibly exist for this size of experiment. In a balanced incomplete block design with

v = b = 8, r = k = 3, label 2, for example, must appear in r = 3 blocks in the design, and in each

block there are k−1 = 2 other labels. So label 2 must appear in a block with a total of r(k−1) = 6 other

treatment labels. Consequently, if label 2 were to appear λ times with each of the other v−1 = 7 labels,

then 7λ would have to be equal to r(k − 1) = 6. This would require that λ = 6/7 = r(k − 1)/(v − 1).

Since λ is not an integer, a balanced incomplete block design of this size cannot exist. However, for

the size of design in Table 11.4, λ is an integer since λ = r(k − 1)/(v − 1) = 7(3)/(7) = 3.

There are three necessary conditions for the existence of a balanced incomplete block design, all of

which are easy to check. These are

vr = bk ,

r(k − 1) = λ(v − 1) , (11.3.1)

b ≥ v .
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The first condition is satisfied by all block designs with equal replication and equal block sizes.

The second condition is obtained by the argument above, and the third condition is called Fisher’s

inequality. Although the three necessary conditions can be used to verify that a balanced incomplete

block design of a given size may exist, they do not guarantee its existence. Lists of balanced incomplete

block designs can be found in Cochran and Cox (1957, chapter 11) and Fisher and Yates (1973), or

can be obtained by some computer packages (see, for example, PROC OPTEX in the SAS software,

described in Sect. 11.8.1 and the ibd package in R, Sect. 11.9.1).

11.3.2 Group Divisible Designs

A group divisible design is a design with v = gℓ treatment labels (for some integers g > 1 and ℓ > 1),

each occurring r times, and bk experimental units grouped into b blocks of size k < v in such a way

that the units within a block are alike and units in different blocks are substantially different. The plan

of the design satisfies the following conditions:

(i) The v = gℓ treatment labels are divided into g groups of ℓ labels—any two labels within a group

are called first associates and any two labels in different groups are called second associates.

(ii) Each treatment label appears either once or not at all in a block (that is, the design is binary).

(iii) Each pair of first associates appears together in λ1 blocks.

(iv) Each pair of second associates appears together in λ2 blocks.

Block design randomization is carried out as in Sect. 11.2.2.

It will be seen in Sect. 11.4.5 that the values of λ1 and λ2 govern the lengths of confidence intervals

for treatment contrasts. Generally, it is preferable to have λ1 and λ2 as close as possible, which ensures

that the confidence intervals of pairwise comparisons are of similar lengths. Group divisible designs

with λ1 and λ2 differing by one are usually regarded as the best choice of incomplete block design

when no balanced incomplete block design exists.

An example of a group divisible design (prior to randomization) is the experimental plan shown in

Table 11.1, p. 350. It has the following g = 4 groups of ℓ = 2 labels:

(1, 5), (2, 6), (3, 7), (4, 8).

Labels in the same group (first associates) never appear together in a block, so λ1 = 0. Labels in

different groups (second associates) appear together in one block, so λ2 = 1.

A second example is given by the experimental plan in Table 11.5, and it has g = 4 groups of ℓ = 3

labels:

(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12),

and λ1 = 3,λ2 = 1 (which is not ideal since λ1 and λ2 differ by more than 1).

There are four necessary conditions for the existence of a group divisible design with chosen values

of v = gℓ, b, k, r namely,

gℓr = bk ,

r(k − 1) = λ1(ℓ − 1) + λ2ℓ(g − 1) ,

r ≥ λ1 ,

rk ≥ λ2v ,
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Table 11.5 A group divisible design with v = 12, r = 3, b = 6, k = 6, λ1 = 3, λ2 = 1

Block Treatments

I 1 2 3 4 5 6

II 1 2 3 7 8 9

III 1 2 3 10 11 12

IV 4 5 6 7 8 9

V 4 5 6 10 11 12

VI 7 8 9 10 11 12

for integers λ1 and λ2.

All group divisible designs with λ2 = 0 should be avoided, since not all of the treatment contrasts

are estimable. (It can be verified that the disconnected design of Table 11.3 is a group divisible design

with groups (1, 3, 5, 7) and (2, 4, 6, 8) and with λ1 = 2 and λ2 = 0.) Lists of group divisible designs

are given by Clatworthy (1973) and in the more recent references listed by Sinha (1991). Good block

designs (which may or may not be group divisible) can be obtained by some computer packages (see,

for example, PROC OPTEX in SAS software, Sect. 11.8.1 and the ibd package in R, Sect. 11.9.1).

11.3.3 Cyclic Designs

A cyclic design is a design with v treatment labels, each occurring r times, and with bk experimental

units grouped into b = v blocks of size k < v in such a way that the units within a block are alike

and units in different blocks are substantially different. The experimental plan, using treatment labels

1, 2, . . . , v, can be obtained as follows:

(i) The first block, called the initial block, consists of a selection of k distinct treatment labels.

(ii) The second block is obtained from the initial block by cycling the treatment labels—that is, by

replacing treatment label 1 with 2, 2 with 3, . . . , v − 1 with v, and v with 1. The third block is

obtained from the second block by cycling the treatment labels once more, and so on until the vth

block is reached.

Block design randomization is carried out as in Sect. 11.2.2.

The group divisible design in Table 11.1 is also a cyclic design and has initial block (1, 3, 8). There

are three cyclic designs in Table 11.6 all with block size k = 4. The first two have initial block (1, 2, 3,

6), but one has v = 7 treatment labels and the other has v = 6. The third design has initial block (1, 2,

3, 4) and v = 7. The first design is also a balanced incomplete block design with λ = 2. The second

design has pairs of treatments occurring together in either λ1 = 2 or λ2 = 3 blocks, which results

in only two possible lengths of confidence intervals for pairwise comparisons, but it is not a group

divisible design since the treatment labels cannot be divided into groups of first associates. The third

design is less good since pairs of treatments occur in λ1 = 1 or λ2 = 2 or λ3 = 3 blocks, resulting in

three different lengths of confidence interval for pairwise comparisons.

A cyclic design can have as many as v/2 different values of λi , yielding as many as v/2 different

lengths of confidence intervals for pairwise comparisons of treatment effects. Again, if no balanced

incomplete block design exists, the best designs are usually regarded as those with two values of λi

which differ by one.
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Table 11.6 Cyclic designs with k = 4 generated by (1, 2, 3, 6) for v = 7 and v = 6, and generated by (1, 2, 3, 4) for

v = 7

Design 1 Design 2 Design 3

v = 7 v = 6 v = 7

Block Treatments Block Treatments Block Treatments

1 1 2 3 6 1 1 2 3 6 1 1 2 3 4

2 2 3 4 7 2 2 3 4 1 2 2 3 4 5

3 3 4 5 1 3 3 4 5 2 3 3 4 5 6

4 4 5 6 2 4 4 5 6 3 4 4 5 6 7

5 5 6 7 3 5 5 6 1 4 5 5 6 7 1

6 6 7 1 4 6 6 1 2 5 6 6 7 1 2

7 7 1 2 5 7 7 1 2 3

Some cyclic designs have duplicate blocks, such as that with v = 8 and initial block (1, 4, 5, 8).

These designs are useful when fewer than v blocks are required, since duplicate blocks can be ignored.

Otherwise, designs with distinct blocks are usually better. Lists of cyclic designs are given by John

et al. (1972), John (1981), and Lamacraft and Hall (1982).

11.4 Analysis of General Incomplete Block Designs

11.4.1 Contrast Estimators and Multiple Comparisons

The standard block–treatment model for the observation on treatment i in block h in a binary incomplete

block design is

Yhi = μ + θh + τi + ǫhi ,

ǫhi ∼ N (0,σ2) ,

ǫhi ’s are mutually independent ,

h = 1, . . . , b ; i = 1, . . . , v ; (h, i) in the design.

(11.4.2)

The model, which assumes no block–treatment interaction, is almost identical to block–treatment

model (10.4.1) for the randomized block design. The only difference is the phrase “(h, i) in the design”,

which means that the model is applicable only to those combinations of block h and treatment i that

are actually observed. The phrase serves as a reminder that not all treatments are observed in each

block.

For every experiment, the assumptions on the model should be checked. However, when blocks do

not contain every treatment, it is difficult to check the assumption of no block–treatment interaction by

plotting the data block by block, as was recommended for complete block designs in Sect. 10.7. Thus,

it is preferable that an incomplete block design be used only when there are good reasons for believing

that treatment differences do not depend on the level of the blocking factor(s).

The least squares estimators for the treatment parameters in the model for an incomplete block

design must include an adjustment for blocks, since some treatments may be observed in “better”

blocks than others. This means that the least squares estimator for the pairwise comparison τp − τi is

not the unadjusted estimator Y .p − Y .i as it would be for a randomized complete block design. For

example, if metal alloys 2 and 7 were to be compared via the balanced incomplete block design in the

http://dx.doi.org/10.1007/978-3-319-52250-0_10
http://dx.doi.org/10.1007/978-3-319-52250-0_10
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last column of Table 11.2, we see that alloy 2 is observed on days 1, 2, and 4, and alloy 7 is observed

on days 1, 6, and 7. If we were to use Y .2 − Y .7 to estimate τ2 − τ7, it would be biased, since

E[Y .2 − Y .7] = E[1

3
(Y12 + Y22 + Y42) − 1

3
(Y17 + Y67 + Y77)]

= 1

3
(3μ + θ1 + θ2 + θ4 + 3τ2) − 1

3
(3μ + θ1 + θ6 + θ7 + 3τ7)

= (τ2 − τ7) + 1

3
(θ2 + θ4 − θ6 − θ7)

�= (τ2 − τ7).

If the experimental conditions were to change over the course of the experiment in such a way that

observations on the first few days tended to be higher than observations on the last few days, then θ2

and θ4 would be larger than θ6 and θ7. If the two alloys do not differ in their tensile strengths, then

τ2 = τ7, but the above calculation shows that Y .2 − Y .7 would nevertheless be expected to be large.

This could cause the experimenter to conclude erroneously that alloy 2 was stronger than alloy 7.

Consequently, any estimator for τ2 − τ7 must contain an adjustment for the days on which the alloys

were observed.

A general formula for a set of least squares solutions for the parameters τi in the block–treatment

model (11.4.2) adjusted for block differences can be shown to be

r(k − 1)τ̂i −
∑

p �=i

λpi τ̂p = k Qi , for i = 1, . . . , v, (11.4.3)

when
∑

i τ̂i = 0,
∑

h θ̂h = 0 are used as the added equations (similar to Sect. 3.4.3). Here, λpi is

the number of blocks containing both treatments p and i , and a formula for calculating Qi will be

given in (11.4.7) in the next section. However, except in special cases, such as that of the balanced

incomplete block design, expression (11.4.3) is difficult to solve for the individual τi and is usually left

for statistical software to calculate. Although the individual τi are not uniquely estimable, all contrasts∑
i ciτi are estimable if the design is connected, (see Sect. 11.2.3).

The Bonferroni and Scheffé methods of multiple comparisons can be used for simultaneous con-

fidence intervals of estimable contrasts in all incomplete block designs. The method of Tukey is

applicable for balanced incomplete block designs, and it is believed to be conservative (true value of

α smaller than stated) for other incomplete block designs, but this has not yet been proven. Dunnett’s

method can be used in balanced incomplete block designs but not in other incomplete block designs

without modification to our tables. For each method, the formula for a set of 100(1−α)% simultaneous

intervals is
v∑

i=1

ciτi ∈

⎛
⎝

v∑

i=1

ci τ̂i ± w

√√√√V̂ar

(
v∑

i=1

ci τ̂i

) ⎞
⎠ (11.4.4)

exactly as in Sect. 4.4. The correct least squares estimate
∑

ci τ̂i , as well as the estimated variance

V̂ar(
∑

ci τ̂i ) and the error degrees of freedom can be obtained from computer software for the design

being used.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4


358 11 Incomplete Block Designs

Table 11.7 Analysis of variance table for a binary incomplete block design with b blocks of size k, and v treatment

labels appearing r times

Source of variation Degrees of freedom Sum of squares Mean square Ratio

Blocks (adj) b − 1 ssθadj msθadj −
Blocks (unadj) b − 1 ssθ − −
Treatments (adj) v − 1 ssTadj msTadj

msTadj

msE
Error bk − b − v + 1 ssE msE

Total bk − 1 sstot

Formulae

ssθ =
∑b

h=1 B2
h/k − G2/(bk) ssE = sstot − ssθ − ssTadj

ssTadj =
∑v

i=1 Qi τ̂i sstot =
∑b

h=1

∑v
i=1 nhi y2

hi − G2/(bk)

Qi = Ti −
∑b

h=1 nhi Bh/k . ssθadj = sstot − ssE −
(∑v

i=1 T 2
i /r − G2/(bk)

)

11.4.2 Analysis of Variance

For a connected incomplete block design with block–treatment model (11.4.2), the four rows in the

center section of Table 11.7 show an outline of the analysis of variance obtained when the block factor

is entered into the model before the treatment factor; the formulae are listed in the bottom section of

the table. The unadjusted sum of squares for blocks, ssθ, is calculated in a similar way to the block

sum of squares in a complete block design; that is

ssθ =
b∑

h=1

B2
h/k − G2/(bk) , (11.4.5)

where Bh is the sum of all observations in block h, and G represents the “grand total” of all the

observations. The sum of squares for treatments adjusted for blocks (i.e. adjusted for the fact that not

all treatments are in every block and some blocks are better than others) is

ssTadj =
v∑

i=1

Qi τ̂i , (11.4.6)

where τ̂i is the least squares solution for τi obtained from (11.4.3), and Qi is the i th adjusted treatment

total; that is,

Qi = Ti − 1

k

b∑

h=1

nhi Bh , (11.4.7)

where nhi is 1 if treatment i is observed in block h and zero otherwise, Bh is defined above, and Ti is

the sum of all observations on treatment i . We could write the three quantities Ti , Bh and G as y.i and

yh. and y.. in the usual way. The reason for changing notation is as a reminder that some of the yhi are

not actually observed and the quantities Ti , Bh and G are more accurately written as

Ti =
b∑

h=1

nhi yhi , Bh =
v∑

i=1

nhi yhi , and G =
b∑

h=1

v∑

i=1

nhi yhi .
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The sum of squares for error, ssE, is

ssE = sstot − ssθ − ssTadj ,

where sstot is defined as usual as

sstot =
b∑

h=1

v∑

i=1

nhi y2
hi − G2/(bk) .

Also as usual, the number of degrees of freedom for treatments is v − 1, the number of degrees of

freedom for blocks is b − 1, and the number of degrees of freedom for error can be obtained by

subtraction as

df = (n − 1) − (b − 1) − (v − 1) = bk − b − v + 1 , (11.4.8)

where n = bk is the total number of observations.

A test of H T
0 :{all τi are equal} against H T

A :{at least two of the τi ’s differ} is given by the decision

rule

reject H T
0 if

msTadj

msE
> Fv−1,bk−b−v+1,α

for some chosen significance level α, where msTadj = ssTadj/(v−1), and msE = ssE/(bk−b−v+1).

If evaluation of blocking for the purpose of planning future experiments is required, the quantity

ssθ in (11.4.5) is not the correct value to use. It has not been adjusted for the fact that every block

does not contain an observation on every treatment. In order to evaluate blocks, we would need the

adjusted block sum of squares, ssθadj, whose formula is listed as the last entry in Table 11.7. Some

computer packages will give this value under the heading “adjusted” or “Type III” sum of squares. If

the program does not automatically generate the adjusted value, it can be obtained from a “sequential

sum of squares” by entering treatments in the model before blocks.

11.4.3 Analysis of Balanced Incomplete Block Designs

The set of least squares solutions given in (11.4.3) for the treatment parameters τi in the block–treatment

model (11.4.2) for the balanced incomplete block design have a simple form:

τ̂i = k

λv
Qi , for i = 1, . . . , v , (11.4.9)

where λ is the number of times that every pair of treatments occurs together in a block, and Qi is the

adjusted treatment total, given in (11.4.7). Thus, the sum of squares for treatments adjusted for blocks

in (11.4.6) becomes

ssTadj =
v∑

i=1

k

λv
Q2

i , (11.4.10)

and the least squares estimator of contrast
∑

ciτi is

v∑

i=1

ci τ̂i = k

λv

v∑

i=1

ci Qi . (11.4.11)



360 11 Incomplete Block Designs

It can be shown that the corresponding variance can be calculated as

Var

(
v∑

i=1

ci τ̂i

)
=

v∑

i=1

c2
i

(
k

λv

)
σ2 . (11.4.12)

The Bonferroni, Scheffé, Tukey, and Dunnett methods of multiple comparisons can all be used for

balanced incomplete block designs with degrees of freedom for error equal to df = bk − b − v + 1.

The general formula (11.4.4) for simultaneous 100(1 − α)% confidence intervals for a set of contrasts

�ciτi becomes
v∑

i=1

ciτi ∈

⎛
⎝ k

λv

v∑

i=1

ci Qi ± w

√√√√
v∑

i=1

c2
i

(
k

λv

)
msE

⎞
⎠ , (11.4.13)

where the critical coefficients for the four methods are, respectively,

wB = tbk−b−v+1,α/2m ; wS =
√

(v − 1)Fv−1,bk−b−v+1,α ;
wT = qv,bk−b−v+1,α/

√
2 ; wD2 = |t |(0.5)

v−1,bk−b−v+1,α .

For testing m hypotheses of the general form H0 :
∑

ciτi = 0 against the corresponding alternative

hypotheses Ha :
∑

ciτi �= 0, at overall significance level α, the decision rule using Bonferroni’s

method for preplanned contrasts is

reject H0 if
sscadj

msE
> F1,bk−b−v+1,α/m , (11.4.14)

and the decision rule using Scheffé’s method is

reject H0 if
sscadj

msE
> (v − 1)F1,bk−b−v+1,α , (11.4.15)

where
sscadj

msE
= (

∑
ci τ̂i )

2

(
k
λv

)
(
∑

c2
i ) msE

= k(
∑

ci Qi )
2

λv(
∑

c2
i )msE

, (11.4.16)

(cf. Sections 4.3.3 and 6.7.2).

As for the case of equireplicate completely randomized designs, two contrasts �ciτi and �diτi

are orthogonal in a balanced incomplete block design if �ci di = 0. The adjusted treatment sum of

squares can then be written as a sum of adjusted contrast sums of squares for a complete set of (v − 1)

orthogonal contrasts. An example is given in the following section.

11.4.4 A Real Experiment—Detergent Experiment

An experiment to compare dishwashing detergent formulations was described by P. W. M. John in

the journal Technometrics in 1961. The experiment involved three base detergents and an additive.

Detergent I was observed with 3, 2, 1, and 0 parts of the additive, giving four treatments, which we will

code 1, 2, 3, and 4. Likewise, Detergent II was observed with 3, 2, 1, and 0 parts of the additive, giving

an additional four treatments, which we will code 5, 6, 7, and 8. The standard detergent (Detergent III)

with no additive served as a control treatment, which we will code as 9.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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The experiment took place in a location where three sinks were available. Three people took part in

the experiment and were instructed to wash plates at a common rate. An observation was the number of

plates washed in a sink before the detergent foam disappeared. A block consisted of three observations,

one per sink. The refilling of the three sinks with water and detergent constituted the beginning of a

new block. The amount of soil on the plates prior to washing was held constant. Differences between

blocks were due to differences in the common washing rates, the water temperature, the experimenter

fatigue, etc.

A design was required with blocks of size k = 3 and v = 9 treatment labels. A balanced incomplete

block design was selected with b = 12 blocks giving r = bk/v = 4 observations per treatment

and every pair of treatment labels occurring in λ = r(k − 1)/(v − 1) = 1 block. We have shown a

possible randomization of this design in Table 11.8 together with the data from the original article. The

positions within a block show the allocations of the three basins to treatments. The observations are

plotted against treatment in Fig. 11.2, ignoring the block from which the observation was collected.

Since each pair of treatments occurs together in only one block (λ = 1), a graphical approach for

the evaluation of block–treatment interaction cannot be used. However, it appears from Fig. 11.2 that

block differences, block–treatment interaction effects, and random error variability must all be rather

small compared with the large detergent differences. A plot of the adjusted data is described below.

Table 11.8 Design and number of plates washed for the detergent experiment

Block Treatments Plates washed

1 3 8 4 13 20 7

2 4 9 2 6 29 17

3 3 6 9 15 23 31

4 9 5 1 31 26 20

5 2 7 6 16 21 23

6 6 5 4 23 26 6

7 9 8 7 28 19 21

8 7 1 4 20 20 7

9 6 8 1 24 19 20

10 5 8 2 26 19 17

11 5 3 7 24 14 21

12 3 2 1 11 17 19

Source John (1961). Copyright c© 1961 American Statistical Association. Reprinted with permission

Fig. 11.2 Data plot for the

detergent experiment,

ignoring block levels
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Fig. 11.3 Plot of adjusted

observations for the

detergent experiment
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Block–treatment model (11.4.2) for an incomplete block design was fitted to the data. The residual

plots might lead us to question some of the error assumptions, but there are only 4 observations per

treatment and these are all from different blocks, so it is difficult to make a proper assessment. We will

proceed with the standard analysis for a balanced incomplete block design, recognizing that the stated

significance levels and confidence levels are only approximate.

Plotting the Data Adjusted for Block Effects

In this detergent experiment, the treatment differences are fairly clear from the plot of the raw data in

Fig. 11.2. However, if the block effects had been substantial, such a plot of the raw data could have

painted a muddled picture. In such cases, the picture can be substantially improved by adjusting each

observation for the block effects before plotting. The observation yhi is adjusted for the block effects

as follows,

y∗
hi = yhi − (θ̂h − θ̂.) ,

where (θ̂h − θ̂.) is the least squares estimate of (θh − θ.). A SAS program that adjusts the observations

for block effects and plots the adjusted observations is given in Sect. 11.8.3 and a corresponding R

program in Sect. 11.9.3. It should be noted that since the variability due to block effects has been

extracted, a plot of the adjusted observations will appear to exhibit less variability than really exists.

For this particular data set, the block differences are very small, so a plot of the adjusted data

would provide information similar to that provided by the plot of the raw data in Fig. 11.2. In Fig. 11.3,

the observations adjusted for blocks are plotted against “parts of additive” for each base detergent. It

appears that the washing power decreases almost linearly as the amount of additive is decreased and

also that the standard detergent is superior to the two test detergents.

Analysis

The analysis of variance table, given in Table 11.9, shows the treatment sum of squares and its decom-

position into sums of squares for eight orthogonal contrasts. These contrasts are the linear, quadratic,

and cubic trends for each of detergents I and II (as the amount of additive decreases), together with

the “I Versus II” contrast that compares the effects of detergents I and II averaged over the levels of

the additive, and the “control Versus others” contrast comparing the effect of the control detergent and

the average effect of the other eight treatments. For example, the linear trend contrast for detergent I

is −3τ1 − τ2 + τ3 + 3τ4, where the contrast coefficients are obtained from Table A.2. The contrast

comparing detergents I and II is the difference of averages contrast



11.4 Analysis of General Incomplete Block Designs 363

Table 11.9 Analysis of variance table for the detergent experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Blocks (adj) 11 10.06 0.91 − −
Blocks (unadj) 11 412.75 − − −
Treatments(adj) 8 1086.81 135.85 164.85 0.0001

I linear 1 286.02 286.02 347.08 0.0001

I quadratic 1 12.68 12.68 15.38 0.0012

I cubic 1 0.22 0.22 0.27 0.6092

II linear 1 61.34 61.34 74.44 0.0001

II quadratic 1 0.15 0.15 0.18 0.6772

II cubic 1 0.03 0.03 0.04 0.8520

I vs II 1 381.34 381.34 462.75 0.0001

Control vs others 1 345.04 345.04 418.70 0.0001

Error 16 13.19 0.82

Total 35 1512.75

1

4
(τ1 + τ2 + τ3 + τ4) − 1

4
(τ5 + τ6 + τ7 + τ8) ,

and the contrast comparing the control detergent with the others is the difference of averages contrast

τ9 − 1

8
(τ1 + τ2 + τ3 + τ4 + τ5 + τ6 + τ7 + τ8) .

A set of simultaneous 99% confidence intervals for all treatment contrasts using Scheffé’s method of

multiple comparisons is given by (11.4.13) with wS =
√

8F8,16,.01, and F8,16,.01 = 3.89, k = 3,λ = 1

and v = 9. Using the data shown in Table 11.8, we have treatment totals and grand total

T1 T2 T3 T4 T5 T6 T7 T8 T9 G

79 67 53 26 102 93 83 77 119 699

and block totals
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

40 52 69 77 60 55 68 47 63 62 59 47

Then, from (11.4.7), the first adjusted treatment total is

Q1 = T1 − 1

k
[B4 + B8 + B9 + B12] = 79 − 1

3
[234] = 1.0 .

The other adjusted treatment totals are calculated similarly, giving

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

1.00 −6.67 −18.67 −38.67 17.67 10.67 5.00 −0.67 30.33

and since k/(λv) = 3/9, the least squares estimate of the contrast �ciτi given by (11.4.11) is �ci τ̂i =
�ci Qi/3 (i = 1, 2, . . . , 9). For example, the least squares estimate for the “control versus others”
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contrast is
9∑

i=1

ci τ̂i = τ̂9 − 1

8

8∑

i=1

τ̂i = 1

3

(
Q9 − 1

8

8∑

i=1

Qi

)
= 11.375 ,

with associated estimated variance

V̂ar

(
9∑

i=1

ci τ̂i

)
=

9∑

i=1

c2
i

(
k

λv

)
msE =

(
1 + 8

64

)(
3

9

)
(0.82) = 0.3075 ,

where msE = 0.82 is obtained from Table 11.9. Using Scheffé’s method of multiple comparisons at

overall level 99%, a confidence interval for the control versus others contrast is then

11.375 ±
√

8F8,16,0.01

√
0.3075 = 11.375 ± 3.093 = (8.282, 14.468),

showing that the control detergent washed between 8.3 and 14.5 more plates than the other detergents

on average.

The sum of squares for treatments adjusted for blocks is obtained from (11.4.6), p. 358, as

ssTadj = k

λv

∑
Q2

i = 1086.81 ,

and since
msTadj

msE
= 1086.81/8

0.82
= 164.85 > F8,16,0.01 = 3.89 ,

we reject the hypothesis of no treatment differences.

The eight orthogonal contrasts can be tested simultaneously using the method of Scheffé. For

example, the confidence interval for the “control versus others” contrast calculated above as part of a

99% simultaneous set of intervals does not contain zero, so the hypothesis that the control treatment

does not differ from the others would be rejected. The overall significance level for all such tests

would be α = 0.01. Equivalently, the contrasts can be tested by the Scheffé method using the decision

rule (11.4.15), p. 360; that is,

reject H0 :
v∑

i=1

ciτi = 0 if
sscadj

msE
> 8F8,df,.01 = 31.12 .

The ratios sscadj/ms E are provided in Table 11.9. Comparing their values with 31.12, we see that the

linear trends are significantly different from zero for each of the base detergents I and II, as are the

comparison of detergents I and II on average and the comparison of the control detergent with the

average effects of the other 8 treatments. From significance of the linear trend contrasts, coupled with

the direction of the trends, one can conclude that detergents I and II are better with larger amounts of

additive.

We cannot use the unadjusted block sum of squares to evaluate the usefulness of blocking. We

would need to calculate the adjusted block sum of squares as in Table 11.7, p. 358. Using the values in

Table 11.9, this is

ssθadj = 1512.75 − 13.19 −
(

1

4
(792 + 672 + · · · + 1192) − 1

36
6992

)
= 10.06 .
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So the adjusted block mean square is msθadj = 10.06/11 = 0.91, which is not much larger than

the error mean square, msE = 0.82, so the blocking did not help with increasing the power of the

hypothesis tests. Nevertheless, it was natural to design this experiment as a block design, and the

creation of blocks was a wise precaution against changing experimental conditions.

11.4.5 Analysis of Group Divisible Designs

Group divisible designs were described in Sect. 11.3.2, p. 354, and illustrations were shown in

Tables 11.1 and 11.5. The least squares solution (obtained with added equations
∑

i τ̂i = 0,
∑

h θ̂h = 0)

for the treatment parameters τi adjusted for blocks can be shown to be

τ̂i =
[

k

(r(k − 1) + λ1)vλ2

]
×

⎡
⎣(vλ2 + (λ1 − λ2))Qi + (λ1 − λ2)

∑

(1)

Q p

⎤
⎦ ,

(11.4.17)

where Qi is the adjusted treatment total as in (11.4.7), p. 358, and where
∑

(1) Q p denotes the sum of

the Q p corresponding to the treatment labels that are the first associates of treatment label i .

The variance of the least squares estimator �ci τ̂i of an estimable contrast �ciτi is

Var

(
v∑

i=1

ci τ̂i

)
=

v∑

i=1

c2
i Var(τ̂i ) + 2

v−1∑

i=1

v∑

p=i+1

ci cp Cov(τ̂i , τ̂p) ,

where, for a group divisible design,

Var(τ̂i ) = k[vλ2 + (λ1 − λ2)]
vλ2[vλ2 + l(λ1 − λ2)]

σ2

and

Cov(τ̂i , τ̂p) =
{

k(λ1−λ2)σ
2

vλ2[vλ2+l(λ1−λ2)] , if i and p are first associates,

0 , if i and p are second associates.

Using these quantities, the variance of the least squares estimator of the pairwise comparison τi − τp

becomes

Var(τ̂i − τ̂p) =

⎧
⎨
⎩

2kσ2

[vλ2+l(λ1−λ2)] , if i and p are first associates,

2k[vλ2+(λ1−λ2)]σ2

vλ2[vλ2+l(λ1−λ2)] , if i and p are second associates.

If λ1 and λ2 are as close in value as possible, then the variances for the pairwise comparisons will be

as close as possible.

The Bonferroni and Scheffé methods of multiple comparisons can be used for group divisible

designs. The Tukey method is believed to be conservative (true value of α smaller than stated). The

Dunnett method is not available using our tables, since the critical values can be used only for designs

in which Cov(τ̂i , τ̂p) are equal for all i and p. However, Dunnett intervals can be obtained from

many computer packages (see, for example, Fig 11.7, p. 380, and Table 11.24, p. 387). The analysis of

variance table for the group divisible design is that given in Table 11.7, p. 358, with τ̂i as in (11.4.17)
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above. An example of an experiment designed as a group divisible design is discussed in Sect. 11.5.

SAS and R programs are illustrated in Sects. 11.8 and 11.9 that can be used to analyze any group

divisible design.

11.4.6 Analysis of Cyclic Designs

Cyclic designs were described in Sect. 11.3.3, p. 355, and illustrated in Tables 11.1 and 11.6. They

are incomplete block designs that may or may not possess the properties of balanced incomplete

block designs or group divisible designs. When they do not possess these properties, the least squares

solutions τ̂i have no simple form and are most easily obtained from computer software. The Bonferroni

and Scheffé methods of multiple comparisons can be used for all cyclic designs.

In Sect. 11.5 we reproduce the checklist and analysis of an experiment that was designed as a cyclic

group divisible design and, in Sects. 11.8 and 11.9, we illustrate SAS and R computer programs that

can be used to analyze any cyclic incomplete block design.

11.5 A Real Experiment—Plasma Experiment

The plasma experiment was run by Ernesto Barrios, Jin Feng, and Richard Kibombo in 1992 in the

Engineering Research Center at the University of Wisconsin. The following checklist has been extracted

from the experimenters’ report. The design used was a cyclic group divisible design. Notice that the

experimenters moved step (e) of the checklist forward. They had made a list of all potential sources of

variation, but they needed a pilot experiment to help determine which sources they could control and

which they could not.

Checklist

(a) Define the objectives of the experiment.

In physics, plasma is an ionized gas with essentially equal densities of positive and negative

charges. It has long been known that plasma can effect desirable changes in the surface properties

of materials.

The purpose of this experiment is to study the effects of different plasma treatments of plastic

pipet tips on the capillary action of the pipets. Capillary action concerns the movement of a liquid

up the pipet—a small tube. Before a plasma treatment, the capillarity conduct of the tips is too

narrow to permit water to move up. Changes in capillary action effected by plasma treatment can

be measured by suspending the tip of a vertical pipet into a bed of water and measuring the height

of the column of water in the tube.

(e) Run a pilot experiment.

At this stage we decided to make a test run to become familiar with the process of setting up and

running the experiment, to determine the appropriate treatment factor levels, and to help identify

the major sources of variation that could be controlled, and to identify other variables that might

affect the response but which could not be controlled.

(b) Identify all sources of variation.

From the test run, we determined that pressure and voltage could not both be effectively controlled.

More generally, it would be difficult to vary all of the variables initially listed (gas flow rate, type

of gas, pressure, voltage, presence or absence of a ground shield, and exposure time of the pipet

tips to the ionized gas).
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The following factors were potential sources of variation.

• Experimenters. Despite the fact that all of the experimenters were to play certain roles during

each run of the experiment, it was noted that most of the variation due to the personnel could be

attributed to the person who connects the pipet tips to the gas tube in the ionization chamber and

takes the readings of the final response using vernier calipers.

• Room conditions. It was thought that variations in both room temperature and atmospheric

pressure could have an effect on response.

• Water purity. If the water used to measure the capillarity has a substantial amount of impurities,

especially mineral salts, then the response may be greatly affected, either because of variability

in cohesion and adhesion forces of different types of substances, or because of a reaction between

the impurities (salts) and the pipet tips.

• Materials. Variability in the quality of both the pipet tips and the gases used is likely to introduce

some variation in the response. Within an enclosed room such as a laboratory, the composition

of air may vary significantly over time.

Taking into account the results of the pilot run, the following decisions were made.
(i) Treatment factors and their levels.

Scale down the variables of interest to three by keeping both the pressure and voltage constant

at 100 mm Torres and 5 volts, respectively, and by keeping the ground shield on. Distilled water

will be used to control for impurities in the water. Pipet tips from a single package will be used, so

the pipets are more likely to be from the same batch and hence more likely to be homogeneous.

The only factors that will make up the various treatment combinations are gas flow rate, type of

gas, and exposure time. No attempt will be made to control for variation in the composition or

purity of the gases used. (This variation will be subsumed into the error variability).

Set the lower and upper levels of each factor far apart in order to make any (linear) effect more

noticeable. Also, we decided to include only 6 of the 8 possible treatment combinations, as shown

in Table 11.10.

(ii) Experimental units.

The experimental units are the (combinations of) pipets and time order of observations.

(iii) Blocking factors, noise factors, and covariates.

The two blocking factors are “experimenter” and “day.”

(No covariates or noise factors were included.)

(c) Specify a rule by which to assign the experimental units to the treatments.

The design will be an incomplete block design with blocks of size three, and three blocks of data

will be collected on each of two days. We will use the cyclic design for v = 6 = b and k = 3 = r

generated by the treatment labels 1, 4, 5. The labels in the design will be randomly assigned to the

six treatment combinations, and the treatments within each block will be randomly ordered.

(The selected cyclic design is shown in Table 11.11 in nonrandomized order so that the cyclic

nature of the design can be seen more easily. The design also happens to be a group divisible

design (see Exercise 14). The smallest balanced incomplete block design with v = 6 and k = 3

has r = 5 and b = 10 and would require more observations.)

(d) Specify the measurements to be made, the experimental procedure, and the anticipated

difficulties.

The height of the water column will be measured for each pipet. In order to make the measurements

as uniform as possible, a device has been constructed consisting of a rectangular sheet of plexiglass

with a small hole in which to place the pipet tip. Placing this pipet holder on a water vessel suspends
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Table 11.10 The six treatment combinations used in the plasma experiment

Treatment Factors and levels

Type of gas exposure time (sec) Gas flow rate (cc/sec)

1 Argon 180 10

2 Air 180 10

3 Argon 180 30

4 Argon 60 30

5 Air 60 30

6 Air 60 10

Table 11.11 Design and data for the plasma experiment

Block Day Experimenter Response (Treatment)

1 1 Feng 0.482 (1) 0.459 (4) 0.458 (5)

2 1 Barrios 0.464 (2) 0.465 (5) 0.467 (6)

3 1 Kibombo 0.473 (3) 0.472 (6) 0.495 (1)

4 2 Feng 0.283 (4) 0.325 (1) 0.296 (2)

5 2 Barrios 0.410 (5) 0.390 (2) 0.248 (3)

6 2 Kibombo 0.384 (6) 0.239 (3) 0.350 (4)

about 2 mm of the tip of the pipet into the water. After 60 seconds, a mark will be made on the

pipet indicating the water level reached. The distance of the mark from the tip of the pipet will be

measured using a vernier caliper with tenth of a millimeter precision.

The experimental procedure for each observation is as follows: Place a pipet on the tube through

which the plasma will flow, screw in a glass tube, turn on the pump and wait 40 seconds, open the

Baratron, open the gas, turn a controller to auto, set the flow to a specified level, turn the pressure

controller to auto and set the level, set the voltage, time the treatment, turn off flow and shut off

the gas, set the pressure to open, wait until the pressure is less than 20, turn off the Baratron, turn

off the pump, unscrew the glass tube, then (wearing a glove) take out the pipet, place the pipet in

water (using the device for this purpose), and mark the height of the water column, then go on to

the next observation.

Anticipated difficulties: Differences in the way people would mark or measure the water column

heights would cause variation. Running the experiment consistently.

(f) Specify the model.

(The standard block–treatment model (11.4.2), p. 356, for an incomplete block design was speci-

fied.)

(g) Outline the analysis.

An analysis of variance test for equality of the treatment effects will be performed. Then confidence

intervals for all pairwise comparisons will be obtained, with a simultaneous 95% confidence level

using the method of Scheffé. Model assumptions will be evaluated.

(h) Calculate the number of observations to be taken.

(The number of observations was limited by the time available.)

(i) Review the above decisions. Revise if necessary.

(No revisions were made at this stage.)
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Table 11.12 Analysis of variance table for the plasma experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Blocks (adj) 5 0.0805 0.0161 − −
Blocks 5 0.0992 − − −
Treatments (adj) 5 0.0196 0.0039 2.99 0.0932

Error 7 0.0092 0.0013

Total 17 0.1279

Table 11.13 Analysis of variance for the plasma experiment—day one only

Source Degrees of freedom Sum of squares Mean square Ratio p-value

Blocks (adj) 2 0.0001213 0.0000607 364.00 −
Block 2 0.0004029 − − −
Treatments (adj) 5 0.0007112 0.0001422 853.40 0.026

Error 1 0.0000002 0.0000002

Total 8 0.0011142

Results of the Experiment

During the experiment, an unexpected event occurred. A little tube through which the gas passes was

broken, allowing for some leaking of gas. We realized this after our first day’s runs and tried to fix

this problem the next day, using tape, as a new tube was unavailable. As can be seen from the results,

given in Table 11.11, the responses from the last nine runs, corresponding to the second day, were

consistently smaller than those from the first nine runs. This underscores the advantage of using time

as a blocking factor.

Data Analysis

The analysis of variance is given in Table 11.12. It was obtained via a SAS computer program similar

to the one in Table 11.18 in Sect. 11.8. The adjusted block mean square, msθadj = 0.0161, is twelve

times larger than the error mean square, so blocking was certainly worthwhile.

The ratio msTadj/msE = 2.99 does not exceed the critical value F5,7,.05 = 3.97 for testing equality

of the treatment effects at the 5% significance level (equivalently, the p-value is greater than 0.05). Based

on this result, examination of any individual treatment contrasts may seem unwarranted. However, the

broken tube discovered after the first day of runs is an important consideration in this experiment. It

is quite possible that the treatments are not the same on day one as on day two, since the broken tube

may change the gas flow rate or the type of gas to which the pipet is exposed. So, one must ask the

question, “Is there anything to be salvaged from this experiment?”

If the broken tube has in fact changed the treatment effects, and if the breakage occurred after the

first day’s runs, then it might be most useful to analyze the data for day one or each day separately.

The design for each day is no longer a cyclic design or a group divisible design, but it is a connected

incomplete block designs and can still be analyzed by computer (see Sects. 11.8 and 11.9).

If a test of the null hypothesis H T
0 of equal treatment effects is conducted separately for each day’s

data, it can be verified that H T
0 would not be rejected at the 5% significance level for the data collected

on day two but would be rejected for the data of day one.

The analysis of variance for day one is shown in Table 11.13. The test ratio is 853.40—which is

larger than F5,1,.05 = 230. The mean square for blocks adjusted for treatments is 0.0000607, which
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Fig. 11.4 Plasma data

adjusted for block

effects—day one only
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Table 11.14 Pairwise comparisons for the plasma experiment using the Scheffé method and confidence level 95%—day

one only

i, p τ̂i − τ̂p

√
V̂ar(τ̂i − τ̂p) msd Significant

1, 2 0.025500 0.000646 0.0219 yes

1, 3 0.021833 0.000553 0.0188 yes

1, 4 0.023167 0.000553 0.0188 yes

1, 5 0.024333 0.000471 0.0160 yes

1, 6 0.022667 0.000471 0.0160 yes

2, 3 −0.003667 0.000745 0.0253

2, 4 −0.002333 0.000745 0.0253

2, 5 −0.001167 0.000553 0.0188

2, 6 −0.002833 0.000553 0.0188

3, 4 0.001333 0.000745 0.0253

3, 5 0.002500 0.000646 0.0219

3, 6 0.000833 0.000553 0.0188

4, 5 0.001167 0.000553 0.0188

4, 6 −0.000500 0.000646 0.0219

5, 6 −0.001667 0.000471 0.0160

is 364 times larger than msE, so blocking was helpful for the observations collected on day one. With

only one degree of freedom for error, use of residuals to check model assumptions is of little value.

Figure 11.4 shows the day-one observations adjusted for block effects, yhi − (θ̂h − θ̂.) plotted against

treatment. It appears that treatment 1 (Argon at 10 cc per second for 180 seconds) is very different from

the other treatments.

Table 11.14 contains information for applying Scheffé’s method of multiple comparisons to the

day-one data, using a simultaneous 95% confidence level. The least squares estimates were obtained

using SAS software (Sect. 11.8, p. 380, and Fig. 11.8). It can be seen that τ̂i − τ̂p is larger than the

minimum significant difference for all pairwise comparisons with i = 1, but for none of the others.

Consequently, the only confidence intervals that do not contain zero are those involving treatment 1.

We conclude that based on the first day’s data, treatment 1 is significantly better than each of the other

5 treatments and should be investigated further.
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11.6 Sample Sizes

Given the number of treatments v and the block size k, how many blocks b are required to achieve

confidence intervals of a specified length or a hypothesis test of specified power? Since for most

purposes the balanced incomplete block design is the best incomplete block design when it is available,

we start by calculating b and the treatment replication r = bk/v for this design. Then if a balanced

incomplete block design cannot be found with b and r close to the calculated values, a group divisible,

cyclic, or other incomplete block design can be considered. Since balanced incomplete block designs

are the most efficient, other incomplete block designs would generally require b and r to be a little

larger.

Example 11.6.1 Sample size to achieve confidence interval length

Suppose Tukey’s method for all pairwise comparisons will be used to analyze an experiment with

v = 5 treatments and block size k = 3. It is thought unlikely that msE will be larger than 2.0 units2.

Suppose that the experimenters want the length of simultaneous 95% confidence intervals for pairwise

comparisons to be at most 3.0 units (that is, a minimum significant difference of at most 1.5). A

balanced incomplete block design will ensure that the interval lengths will all be the same.

Using the fact that bk = vr for a block design, the error degrees of freedom (11.4.8) can be written as

df = bk − b − v + 1 = vr − vr/k − v + 1 = (v(k − 1)r/k) − (v − 1) , (11.6.18)

so, here, df = (10r/3) − 4. For a balanced incomplete block design, the minimum significant

difference for a confidence interval for any pairwise treatment comparison, using Tukey’s method with

an overall 95% confidence level, is given in (11.4.13), p. 360 and, if we set λ = r(k − 1)/(v − 1)

from (11.3.1), p. 353, this becomes

msd = (qv,df,.05/
√

2)

√
2

[
k(v − 1)

rv(k − 1)

]
msE = q5,df,.05

√
12

5r
,

with df = (10r/3) − 4. For the msd to be at most 1.5 units, it is necessary that

12q2/5r ≥ 1.52; that is, r ≥ 1.0667q2
5,df,.05 .

Trial and error shows that around 17–18 observations per treatment would be needed to satisfy the

inequality; that is, 85–90 observations in total, which would require 28–30 blocks of size 3. A balanced

incomplete block design exists with v = 5, k = 3, b = 10, r = 6 (all possible combinations of five

treatments taken three at a time as blocks). Repeating this entire design three times would give a

balanced incomplete block design with r = 18, which will give a minimum significant difference of

about

q5,56,.05

√
12/(5 × 18) ≈ 1.46 < 1.5 .

�

Example 11.6.2 Sample size to achieve specified power

Suppose a test of the null hypothesis H0 : {τi all equal} is required to detect a difference in the

treatment effects of � = 2 units with probability 0.95, using significance level α = 0.05 for a

balanced incomplete block design with v = 5 treatments and block size k = 3.
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The least squares estimator τ̂i − τ̂p of a pairwise comparison contrast τi − τp for a balanced

incomplete block design has variance given by (11.4.12), p. 360, with �c2
i = 2. Also, from (11.3.1),

p. 353, λ = r(k − 1)/(v − 1) so

Var(�ci τ̂i ) = 2
k

λv
σ2 = 2

[
k(v − 1)

rv(k − 1)

]
σ2 . (11.6.19)

The number r of observations needed per treatment is calculated via a formula similar to (6.6.48),

p. 171, with a = v and with 2σ2/b replaced by the variance (11.6.19); that is,

r = 2vσ2φ2

�2

[
k(v − 1)

v(k − 1)

]
= 2 × 5 × σ2φ2

22

[
3 × 4

5 × 2

]
.

Suppose that σ2 is believed to be at most 1.0 unit2; then r = 3φ2. The power tables in Appendix A.7

can be used to find φ2. The numerator degrees of freedom are ν1 = v−1 and the denominator degrees of

freedom ν2 are the error degrees of freedom (11.6.18). So for our example, ν1 = 4 and ν2 = (10r/3)−4.

Trial and error shows that about r = 9 observations per treatment are needed to satisfy the equality,

requiring about b = 15 (= vr/k) blocks. A balanced incomplete block design exists with v = 5,

k = 3, b = 10, r = 6 (all possible selections of three treatments taken as blocks). Repeating the entire

design twice would give a balanced incomplete block design with r = 12, which would give more

precision than required. Alternatively, one could use a computer program to seek a different type of

incomplete block design with r = 9 and b = 15 (see Sects. 11.8.1 and 11.9.1, for example). �

To meet the requirements of each of Examples 11.6.1 and 11.6.2, the resulting designs needed to be

large. However, in cases when σ2 is expected to be small and the block size can be large, the required

number of blocks may be smaller than a balanced incomplete design or group divisible design can

accommodate. Software such as that illustrated in Sects. 11.8.1 and 11.9.1 can be used to find other

incomplete block designs that satisfy the requirements of the experiment.

11.7 Factorial Experiments

11.7.1 Factorial Structure

Any incomplete block design can be used for a factorial experiment by taking the treatment labels to

represent treatment combinations. The incomplete block designs that are the most suitable for factorial

experiments allow the adjusted treatment sum of squares ssTadj to be written as a sum of the adjusted

sums of squares for main effects and interactions. Thus, for an experiment with two factors C and D,

for example, we would like to have

ssTadj = ssCadj + ssDadj + ssCDadj .

Such block designs are said to have factorial structure.

One benefit of this property is that the computations for, and interpretation of, the analysis of

variance are simplified. A design with factorial structure requires that main-effect and interaction

contrast estimates be adjusted only for block effects. In designs without factorial structure, the contrast

estimates have to be adjusted not only for blocks but also for contrasts in all the other main effects

http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 11.15 Design and data for the step experiment

Block Treatment combination

11 12 13 21 22 23

1 75 87 84 93 99

2 93 84 96 90 108

3 99 93 96 123 129

4 99 108 99 99 120

5 99 111 90 129 141

6 129 135 120 147 153

and interactions. Although computer software can handle this adjustment, uncorrelated estimates are

much easier to interpret and are, therefore, preferred.

All balanced incomplete block designs have factorial structure, and the features are illustrated in

the following example.

Example 11.7.1 Step experiment

An experiment was run by S. Guerlain, B. Busam, D. Huland, P. Taige, and M. Pavol in 1993 to

investigate the effects on heart rate due to the use of a step machine. The experimenters were interested

in checking the theoretical model that says that heart rate should be a function of body mass, step

height, and step frequency. The experiment involved the two treatment factors “step height” (factor C)

and “step frequency” (factor D). Levels of “step height” were 5.75 and 11.5 inches, coded 1 and 2.

“Step frequency” had three equally spaced levels, 14, 21, and 28 steps per minute, coded 1, 2, 3. The

response variable was pulse rate in beats per minute.

The experiment used b = 6 subjects as blocks, and each subject was measured under k = 5 of

the v = 6 combinations of step height and step frequency. The design was a balanced incomplete

block design with blocks corresponding to different combinations of subject, run timer, and pulse

measurer. All pairs of treatment combinations appeared together in λ = 4 blocks. The data are shown

in Table 11.15.

Writing the treatment combinations as two-digit codes, the block–treatment model (11.4.2), p. 356,

becomes

Yhi j = μ + θh + τi j + ǫhi j ,

and a set of least squares solutions for the treatment parameters adjusted for subject are given by (11.4.7)

and (11.4.9), p. 358 and 359, with two-digit codes; that is,

τ̂i j = k

λv
Qi j = k

λv

[
Ti j − 1

k

b∑

h=1

nhi j Bh

]
,

where Ti j is the total of the r = 5 observations on step height i , step frequency j , Bh is the total of the

k = 5 observations on the hth subject; and nhi j is 1 if treatment combination i j is observed for subject

h and is zero otherwise. We obtain

τ̂11 τ̂12 τ̂13 τ̂21 τ̂22 τ̂23

−8.125 −7.625 −4.125 −11.375 12.375 18.875
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Table 11.16 Analysis of variance for the step experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Subject (Block) (adj) 5 6685.05 1337.01 − −
Subject (Block) (unadj) 5 7400.40 − − −
Height (C) (adj) 1 1264.05 1264.05 28.63 0.0001

Frequency (D) (adj) 2 1488.90 744.45 16.86 0.0001

Ht×Freq (CD) (adj) 2 990.90 495.45 11.22 0.0006

Error 19 838.95 44.16

Total 29 11983.20

For a balanced incomplete block design, the adjusted sums of squares for the main effects of C (step

height) and D (step frequency) and their interaction can be obtained by hand by using the values of τ̂i j

in place of yi j., and k/(λv) in place of r in the formulae (6.4.20), (6.4.22), and (6.4.25), p. 157–159,

or, equivalently, in Rule 4, p. 209, which leads to

ssCadj = λv

k

[
1

d

d∑

i=1

τ̂2
i. − 1

cd
τ̂2
..

]
=
(

λv

k

)
1

d

d∑

i=1

τ̂2
i.

[3pt] =
(

24

5

)
1

3
(−19.8752 + 19.8752) = 1264.05.

The adjusted treatment sums of squares, ssTadj, is calculated from (11.4.10), p. 359, and using (11.4.9)

becomes

ssTadj =
v∑

i=1

(
k

λv

)
Q2

i =
v∑

i=1

(
λv

k

)
τ̂2

i =
(

4 × 6

5

)
× 779.9688 = 3743.85 .

The adjusted sums of squares for the main effects of C and D and their interaction are shown in analysis

of variance Table 11.16. It can be verified that

ssCadj + ssDadj + ssCDadj = ssTadj .

Using the p-values in the analysis of variance Table 11.16, the experimenters rejected the hypothesis

of negligible interaction. A plot of the data (not shown) suggests that heart rate increases linearly as

the step frequency is increased, but that the linear trend is not the same for the two step heights. The

experimenters wanted to examine the average behavior of the two factors, so despite this interaction,

they decided to examine the main effects. In Exercise 10, the reader is asked to examine the linear

trends at each step height separately.

For simplicity of notation, we now drop the subscript “adj.” However, all estimates and sums of

squares are adjusted for block effects. The experimenters were interested in examining the linear and

quadratic trend contrasts for step frequency, that is,

DL = −τ .1 + τ .3 = − 1

2
(τ11 + τ21) + 1

2
(τ13 + τ23) ,

DQ = −τ .1 + 2τ .2 − τ .3 = − 1

2
(τ11 + τ21) + 2

2
(τ12 + τ22) − 1

2
(τ13 + τ23) .

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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For the balanced incomplete block design, the least squares estimate for a contrast
∑

ci jτi j and its

associated variance are given by (11.4.11) and (11.4.12), p. 359–360; that is,

k

λv

∑

i

∑

j

ci j Qi j and
∑

i

∑

j

c2
i j

(
k

λv

)
σ2 ,

respectively. Using these formulae, we find that the least squares estimates of the linear and quadratic

trend contrasts for step frequency (adjusted for subjects) are

D̂L = 17.125 and D̂Q = −7.125 .

The linear trend is positive, suggesting that the average pulse rate increases as the step frequency

increases, and the quadratic trend is negative, suggesting that the increase in pulse rate is greater from

14 to 21 steps per minute than it is from 21 to 28 steps per minute. The null hypotheses H L
0 : {DL = 0}

and H
Q
0 : {DQ = 0} should be tested to check whether the perceived trends are significantly different

from zero. The variances of the contrast estimators are

(
4

4

)(
5

24

)
σ2 = 0.2083σ2 and

(
12

4

)(
5

24

)
σ2 = 0.625σ2 ,

respectively.

The contrast sum of squares for testing the null hypothesis H L
0 : {DL = 0} is obtained

from (11.4.16), p. 360, as

ss(DL) = (D̂L)2

∑∑
c2

i j

(
k
λv

) = 17.1252

0.2083
= 1407.675 ,

and the contrast sum of squares for testing H
Q
0 : {DQ = 0} is

ss(DQ) = (D̂Q)2

∑∑
c2

i j

(
k
λv

) = (−7.125)2

0.625
= 81.225.

The linear and quadratic contrasts are orthogonal in a balanced incomplete block design even after

adjusting for blocks, and we can now verify that indeed, ssD = ss(DL) + ss(DQ),

To test the null hypotheses H L
0 and H

Q
0 against their respective alternative hypotheses that the

null hypothesis is false, we compare each of ss(DL)/msE = 31.88 and ss(DQ)/msE = 1.84 with

2F2,19,.01 = 7.04 for Scheffé’s method and an overall level of α = 0.01. We conclude that the

quadratic trend is negligible, but there is a nonnegligible linear trend in the heart rate as the stepping

frequency increases (averaged over step height). �
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Table 11.17 SAS program for generation of an efficient incomplete block design

* Using proc optex to search for an efficient block design with v = 7,

b = 7, k = 3;

DATA CANDIDATE;

DO TREATMNT = 1 to 7;

OUTPUT;

END;

PROC OPTEX DATA = CANDIDATE SEED = 72145;

CLASS TREATMNT;

MODEL TREATMNT;

* For 7 blocks of size 3;

BLOCKS STRUCTURE = (7)3;

EXAMINE DESIGN;

11.8 Using SAS Software

11.8.1 Generation of Efficient Block Designs

PROC OPTEX within the SAS software allows one to search for efficient incomplete block designs.

Although one cannot specify the type of design to be generated, the software will search for the

design that gives the smallest confidence region for all contrasts using the Scheffé method of multiple

comparisons. If a balanced incomplete block design exists, it will usually be found by PROC OPTEX.

The first set of lines in the SAS program in Table 11.17 specify that there are 7 treatments and these

are stored in a dataset called CANDIDATE. Then, in the second set of lines, PROC OPTEX is run for a

block structure “(b)k”. In Table 11.17, there are b = 7 blocks of size k = 3. Since the program is not

guaranteed to find the optimal design, it makes 10 independent searches (–this number can be changed

by the user). The use of a particular “SEED =” always starts the search at the same point, so that

the same set of designs is obtained. This should be removed when starting a new experiment so that

random starts of the search are made. The designs found using the seed given in Table 11.17 are listed

in the first part of the output in Fig. 11.5. Among the designs found, the one which gives the smallest

confidence region for all contrasts is the one with the largest value under the heading “Treatment

D-efficiency”. This will often coincide with the design with the largest “Treatment A-efficiency”

which has the shortest average length of confidence intervals for pairwise comparisons. To search

specifically for the best design under A-efficiency, we insert the statement GENERATE CRITERION

= A; after the BLOCKS STRUCTURE statement, and the designs will then be rank ordered by the

A-efficiency.

The designs found in the 10 searches may or may not be exactly the same, but those listed in Fig. 11.5

are equally good as measured by their efficiencies. The command EXAMINE DESIGN prints out the

best design (the one at the top of the list). It can be seen in Fig. 11.5 that, for this design, Block I (listed

as the first three “points”) consists of treatments 1, 2, 4, while Block II consists of 2, 3, 7, and so on.

It can be checked that this is a balanced incomplete block design, although not the same one as that in

Table 11.2, p. 351. To examine a design which is not listed as the best, say the third design in the list,

replace EXAMINE DESIGN; by EXAMINE NUMBER = 3 DESIGN;.

The quoted value of “A-efficiency” is the ratio of the average variance of the pairwise comparisons in

the design being examined relative to the average variance in a randomized block design with the same
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Fig. 11.5 SAS output

from PROC OPTEX

value of r and multiplied by 100%. Since, in this example, the design found is a balanced incomplete

block design, the average variance is given by (11.4.12), p. 360, and the ratio is

2σ2/r

2kσ2/λv
100% = λv

rk
100% = v(k − 1)

k(v − 1)
100% = 77.777% .

The quoted “average D-efficiency” is related to the volume of the confidence region for all contrasts in

the design being examined as compared with that for a randomized block design with the same value

of r .
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Table 11.18 SAS program for analysis of a balanced incomplete block design—detergent experiment

DATA ONE;

INPUT BLOCK TRTMT Y;

LINES;

1 3 13

: : :

12 1 19

;

PROC SGPLOT;

SCATTER X = TRTMT Y = Y / GROUP = BLOCK MARKERCHAR = BLOCK;

PROC GLM;

CLASS BLOCK TRTMT;

MODEL Y = BLOCK TRTMT;

OUTPUT OUT = RESIDS PREDICTED = PREDY RESIDUALS = E;

* contrast sums of squares for 8 orthogonal contrasts;

CONTRAST ’I linear’ TRTMT -3 -1 1 3 0 0 0 0 0;

CONTRAST ’I quadratic’ TRTMT 1 -1 -1 1 0 0 0 0 0;

CONTRAST ’I cubic’ TRTMT -1 3 -3 1 0 0 0 0 0;

CONTRAST ’II linear’ TRTMT 0 0 0 0 -3 -1 1 3 0;

CONTRAST ’II quadratic’ TRTMT 0 0 0 0 1 -1 -1 1 0;

CONTRAST ’II cubic’ TRTMT 0 0 0 0 -1 3 -3 1 0;

CONTRAST ’I vs II’ TRTMT 1 1 1 1 -1 -1 -1 -1 0;

CONTRAST ’others vs control’ TRTMT 1 1 1 1 1 1 1 1 -8;

* estimation of treatment versus control contrasts via LSMEANS;

LSMEANS TRTMT / PDIFF = CONTROL(’9’) CL ADJUST = DUNNETT;

* estimation of treatment versus control contrast via ESTIMATE;

ESTIMATE ’Det 9-1’ TRTMT -1 0 0 0 0 0 0 0 1;

For the requirements of Example 11.6.2, if PROC OPTEX is run with this same seed for v = 5

treatments and b = 15 blocks of size k = 3, the best design found has pairs of treatments appearing

together in either λ1 = 4 or λ2 = 5 blocks. It consists of the 10-block balanced incomplete block

design together with an additional 5 blocks comprising a cyclic incomplete block design. (A different

seed, or no specified seed, may result in the additional 5 blocks being a non-cyclic incomplete block

design but the best design listed will most likely still have λ2 = λ1 + 1).

11.8.2 Analysis of Variance, Contrasts, and Multiple Comparisons

In this section, sample programs are given to illustrate the analysis of incomplete block designs using

the SAS software. The programs shown are for the detergent experiment of Sect. 11.4.4 and the plasma

experiment of Sect. 11.5, but similar programs can be used to analyze the data collected in any incom-

plete block design.

Table 11.18 contains the first sample program. The data are entered into a data set called ONE, using

the variables BLOCK, TRTMT, and Y for the block, treatment, and response value, respectively.

PROC SGPLOT is used to plot the observations against treatments, analogous to Fig. 11.2, p. 361,

and the legend identifies the block labels by color (the plot is not shown here). The block labels are

printed on the plot by inclusion of the command MARKERCHAR = BLOCK. In the next section of

Table 11.18, PROC GLM is used to fit the block–treatment model (11.4.2), generate the analysis of
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Fig. 11.6 Partial output

from PROC GLM for

analysis of an incomplete

block design—detergent

experiment

variance table, and save the predicted values and residuals in the output data set RESIDS. Residuals

can be standardized and plotted as in Chap. 6.

Output from PROC GLM is reproduced in Fig. 11.6. Since BLOCK has been entered before TRTMT

in the model statement, the sum of squares for treatments adjusted for blocks is listed under

Type I (or sequential) sums of squares as well as under the Type III sums of squares. The

adjusted block sum of squares is listed under the Type III sums of squares. In order to use the

sequential or Type I sums of squares to obtain the adjusted block sum of squares, one would need to

rerun the program with TRTMT entered before BLOCK in the model statement. In Table 11.18, the sums

of squares corresponding to v−1 = 8 orthogonal treatment contrasts are requested via the CONTRAST

statements, and it can be verified from Fig. 11.6 that the contrast sums of squares add to the treatment

sum of squares.

Simultaneous confidence intervals for pairwise comparisons can be obtained via the ESTIMATE

statements or viaLSMEANSwith options as discussed in Sect. 6.8.2, p. 180. Tukey, Scheffé and Dunnett

methods can all be used for a balanced incomplete block design with code such as:

LSMEANS TRTMT / PDIFF=CONTROL(’9’) CL ADJUST=DUNNETT;

Here, the PDIFF=CONTROL(’9’) option for Dunnett’s method specifies that level 9 is the control,

as was the case in the detergent experiment. If the designation “(’9’)” had been omitted, then the

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Fig. 11.7 Partial output

from ESTIMATE and

LSMEANS for an

incomplete block

design—detergent

experiment with detergent

9 as the control treatment

lowest level would have been taken to be the control treatment by default. Partial output is shown in

Fig. 11.7. The first section of the table shows the output from the ESTIMATE statements. The second

section of the output gives simultaneous 95% confidence intervals for the treatment-versus-control

comparisons using Dunnett’s method. A word of warning is in order here. If the treatments had been

labeled anything other than 1, 2, . . . , 9, at this point SAS software would have relabeled them. For

example, if the control treatment had been labeled as 0 and the test treatments as 1, . . . , 8, SAS software

would have relabeled the control as treatment 1 and the test treatments as 2, . . . , 9.

Figure 11.8 shows partial output from PROC GLM in the first part of Table 11.19 for day one data

from the plasma experiment (Sect. 11.5), which was a nonstandard incomplete block design. The

Type I and Type III sums of squares are shown, together with partial output from the LSMEANS

statement

LSMEANS TRTMT / PDIFF = ALL CL ADJUST=SCHEFFE;

Output from the above LSMEANS statement, combined with standard error estimates generated by an

ESTIMATE statement for each pairwise treatment contrast like the following one for τ1 − τ2, were

used to compile Table 11.14 (p. 370):

ESTIMATE ’T1-T2’ TRTMT 1 -1 0 0 0 0;
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Fig. 11.8 Partial output

from PROC GLM and

LSMEANS in a SAS

program for analyzing an

incomplete block

design—plasma

experiment, day one

11.8.3 Plots

Table 11.19 contains a sample SAS program illustrating how to plot the data adjusted for blocks

against the treatment labels, using the day one data of the plasma experiment, (first three blocks

of Table 11.11, p. 368). The program, as written, must be run in three passes. In successive passes,

information generated by earlier passes must be added as input in later parts of the program. First, the

data are entered into a data set called ONE. Since the block effect estimates are needed to adjust the

observations, the option SOLUTION is included in the MODEL statement of PROC GLM. This causes

a (nonunique) solution to the normal equations for μ̂, τ̂i , and θ̂h to be printed. The solutions will all

be labeled “B” for “biased,” meaning that the corresponding parameters are not individually estimable

(see Fig. 10.8, p. 330, for example).

The least squares solutions θ̂h are then entered (as “BHAT”) into the data set TWO by the user in the

second run of the program. PROC MEANS is used to compute and print the average value θ̂.. Finally,

http://dx.doi.org/10.1007/978-3-319-52250-0_10
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Table 11.19 SAS program to plot data adjusted for block effects—plasma experiment, day one only

* This program requires 3 runs, adding more information in each run;

DATA ONE;

INPUT BLOCK TRTMT Y;

LINES;

1 4 0.459

1 5 0.467

: : :

3 3 0.473

;

* Get block effect estimates;

PROC GLM;

CLASS BLOCK TRTMT;

MODEL Y = BLOCK TRTMT / SOLUTION;

LSMEANS TRTMT / PDIFF = ALL CL ADJUST=SCHEFFE;

PROC SORT; BY BLOCK;

* Add the following code for the second run;

* values BHAT are solutions for block parameters from first run;

DATA TWO;

INPUT BLOCK BHAT;

LINES;

1 -.0126666667

2 -.0053333333

3 0.0000000000

;

PROC MEANS MEAN; * print average of BHAT values;

VAR BHAT;

* Add the following code for the third run;

* The number -0.006 below is average BHAT calculated in second run;

DATA THREE;

MERGE ONE TWO;

BY BLOCK;

Y_ADJ = Y - (BHAT - (-0.006));

PROC SGPLOT data = THREE;

SCATTER X = TRTMT Y = Y_ADJ / GROUP = BLOCK;

in the third run of the program, the block-effect estimates and their average value are used to adjust the

data values. The adjusted values are then plotted against treatment. The SAS plot is not shown here,

but it is similar to the plot in Fig. 11.4 (p. 370).

11.9 Using R Software

11.9.1 Generating Efficient Incomplete Block Designs

The R function bibd from the package ibd can be used to construct balanced incomplete block

designs when they exist. The first few lines of the program in Table 11.20 install and load the ibd

package, then ask the program to search for a balanced incomplete block design with v = 7 treatments

each appearing r = 3 times, b = 7 blocks of size k = 3, and pairs of treatments appearing together in

λ = 1 block. In general, the bibd function checks that the necessary conditions for an existence of a
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Table 11.20 R code and output for bibd with v = 7 treatments, b = 7 blocks of size k = 3

> # install.packages("ibd")

> library(ibd)

> bibd(v = 7, r=3, b = 7, k = 3, lambda = 1)

$design

[,1] [,2] [,3]

[1,] 1 3 6

[2,] 1 4 5

[3,] 5 6 7

[4,] 1 2 7

[5,] 3 4 7

[6,] 2 4 6

[7,] 2 3 5

$Aeff

[1] 0.9999999

$Deff

[1] 0.9999999

bibd are satisfied. If so, it will either provide the design or respond with “design not found”. For the

design size in Table 11.20, the design does exist and is shown under the heading $design. The seven

blocks of the design are given by the seven rows of three treatment labels. The quoted $Aeff is the

ratio of the average variance of the pairwise comparisons in this incomplete block design relative to

the average variance (11.4.12) in a balanced incomplete block design with the same values of v and

k. The quoted $Deff is related to the volume of the confidence region for all contrasts in the design

being examined relative to a balanced incomplete block design with the same values of v and k (which

may not actually exist in practice). Since the design found here is, itself, a balanced incomplete block

design, A-eff and D-eff are given as 1 (approximately).

If no balanced incomplete block design exists, as for the requirements of Example 11.6.2, with

v = 5 treatments and b = 15 blocks of size k = 3, then function ibd, whose inputs are v, b,

and k, can be used to construct an incomplete block design. For this example, the best design found

is shown in Table 11.21 and has “A.Efficiency = 0.9975” and “D.Efficiency= 0.9987”, where these

efficiencies are calculated the same way as $Aeff and $Deff in the bibd function. It consists of

a balanced incomplete block design with 10 blocks, together with an additional 5 blocks comprising

an incomplete block design with λ2 = λ1 + 1. The entire 15-block design has pairs of treatments

appearing together in either λ1 = 4 or λ2 = 5 blocks. For a binary design, the values of λi are listed as

the off-diagonal elements in the array called $conc.mat so, for example, the first row of this array

shows that treatment 1 appears in 4 blocks with treatments 2 and 3, and in 5 blocks with treatments 4

and 5. The diagonal elements of the array are the values of r .

The ibd function prints out the design with the highest D.Efficiency that it finds in 5 independent

searches. If the design found has low efficiency, ibd may be able to obtain an improved design if the

option ntrial=n is added into the ibd statement, where n is some integer larger than the default

value of 5; for example,

ibd(v = 5,b = 15,k = 3,ntrial = 20) .
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Table 11.21 R code and output for an incomplete block design with v = 5 treatments, b = 15 blocks of size k = 3

> library(ibd)

> ibd(v=5, b=15, k=3)

$design

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 1 4 5

[3,] 1 4 5

[4,] 3 4 5

[5,] 1 3 5

[6,] 1 3 4

[7,] 2 3 4

[8,] 1 3 4

[9,] 2 4 5

[10,] 2 3 4

[11,] 1 2 5

[12,] 1 2 5

[13,] 1 2 4

[14,] 2 3 5

[15,] 2 3 5

$conc.mat

[,1] [,2] [,3] [,4] [,5]

[1,] 9 4 4 5 5

[2,] 4 9 5 4 5

[3,] 4 5 9 5 4

[4,] 5 4 5 9 4

[5,] 5 5 4 4 9

$A.Efficiency

[1] 0.9975309

$D.Efficiency

[1] 0.9987647

11.9.2 Analysis of Variance, Contrasts, and Multiple Comparisons

In this section, sample programs are given to illustrate the analysis of incomplete block designs using

the R software. The programs shown are for the detergent experiment of Sect. 11.4.4 and the plasma

experiment of Sect. 11.5, but similar programs can be used to analyze the data collected in any incom-

plete block design.

Table 11.22, p. 385, contains the first sample program. The data are read into the data set

detrgnt.data, using the variables Block, Trtmt, and y for the block, treatment, and response

value, respectively. Corresponding factor variables fBlock ad fTrtmt are added to the data set.

In the second block of code, the plot function is used to plot the observations against treatments,

analogous to Fig. 11.2, p. 361, but using block labels as the plotting legend (the plot is not shown here).

In the third block of code, the linear models function lm is used to fit the block–treatment

model (11.4.2), then corresponding anova and drop1 functions generate the Type I (or sequential)
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Table 11.22 R program for analysis of a balanced incomplete block design—detergent experiment

detrgnt.data = read.table("data/detergent.txt", header=T)

head(detrgnt.data)

detrgnt.data = within(detrgnt.data,

{fBlock = factor(Block); fTrtmt = factor(Trtmt) })

# Plot y vs Trtmt using block level as plotting symbol.

plot(y ˜ Trtmt, data=detrgnt.data, xaxt="n", type="n") # Suppress x-axis, pts

axis(1, at=seq(1,9,1)) # x-axis labels 1:9

text(y ˜ Trtmt, Block, cex=0.75, data=detrgnt.data) # Plot y*Trtmt=Block

mtext("Block=1,...,12", side=3, adj=1, line=1) # Margin text, TopRt, line 1

# Analysis of variance

model1 = lm(y ˜ fBlock + fTrtmt, data=detrgnt.data)

anova(model1)

drop1(model1, ˜., test="F")

# Contrast estimates

library(lsmeans)

lsmTrtmt = lsmeans(model1, ˜ fTrtmt)

cntrsts = summary(contrast(lsmTrtmt,

list(I.linear=c(-3,-1, 1, 3, 0, 0, 0, 0, 0),

I.quad=c( 1,-1,-1, 1, 0, 0, 0, 0, 0),

I.cubic=c(-1, 3,-3, 1, 0, 0, 0, 0, 0),

II.linear=c( 0, 0, 0, 0,-3,-1, 1, 3, 0),

II.quad=c( 0, 0, 0, 0, 1,-1,-1, 1, 0),

II.cubic=c( 0, 0, 0, 0,-1, 3,-3, 1, 0),

I.vs.II=c( 1, 1, 1, 1,-1,-1,-1,-1, 0),

Trt.vs.Ctrl=c( 1, 1, 1, 1, 1, 1, 1, 1,-8))),

infer=c(T,T))

# Compute and include contrast sums of squares: ss=tˆ2*mse

mse = anova(model1)[3,3]; mse

cntrsts = cbind(cntrsts, ss=cntrsts[,"t.ratio"]ˆ2*mse)

options(width=75, digits=3, scipen=2)

cntrsts

options(ooptions)

# Dunnett’s method

summary(contrast(lsmTrtmt, method="trt.vs.ctrl", adjust="mvt", ref=9),

infer=c(T,T))

and Type III analysis of variance tables, respectively. Predicted values and residuals are available, and

the residuals can be standardized and plotted as in Sect. 6.2.3.

The analysis of variance output from anova and drop1 is reproduced in Table 11.23, p. 386. Since

fBlock has been entered before fTrtmt in the model statement, the sum of squares for treatments

adjusted for blocks are obtained as both Type I and Type III sums of squares. The adjusted block

sum of squares is listed under the Type III sums of squares whereas, to use the sequential or Type I

sums of squares, one would need to rerun the program with fTrtmt entered before fBlock in the

model statement. In the center of Table 11.22, the summary(contrast(lsmTrtmt… statement

is used to list eight orthogonal treatment contrasts, producing corresponding least squares estimates,

standard errors, two-sided t-tests, and individual 95% confidence intervals, as shown in the bottom part

http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 11.23 Selected ANOVA and contrast output for analysis of an incomplete block design—detergent experiment

> anova(model1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

fBlock 11 413 37.5 45.5 6.0e-10

fTrtmt 8 1087 135.9 164.8 6.8e-14

Residuals 16 13 0.8

> drop1(model1, ˜., test="F")

Single term deletions

Model:

y ˜ fBlock + fTrtmt

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 13 3.8

fBlock 11 10 23 2.3 1.11 0.41

fTrtmt 8 1087 1100 147.1 164.85 6.8e-14

> cntrsts

contrast estimate SE df lower.CL upper.CL t.ratio p.value ss

1 I.linear -43.667 2.34 16 -48.64 -38.70 -18.630 2.85e-12 286.0167

2 I.quad -4.111 1.05 16 -6.33 -1.89 -3.922 1.22e-03 12.6759

3 I.cubic -1.222 2.34 16 -6.19 3.75 -0.521 6.09e-01 0.2241

4 II.linear -20.222 2.34 16 -25.19 -15.25 -8.628 2.05e-07 61.3407

5 II.quad 0.444 1.05 16 -1.78 2.67 0.424 6.77e-01 0.1481

6 II.cubic -0.444 2.34 16 -5.41 4.52 -0.190 8.52e-01 0.0296

7 I.vs.II -31.889 1.48 16 -35.03 -28.75 -21.512 3.10e-13 381.3380

8 Trt.vs.Ctrl -91.000 4.45 16 -100.43 -81.57 -20.462 6.73e-13 345.0417

of Table 11.23. The sum of squares for each contrast is subsequently computed from its corresponding

t-ratio as ss =(t-ratio)2 × mse, which follows since (t-ratio)2 = ss/mse from (4.3.16)

p. 78, where mse is the mean squared error from the Residuals line in the analysis of variance table.

Simultaneous confidence intervals for pairwise comparisons can be obtained via the lsmeans

function as discussed in Sect. 6.9.2, p. 187. For example, Dunnett’s method is invoked by the following

statements in the bottom of Table 11.22, p. 385.

lsmTrtmt = lsmeans(model1, ˜ fTrtmt)

summary(contrast(lsmTrtmt, method="trt.vs.ctrl", adjust="mvt", ref=9),

infer=c(T,T))

The ref=9 option specifies that the 9th level (coincidentally also labeled "9") is the control, as was

the case in the detergent experiment. If this designation had been omitted, then the lowest level would

have been taken to be the control treatment by default. Table 11.24, p. 387, contains the resulting

output, including the estimate of each treatment-versus-control comparison τi − τ9, as well as the

corresponding standard error, simultaneous 95% confidence limits by Dunnett’s method, test statistic,

and p value for simultaneous tests for whether or not each of the treatment-versus-control comparisons

τi − τ9 is zero, or equivalently whether τi = τ9, using Dunnett’s method.

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 11.24 Dunnett’s method output for an incomplete block design—detergent experiment with detergent 9 as the

control treatment

> # Dunnett’s method

> summary(contrast(lsmT, method="trt.vs.ctrl", adjust="mvt", ref=9),

+ infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value

1 - 9 -9.7778 0.7412 16 -11.9824 -7.5732 -13.192 <.0001

2 - 9 -12.3333 0.7412 16 -14.5379 -10.1287 -16.640 <.0001

3 - 9 -16.3333 0.7412 16 -18.5379 -14.1287 -22.036 <.0001

4 - 9 -23.0000 0.7412 16 -25.2046 -20.7954 -31.031 <.0001

5 - 9 -4.2222 0.7412 16 -6.4268 -2.0176 -5.696 0.0002

6 - 9 -6.5556 0.7412 16 -8.7601 -4.3510 -8.844 <.0001

7 - 9 -8.4444 0.7412 16 -10.6490 -6.2399 -11.393 <.0001

8 - 9 -10.3333 0.7412 16 -12.5379 -8.1287 -13.941 <.0001

Results are averaged over the levels of: fB

Confidence level used: 0.95

Confidence-level adjustment: mvt method for 8 estimates

P value adjustment: mvt method for 8 tests

Table 11.25, p. 388, shows an R program and partial output for analysis of the day one data from

the plasma experiment (Table 11.11, p. 368), which used a nonstandard incomplete block design. After

reading the entire set of data, data/plasma.txt, and defining the block and treatment factors, the

subset function is used to create a data set day1.data containing only day one data. The Type I

and type 3 sums of squares generated by anova and drop1, respectively, are shown at the top of the

table. The bottom of the table contains partial output from the lsmeans and summary(contrast

statements, comparing treatment effects pairwise via Scheffé’s method. This is one way to obtain

information analogous to that in Table 11.14 (p. 370).

11.9.3 Plots

Table 11.26, p. 389, contains a sample R program illustrating how to plot the data adjusted for blocks

against the treatment labels, using the day one data of the plasma experiment, (first three rows of

Table 11.11, p. 368). The subset function is used to create a data set day1.data containing only

day one data. Having fit the linear model by the lm function and saved the results as model2, the

least squares estimates of the model parameters are available as model2$coefficients. If one

were to display these, one would see that the second and third coefficient estimates are the block

effect estimates θ̂2 ≈ 0.0073333 and θ̂3 ≈ 0.0126667, but there is no estimate listed for the first

block effect, so θ̂1 = 0. These three block effect estimates are saved in the column thetahat, and

the mean estimate θ̂. is saved as avgest. These values are used to compute adjusted observations,

yadj = y − (θ̂h − θ̂.), which are then plotted against treatment. The R plot is not shown here, but it

is similar to the plot in Fig. 11.4 (p. 370).
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Table 11.25 R program and partial output from anova, drop1, and lsmeans, analyzing an incomplete block

design—plasma experiment

> plasma.data = read.table("data/plasma.txt", header=T)

> plasma.data = within(plasma.data,

+ {fBlock = factor(Block); fTrtmt = factor(Trtmt) })

> head(plasma.data, 3)

> # Analysis of day 1 data

> day1.data = subset(plasma.data, Day==1) # Keep data with "Day==1"

> model2 = lm(y ˜ fBlock + fTrtmt, data=day1.data)

> anova(model2)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

fBlock 2 0.000403 0.0002014 1209 0.020

fTrtmt 5 0.000711 0.0001422 853 0.026

Residuals 1 0.000000 0.0000002

> drop1(model2, ˜., test="F")

Single term deletions

Model:

y ˜ fBlock + fTrtmt

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 0.000000 -144.2

fBlock 2 0.000121 0.000121 -88.9 364 0.037

fTrtmt 5 0.000711 0.000711 -79.0 853 0.026

> # Scheffe’s method

> library(lsmeans)

> lsmTrtmt = lsmeans(model2, ˜ fTrtmt)

> summary(contrast(lsmTrtmt, method="pairwise", adjust="Scheffe"),

+ infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value

1 - 2 0.02550000 0.00064550 1 0.0036024 0.047398 39.504 0.0429

1 - 3 0.02183333 0.00055277 1 0.0030814 0.040585 39.498 0.0430

1 - 4 0.02316667 0.00055277 1 0.0044147 0.041919 41.910 0.0405

: : : : : : : :

5 - 6 -0.00166667 0.00047140 1 -0.0176584 0.014325 -3.536 0.4451

Results are averaged over the levels of: fBlock

Confidence level used: 0.95

Confidence-level adjustment: scheffe method for a family of 6 estimates

P value adjustment: scheffe method for a family of 6 tests
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Table 11.26 R program to plot data adjusted for block effects—plasma experiment, day one only

# Create data set of day 1 data

plasma.data = read.table("data/plasma.txt", header=T)

plasma.data = within(plasma.data,

{fBlock = factor(Block); fTrtmt = factor(Trtmt) })

day1.data = subset(plasma.data, Day==1) # Keep data with "Day==1"

# Fit model to day 1 data

model2 = lm(y ˜ fBlock + fTrtmt, data=day1.data)

# Create columns of block effect estimates, and compute the avg estimate

model2$coefficients # Display all model coefficient estimates

thetahat = c(0, model2$coefficients[2:3]) # Create col of block effect ests

avgest = mean(thetahat) # Compute average block effect estimate

# Compute adjusted y-values: yadj = y - (thetahat.h - thetahat.bar)

day1.data$yadj = day1.data$y - (thetahat[day1.data$Block] - avgest)

# Plotting day 1 data adjusted for block effects

plot(yadj ˜ Trtmt, data=day1.data, xlab="Treatment", ylab="y Adjusted")

Table 11.27 Three incomplete block designs

Design I Design II Design III

Block Treatments Block Treatments Block Treatments

1 1 2 1 1 2 3 1 1 2 6

2 1 3 2 4 5 6 2 3 4 5

3 1 4 3 7 8 9 3 2 6 8

4 2 3 4 1 4 7 4 4 5 7

5 2 4 5 2 5 8 5 1 6 8

6 3 4 6 3 6 9 6 3 5 7

7 1 5 9 7 1 2 8

8 2 6 7 8 3 4 7

9 3 4 8

Exercises

1. Connectedness and estimability

(a) For each of the three block designs in Table 11.27, draw the connectivity graph for the design,

and determine whether the design is connected.

(b) If the design is connected, determine whether or not it is a balanced incomplete block design.

(c) For designs II and III, determine graphically whether or not τ1 − τ5 and τ1 − τ6 are estimable.

(d) For design III, use expected values to show that τ1 − τ8 is estimable.
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2. Connectedness

(a) Determine whether or not the cyclic design with initial block (1, 3, 5) is a connected design if

v = 8 or v = 9.

(b) Determine whether or not the cyclic design with initial block (1, 4, 7) is a connected design if

v = 8 or v = 9.

3. Randomization

Conduct a block design randomization for design II in Table 11.27.

4. Cyclic designs

Determine whether or not the cyclic design obtained from each initial block below is a balanced

incomplete block design or a group divisible design or neither.

(a) Initial block: 1, 3, 4; v = 7.

(b) Initial block: 1, 2, 4, 8; v = 8.

(c) Initial block: 1, 2, 4; v = 5.

5. Balanced incomplete block design

In the following questions, consider an experiment to compare v = 7 treatments in blocks of size

k = 5.

(a) Show that, for this experiment, a necessary condition for a balanced incomplete block design to

exist is that r is a multiple of 5 and b is a multiple of 7.

(b) Show that r must be at least 15.

(c) Taking all possible combinations of five treatments from seven gives a balanced incomplete

block design with r = 15. Calculate the number of blocks that must be in this design.

6. Sample sizes

Consider an experiment to compare 7 treatments in blocks of size 5, with an anticipated error

variance of at most 30 squared units.

(a) Assuming that a balanced incomplete block design will be used, how many observations would

be needed for the minimum significant difference to be about 50 units for a pairwise comparison

using Tukey’s method and a 95% simultaneous confidence level?

(b) Repeat part (a) for a minimum significant difference of 25 units.

(c) Repeat part (a) using Dunnett’s method for treatment versus control comparisons.

7. Least squares estimator, detergent experiment, continued

Consider the balanced incomplete block design in Table 11.8, p. 361, used for the detergent exper-

iment in Sect. 11.4.4.

(a) Show that the least squares estimator τ̂4 − τ̂6 is an unbiased estimator of τ4 − τ6 under the

block–treatment model (11.4.2), p. 356 (that is, show that E[τ̂4 − τ̂6] = τ4 − τ6).

(b) Calculate a confidence interval for τ4 − τ6 as part of a 95% set of simultaneous confidence

intervals for pairwise comparisons, using Tukey’s method.
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Table 11.28 Percentage rust observed for the rust experiment

Temperature (◦F) Block

I II III IV V VI VII VIII IX X

50 12 19 20 10 21 19

55 18 33 19 18 18 24

60 24 36 35 39 22 28

65 39 45 43 34 42 31

70 45 52 55 48 50 43

8. Rust experiment

The rust experiment investigated the effect of temperature on the percentage of surface area of a

metal sheet exhibiting rust after a given length of time exposed to certain weathering conditions.

Five temperatures were examined in the experiment, but only three could be examined at any

one time under identical experimental conditions. A balanced incomplete block design was used,

formed from two cyclic designs with initial blocks (1, 2, 3) and (1, 2, 4). The data and design are

shown in Table 11.28.

(a) Write down a model for this experiment and test the hypothesis of no difference in the effects

of the temperature on the percentage of rust, against the alternative hypothesis that at least two

temperatures differ. Use a significance level of 0.01.

(b) What does “a significance level of 0.01” in part (a) mean?

(c) Was blocking worthwhile in this experiment?

(d) Give a formula for a 95% set of simultaneous confidence intervals for pairwise comparisons

among the temperatures in this experiment. Calculate, by hand, the interval comparing temper-

atures 5 and 4 (that is, τ5 − τ4) for illustration. Compare your answer with that obtained from

your computer output.

(e) Test the hypothesis that there is no linear trend in the percentage of rust as the temperature

increases.

9. Balanced incomplete block design

An experiment is to be run to compare the effects of four different formulations of a drug to relieve

an allergy. In a pilot experiment, four subjects are to be used, and each is to be given a sequence of

three of the four drugs. The measurements are the number of minutes that the subject appears to be

free of allergy symptoms. Suppose the design shown in Table 11.29 is selected for the experiment.

(a) Check that this design is a balanced incomplete block design. (Show what you are checking.)

(b) Show a randomization of this design, explaining the steps of your randomization.

(c) The experiment was run as described, and the block–treatment model (11.4.2), p. 356, was used

to analyze it. Some information for the analysis is shown in Table 11.29. Using this informa-

tion and (11.4.7), p. 358, show that Q1, Q2, Q3, Q4 are −79.333, 81.667, −158.667, 156.333,

respectively.

(d) Using the information in part (c), give a confidence interval for τ3 − τ2 assuming that it is part

of a set of 95% Tukey confidence intervals.

(e) Test the hypothesis that there is no difference between the effects of the drugs.
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Table 11.29 Balanced incomplete block design of Exercise 9 and partial information for its analysis

Block Levels of treatment factor Block totals Treatment totals

I 1 2 3 B1 = 417 T1 = 385

II 1 2 4 B2 = 507 T2 = 582

III 1 3 4 B3 = 469 T3 = 329

IV 2 3 4 B4 = 577 T4 = 674

y.. = 164.1667 msE = 3.683

(f) The typical model and analysis for a balanced incomplete block design is that of parts (c)–(e).

Do you think this is a reasonable model and analysis for the experiment described? Why or why

not? (Hint: think about the terms in, and assumptions on, the model.)

10. Step experiment, continued

The step experiment was described in Example 11.7.1 and the data are shown in Table 11.15,

p. 373.

(a) Prepare a plot of the treatment averages and examine the linear trends in the heart rate due to

step frequency at each level of step height.

(b) Fit a block–treatment model to the data with v = 6 treatments representing the six treatment

combinations.

(c) Estimate the linear trends in the heart rate due to step frequency at each level of step height

separately, and calculate confidence intervals for these.

(d) Write down a contrast that compares the linear trends in part (c) and test the hypothesis that the

linear trends are the same against the alternative hypothesis that they are different.

11. Beef experiment

Cochran and Cox (1957) describe an experiment that was run to compare the effects of cold storage

on the tenderness of beef roasts. Six periods of storage (0, 1, 2, 4, 9, and 18 days) were tested and

coded 1–6. It was believed that roasts from similar positions on the two sides of the animal would

be similar, and therefore the experiment was run in b = 15 blocks of size k = 2. The response

yhi from treatment i in block h is the tenderness score. The maximum score is 40, indicating very

tender beef. The design and responses are shown in Table 11.30.

(a) What is the value of λ for this balanced incomplete block design?

(b) What benefit do you think the experimenters expected to gain by using a block design instead of

a completely randomized design?

(c) Calculate the least squares estimate of τ6 − τ1 and its corresponding variance.

(d) Calculate a confidence interval for τ6 − τ1 as though it were part of a set of 95% confidence

intervals using Tukey’s method of multiple comparisons.

(e) Calculate a confidence interval for the difference of averages contrast

1

3
(τ4 + τ5 + τ6) − 1

3
(τ1 + τ2 + τ3) ,
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Table 11.30 Design and data for the beef experiment

Block Treatment

1 2 3 4 5 6

I 7 17

II 26 25

III 33 29

IV 17 27

V 23 27

VI 29 30

VII 10 25

VIII 26 37

IX 24 26

X 25 40

XI 25 34

XII 34 32

XIII 11 27

XIV 24 21

XV 26 32

Source Data adapted from Experimental Designs, Second Edition, by W. G. Cochran and G. M. Cox, Copyright c© 1957,

John Wiley & Sons, New York.

assuming that you want the overall level of this interval together with the intervals in part (d) to

be at least 94%. What does your interval tell you about storage time and tenderness of beef?

12. Balanced incomplete block design

(a) Explain under what circumstances you would choose to use a block design rather than a com-

pletely randomized design.

(b) For a balanced incomplete block design, why is it incorrect to estimate the difference in the

effects of treatments i and p as y.i − y.p? What is the formula for the correct least squares

estimate and its corresponding variance if the design of Table 11.2, p. 351, is used?

(c) Suppose that the design of Table 11.2 is used for an experiment with v = 7 treatments and b = 3

blocks of size k = 3, and suppose that

τ̂1 = 31.6, τ̂2 = 22.4, τ̂3 = 17.9, τ̂4 = 21.5, τ̂5 = 30.2, τ̂6 = 18.6, τ̂7 = 25.5 .

Calculate a set of 99% confidence intervals for comparing the effect of treatment 1 with the

effects of the other treatments. State your conclusions.

13. Lithium bioavailability experiment

An experiment described by W. J. Westlake (Biometrics, 1974) used a balanced incomplete block

design to compare the amount of four formulations of lithium carbonate that were present in the

blood serum of subjects several hours after administration. The four levels of the factor “for-

mulation” consisted of 300 mg capsule (level 1), 250 mg capsule with different inert ingredients

(level 2), 450mg delayed release capsule (level 3), 300 mg in solution (level 4). Level 4 is the

standard (control) treatment. Table 11.31 shows the amounts of lithium carbonate in the blood

serum after 3 hours, measured in mEq (milliequivalent which is a measure of the quantity of ions
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Table 11.31 Data for the lithum bioavailability experiment, showing treatment factor level, and response in parenthesis

Subject

1 2 3 4 5 6

1 (.467) 4 (.450) 3 (.200) 2 (.520) 4 (.600) 4 (.467)

2 (.440) 3 (.156) 1 (.533) 3 (.222) 1 (.467) 2 (.520)

Subject

7 8 9 10 11 12

2 (.600) 2 (.640) 3 (.156) 1 (.533) 1 (.433) 3 (.156)

1 (.467) 4 (.400) 4 (.467) 4 (.433) 3 (.267) 2 (.520)

Source Data adapted from Westlake, Biometric, 1974, International Biometric Society

in an electrolyte fluid). There were 12 subjects, each of whom was given two formulations (one

week apart).

(a) Verify that the design in Table 11.31 is a balanced incomplete block design.

(b) Plot the observations on the treatments adjusted for the block (subject) effects), and explain what

the plot shows.

(c) Test, at level .01, the hypothesis that the four formulations have the same effect on the amount

of lithium carbonate in the blood serum after 3 hours.

(d) Calculate a set of 99% simultaneous confidence intervals for the pairwise comparisons of the

formulations and state your conclusion.

(e) Calculate a set of 99% simultaneous confidence intervals for the comparisons of the three test

formulations with the control (level 4). State your conclusion.

14. Plasma experiment, continued

In the plasma experiment of Sect. 11.5, the experimenters used the cyclic design for six treatments

generated by 1, 4, 5.

(a) Show that the cyclic design is also a group divisible design by determining the groups and the

values of λ1 and λ2.

(b) The design for day one of the experiment consisted of the following three blocks of size three:

(1, 4, 5); (2, 5, 6); (3, 6, 1). Show that this design is connected by drawing the connectivity graph

of the design.

15. Group divisible design

(a) Show that the design in Table 11.32 with v = 12 treatments and b = 9 blocks of size k = 4 is

a group divisible design with g = 4 groups of size ℓ = 3. Find the groups and calculate λ1 and

λ2.

(b) Using the values of λ1 and λ2 in part (a), show that the requirements in Sect. 11.3.2, p. 354, for

a group divisible design are met.

(c) Fit model (11.4.2), p. 356, to these data and check the assumptions on the error variables by

plotting the residuals.

(d) Treatment 1 is the control treatment. Using the formulae in Sect. 11.4.5, p. 365, calculate the two

possible variances of τ̂1 − τ̂p, p = 2, . . . , 12.
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Table 11.32 Data for the group divisible design

Block Treatments (Response)

1 2 (4.5) 4 (8.7) 10 (19.1) 11 (21.2)

2 5 (11.8) 7 (13.6) 9 (18.2) 11 (22.2)

3 1 (4.8) 8 (17.3) 11 (24.0) 12 (24.8)

4 4 (10.8) 6 (14.5) 7 (16.6) 8 (18.1)

5 2 (7.9) 3 (9.7) 8 (19.1) 9 (20.6)

6 2 (8.7) 5 (14.4) 6 (16.2) 12 (27.7)

7 1 (7.5) 6 (16.9) 9 (20.7) 10 (23.5)

8 3 (11.3) 7 (19.8) 10 (25.5) 12 (29.0)

9 1 (9.1) 3 (9.8) 4 (12.9) 5 (16.9)

(e) Calculate the two possible lengths of 99% confidence intervals for treatment versus control

contrasts using Scheffé’s method, and verify your calculations using a computer program.

(f) What can you conclude about the control treatment in this experiment?

(g) Using (4.2.4), p. 73, find the linear trend coefficients for 12 equally spaced treatment levels. If

the treatment code corresponds to milliliters of added sugar to a product, and the response is a

taste score, test the hypothesis that the linear trend in score as the amount of sugar increases is

negligible. Use a significance level of α = 0.01 and a two-sided alternative hyothesis.

16. Fabric stain experiment

The experiment was run by M. Nelson, T. Blake, D. Sullivan, A. Kemme and J. Jia in 2008 to

examine how best to remove a stain caused by black waterproof drawing ink. There were three

factors under consideration as follows. Factor A was type of cloth (1=cotton, 2=polyester),

Factor B was type of pre-treatment (1=gel stain remover, 2=antibacterial dish soap, 3=no pre-

treatment), and Factor C was time between staining and washing (0, 1, 2 days, coded as levels 1,

2, 3). The experiment was run in several blocks; in some blocks the washing machine was set to

the hot wash setting, and the others to the cold wash setting.

Thirty six pieces of fabric of each type were prepared of approximately the same size. The amount

of ink applied to each piece of cloth was held constant, as was the amount of detergent used in each

wash. The stained fabric samples were evaluated by a single experimenter using a “Gray Scale”

(cf. Chapter 10, Exercise 14) both before and after the wash. The differences between the pairs

of evaluations formed the responses and are shown in Table 11.33. The order of the samples was

randomized and unknown to the evaluator.

(a) Show that, for this design, pairs of treatments occur together in λ1 or λ2 or λ3 blocks, where these

values are different. (This means that there are three different lengths of confidence intervals for

treatment contrasts). Thus, argue that the design cannot be a balanced incomplete block design

or a group divisible design.

(b) For the standard block–treatment model (11.4.2), p. 356, with b = 6 blocks and v = 18 treat-

ments, write down the contrast coefficient lists for the following contrasts:

(i) the comparison of treating the stain immediately as compared with the average of the 1 and

2 day delays,

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_10
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Table 11.33 Responses for the fabric stain experiment

Block Treatments (Response)

1 1 (35) 6 (35) 8 (20) 10 (80) 15 (65) 17 (10)

2 2 (30) 4 (25) 9 (10) 11 (75) 13 (60) 18 (15)

3 3 (30) 5 (30) 7 (30) 12 (75) 14 (60) 16 (15)

4 1 (20) 5 (30) 9 (15) 10 (80) 14 (65) 18 (20)

5 2 (20) 6 (15) 7 (10) 11 (80) 15 (65) 16 (15)

6 3 (20) 4 (15) 8 (20) 12 (70) 13 (50) 17 (15)

(ii) the comparison of no pre-treatment versus the average of the two types of pre-treatment,

(iii) the comparison of a 1 or 2 day delay for each level of pre-treatment separately.

(c) Prepare an analysis of variance table and test the hypothesis that each contrast in part (b) is

negligible. Use an overall significance level of not more than 0.1. State your conclusions.

(d) Using Scheffé’s method of multiple comparisons at confidence level 95%, state which pairs of

treatments are significantly different and give the confidence intervals for these.

(e) From Scheffé’s multiple comparisons calculated in part (d), verify that the confidence intervals

for τ1 − τp, for p = 2, . . . , 18, are of three different lengths, and that the shorter lengths

correspond to larger values of λi .

(f) Using a factorial model for the treatment effects, prepare an analysis of variance table. State your

conclusions and, repeat part (c) for the first two contrasts in (b). Use the mapping of treatment

labels to levels of A, B, C as:

1 = 111 2 = 112 3 = 113 4 = 121 5 = 122 6 = 123

7 = 131 8 = 132 9 = 133 10 = 211 11 = 212 12 = 213

13 = 221 14 = 222 15 = 223 16 = 231 17 = 232 18 = 233

(g) Does this design have “factorial structure” as defined in Sect. 11.7.1?

17. Air rifle experiment

This is a dangerous experiment that should not be copied! It requires proper facilities and

expert safety supervision.

An experiment was run in 1995 by C.-Y. Li, D. Ranson, T. Schneider, T. Walsh, and P.-J. Zhang

to examine the accuracy of an air rifle shooting at a target. The two treatment factors of interest

were the projectile type (factor A at levels 1 and 2) and the number of pumps of the rifle (factor

B, 2, 6, and 10 pumps, coded 1, 2, 3). The paper covering the target had to be changed after every

four observations, and since there were v = 6 treatment combinations, coded 11, 12, 13, 21, 22,

23), an incomplete block design was selected.

Two copies of the following incomplete block design (called a generalized cyclic design) were

used:
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Table 11.34 Data for the air rifle experiment

Block Treatment combination (Response)

I 22 (2.24) 23 (6.02) 12 (11.40) 11 (26.91)

II 13 (7.07) 22 (8.49) 21 (19.72) 11 (24.21)

III 12 (10.63) 23 (6.32) 21 (9.06) 13 (29.15)

IV 11 (11.05) 22 (6.32) 23 (7.21) 13 (23.02)

V 23 (6.71) 22 (15.65) 12 (11.40) 11 (23.02)

VI 21 (17.89) 12 (8.60) 22 (10.20) 13 (10.05)

VII 11 (18.38) 13 (11.18) 23 (11.31) 22 (11.70)

VIII 22 (1.00) 11 (30.87) 21 (20.10) 13 (17.03)

IX 11 (18.03) 21 (8.25) 23 (6.08) 12 (19.24)

X 21 (15.81) 13 (2.24) 12 (17.09) 22 (7.28)

XI 23 (8.60) 21 (15.13) 12 (14.42) 11 (25.32)

XII 13 (8.49) 12 (14.32) 23 (11.66) 21 (17.72)

Block

I II III IV V VI

11 12 13 21 22 23

21 22 23 11 12 13

13 11 12 23 21 22

22 23 21 12 13 11

The total of 12 blocks were randomly ordered, as were the treatment combinations within each

block. The data, shown in Table 11.34, are distances from the center of the target measured in

millimeters.

(a) Write down a suitable model for this experiment.

(b) Check that the assumptions on your model are satisfied.

(c) The experimenters expected to see a difference in accuracy of the two projectile types. Using a

computer package, analyze the data and determine whether or not this was the case.

(d) For each projectile type separately, examine the linear and quadratic trends in the effects of the

number of pumps. State your conclusions.
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12.1 Introduction

In Chaps. 10 and 11, we discussed designs for experiments involving a single system of blocks. How-

ever, as we saw in the randomized complete block design of Table 10.1, p. 308, a block label can

represent a combination of levels of several factors. The design in Table 10.1 was presented as having

six blocks—the six block labels being the six combinations of levels of the factors “run of the oven”

and “shelf.” When a block design is used in this way, the b − 1 degrees of freedom for the block

effects include not only those degrees of freedom for the effects of the two factors, but also for their

interaction.

In this chapter, we look at designs for experiments that involve two blocking factors that do not

interact. When the blocking factor interactions can be omitted from the model, fewer observations are

needed, and the experiment can be designed with only one observation per combination of levels of

the blocking factors. The plan of the design is then often written as an array (that is, a table) with

the levels of one blocking factor providing the row headings and those of the other providing the

column headings. These designs are called row–column designs, and the two sets of blocks are called

row blocks and column blocks or, more simply, rows and columns. Such designs are described in

Sect. 12.2, where we restrict discussion to the case of exactly one treatment label allocated to each cell

of the table. The randomization procedure needed for row–column designs is given in Sect. 12.2.1.

In Sect. 12.2.2, Latin square designs are described. These are the two-dimensional counterparts of

randomized complete block designs since the row blocks are complete blocks and the column blocks

are also complete blocks. Latin square designs require that the numbers of levels of both blocking

factors be the same as (or a multiple of) the number of treatments. Section 12.2.3 concerns Youden

designs, in which the column blocks form a randomized block design and the row blocks form a

balanced incomplete block design (or vice versa). Cyclic and other row–column designs are discussed

in Sect. 12.2.4.

The standard row–column–treatment model for row–column designs is shown in Sect. 12.3, together

with an overview of the analysis of variance and confidence intervals for general row–column designs.

The analysis becomes greatly simplified for both Latin square designs and Youden designs, and this

is shown in Sects. 12.4 and 12.5, respectively. Checks on the model assumptions are described briefly

in Sect. 12.6, and an extension of the model to cover factorial experiments in row-column designs is

given in Sect. 12.7. All row–column designs can be analyzed using statistical software (see Sects. 12.8

and 12.9 for analysis by SAS and R software).
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Table 12.1 A

row–column experimental

plan with b = 7, c = 4,

v = 7, r = 4

Column blocks

I II III IV

Row blocks I 1 3 6 7

II 2 4 7 1

III 3 5 1 2

IV 4 6 2 3

V 5 7 3 4

VI 6 1 4 5

VII 7 2 5 6

Some experiments are designed with more than two blocking factors. Block designs with a single

system of blocks can still be used where each block represents some combination of the levels of three

or more blocking factors, but designs with more than two blocking factors and a single observation per

combination of their levels are not discussed in this book.

12.2 Design Issues

12.2.1 Selection and Randomization of Row–Column Designs

In most row–column designs and, in particular, in all Latin square designs and Youden designs, all

treatment contrasts are estimable. However, estimability is not as easy to verify for general row-column

designs as it was for incomplete block designs (Sect. 11.2.3) since it cannot be deduced from the row

blocks and column blocks separately. One way to check that a miscellaneous row–column design is

suitable for a planned experiment is to enter a set of hypothetical data for the design into a computer

package and see whether the required contrasts are estimable.

Once the numbers of rows, columns, and treatments have been selected, there are two stages to

designing an experiment with two blocking factors and one observation at each combination of their

levels. The first design stage is to choose an experimental plan. As an example, the plan in Table 12.1

has two sets of blocks corresponding to two blocking factors—one with 7 levels represented by the

b = 7 rows, and the other with 4 levels represented by the c = 4 columns. There are v = 7 treatment

labels, each appearing r = 4 times in the design, and at most once per row and per column. The second

design stage is the random assignment of the labels in the design to the levels of the treatment factors

and blocking factors in the experiment, as follows:

(i) The row block labels in the design are randomly assigned to the levels of the first blocking factor.

(ii) The column block labels in the design are randomly assigned to the levels of the second blocking

factor.

(iii) The treatment labels in the design are randomly assigned to the levels of the treatment factor.

Since there is only one experimental unit in each cell, there is no need for random assignment of

experimental units to treatment labels within a cell.

http://dx.doi.org/10.1007/978-3-319-52250-0_11
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Table 12.2 Latin squares

with b = c = v = 4
Square 1 Square 2 Square 3 Square 4

A B C D A B C D A B C D A B C D

B C D A B A D C B A D C B D A C

C D A B C D A B C D B A C A D B

D A B C D C B A D C A B D C B A

12.2.2 Latin Square Designs

A v × v Latin square is an arrangement of v Latin letters into a v × v array (a table with v rows and v

columns) in such a way that each letter occurs once in each row and once in each column. For example,

the following 3 × 3 array is a 3 × 3 Latin square:

A B C

B C A

C A B

A Latin square design has v treatment labels, and v2 experimental units arranged in v row blocks and

v column blocks, where experimental units within each row block are alike, units within each column

block are alike, and units not in the same row block or column block are substantially different. The

experimental plan of the design is a v × v Latin square. Randomization of row block, column block,

and treatment labels in the plan is carried out as in Sect. 12.2.1.

If we look only at the row blocks of a Latin square design, ignoring the column blocks, we have a

randomized complete block design, and if we look at the column blocks alone, ignoring the row blocks,

we also have a randomized complete block design. Each level of the treatment factor is observed r = v

times—once in each row block and once in each column block.

The 3×3 Latin square shown above is a “standard, cyclic Latin square.” A Latin square is a standard

Latin square if the letters in the first row and in the first column are in alphabetical order, and it is

cyclic if the letters in each row can be obtained from those in the previous row by cycling the letters in

alphabetical order (cycling back to letter A after the vth letter).

There is only one standard 3 × 3 Latin square, but there are four standard 4 × 4 Latin squares, and

these are shown in Table 12.2. The first square is the cyclic standard Latin square. A standard cyclic

Latin square exists for any number of treatments.

An example of a 6 × 6 Latin square design was shown in Table 2.5 (p. 19). It was a design that

was considered for the cotton-spinning experiment. The row blocks represented the different machines

with their attendant operators, and the column blocks represented the different days over which the

experiment was to be run. The treatment labels were the combinations of degrees of twist and flyer

used on the cotton-spinning machines. After careful consideration, the experimenters decided not to

use this design, since it required the same six machines to be available over the same six days, and this

could not be guaranteed in the factory setting.

Latin square designs are often used in experiments involving subjects, especially where the subjects

are allocated a sequence of treatments over time and where the time effect is thought to have a major

effect on the response. For example, in an experiment to compare the effects of v drugs, the rows

of the Latin square might correspond to v subjects to whom the drugs are given, and the columns

might correspond to v time periods, with each subject receiving one drug during each time period. An

experiment of this type, in which each subject receives a sequence of treatments, is called a crossover

experiment.

http://dx.doi.org/10.1007/978-3-319-52250-0_2
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In a crossover experiment, it is possible that a treatment will continue to have some effect on the

response when another treatment is administered to the same subject in a subsequent time period.

Such an effect is called a carryover effect or residual effect and must be accounted for in the design

and analysis of the experiment. This is outside the scope of this book, but for further information, see

Ratkowsky et al. (1993) or Jones and Kenward (2003). We will consider experiments in which either

there is no carryover effect or in which the gap between the administration of one treatment and the

next is sufficient to allow the carryover effect to diminish (and, hopefully, to disappear). The “gap” is

called a washout period.

To design the experiment, a square is selected from the list of standard squares and the randomization

procedure of Sect. 12.2.1 is performed. Thus for an experiment with b = 4 levels of the row blocking

factor, c = 4 levels of the column blocking factor, and v = 4 levels of the treatment factor, one of the

four standard squares of Table 12.2 would be selected. For larger squares, we have not provided a list

of standard squares, since there are so many. However, it is straightforward to write down the standard

cyclic Latin square and perform the randomization procedure on this.

Although we have not given a procedure which selects a Latin square at random from the set of all

possible Latin squares, the above procedure should be sufficient for the occasional experiment. Fisher

and Yates (1973) give more information on this, as well as a complete list of standard squares for v = 5

and 6, and selected squares for v = 7–12.

Replication of Latin Squares

A design based on a single Latin square has r = v observations on each treatment, which may not be

adequate for an analysis of the treatment effects. One way of increasing the number of observations

is to piece together a number, s say, of v × v Latin squares. We will call such a design an s-replicate

Latin square. Use of an s-replicate Latin square requires the column (or row) blocks to be of size

vs. For example, stacking two 3 × 3 Latin squares, one above the other, we can obtain two possible

2-replicate Latin squares as in Table 12.3. For either plan, the number of observations per treatment

is now r = 6 = 2v rather than only r = 3 = v. Plan 2 is preferable to Plan 1 because the row

blocks consist of each possible ordering of the three treatments (and this will remain true even after

randomization).

Suppose we were to use Plan 2 for an experiment to compare the efficacy of v = 3 drugs, where

there are two blocking factors, say “subjects”—the people to whom the drugs will be administered, and

“time period”—the time during which each subject receives a single drug and a response is measured.

If rows correspond to subjects, then b = 6 subjects would be required over c = 3 time periods, but if

columns correspond to subjects, then each of c = 3 subjects would stay in the study for b = 6 periods.

In practice, in drug studies, subjects are rarely used for more than 4 time periods, since the subject

drop-out rate tends to be high after this length of time.

An s-replicate Latin square may allow some column-treatment interaction contrasts to be measured

(after adjusting for row block effects as in Chap. 11). However, these will often not form a full set of

Table 12.3 Two

2-replicate Latin squares

for v = 3, b = 6, c = 3

Plan 1 Plan 2

A B C A B C

B C A B C A

C A B C A B

A B C A C B

B C A B A C

C A B C B A

http://dx.doi.org/10.1007/978-3-319-52250-0_11
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Table 12.4 Two Youden

squares for v = 4, b = 4,

c = 3

Plan 3 Plan 4

A B C A C B

B C D B D C

C D A C A D

D A B D B A

(v − 1)2 orthogonal contrasts. For v = 3, Plan 2 does allow the adjusted column-treatment interaction

to be measured based on the full set of (v − 1)2 = 4 degrees of freedom, but Plan 1 does not.

12.2.3 Youden Designs

A v × c Youden square is an arrangement of v Latin letters into a v × c array (with c < v) in such a

way that each letter occurs once in each column and at most once in each row. In addition, every pair

of treatments occurs in the same number of rows, so the columns form complete blocks and the rows

form a balanced incomplete block design.

Notice that a Youden square, written in this way, is not, in fact, square! We have defined a Youden

square to have more rows than columns, but the array could be turned so that there are more columns

than rows. Plans 3 and 4 in Table 12.4 are examples of 4 × 3 Youden squares with v = 4 treatment

labels, with Plan 3 being a standard Youden square.

In general, a Youden design has v treatment labels and vc experimental units arranged in b = v

row blocks and c < v column blocks, where experimental units within each row block are alike,

experimental units within each column block are alike, and experimental units not in the same row

block or column block are substantially different. The experimental plan is a v × c Youden square, and

randomization of row, column, and treatment labels is carried out as in Sect. 12.2.1. Each level of the

treatment factor is observed r = c times—once in each column and at most once in each row.

The plans of Table 12.4 are both cyclic Youden designs prior to randomization. In each case, the row

blocks form a cyclic balanced incomplete block design with every pair of treatment labels occurring

in λ = 2 rows. Any cyclic balanced incomplete block design (with the full set of v blocks) can be used

as a cyclic Youden design. The design in Table 12.1 is also a cyclic Youden design, having b = v = 7

row blocks and c = 4 column blocks and every pair of treatments occurring in λ = 2 row blocks.

Youden designs with c = v − 1 column blocks can be obtained by deleting any column from a v × v

Latin square design.

Replication of Youden Squares

We can obtain r = cs observations per treatment by stacking s Youden squares one above another

(giving b = vs row blocks and c(<v) column blocks). This results in large column-block sizes but

may allow for estimation of some column×treatment interaction contrasts after adjusting for row block

effects (although usually not the full set of (c−1)(v−1) contrasts). The row blocks still form a balanced

incomplete block design, and the column blocks still form a complete block design.

Suppose v = 7 drugs are to be compared and that a number of subjects are each to be given

a sequence of 4 of the drugs over c = 4 time periods, with washout periods in between to avoid

carryover effects. The experimental plan in Table 12.1, which uses 7 subjects, would be suitable for the

experiment if r = 4 observations per drug is deemed adequate. Otherwise, several copies of this design

could be stacked. Or column permutations could be made before stacking (cf. stacking the two plans

in Table 12.4). If, for example, s = 3 copies of the Table 12.1 design are pieced together, the resulting

3–replicate Youden design would require 21 subjects, 4 time periods, and would have r = cs = 12
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Table 12.5 Incomplete-

row complete-column

designs with v = b = 8

and r = c = 3

Plan 5 Plan 6

I II III I II III

I 1 2 4 I 1 2 7

II 2 3 5 II 2 4 1

III 3 4 6 III 3 7 6

IV 4 5 7 IV 4 8 2

V 5 6 8 V 5 6 8

VI 6 7 1 VI 6 3 5

VII 7 8 2 VII 7 1 3

VIII 8 1 3 VIII 8 5 4

observations per treatment, with b = 21, c = 4, v = 7, and λ = 6. The design would be randomized

before use as described in Sect. 12.2.1.

12.2.4 Cyclic and Other Row–Column Designs

Any arrangement of v treatment labels into b rows and c columns can be used as a row–column design

for an experiment with two blocking factors. As with incomplete block designs, some row–column

designs are better than others. The better designs (in terms of average length of confidence intervals

for pairwise comparisons) have every pair of treatment labels occurring the same, or nearly the same,

number of times in the row blocks and also in the column blocks. This is satisfied by Latin square

designs, Youden designs, and also some cyclic designs.

A cyclic row–column design with complete column blocks is a row–column design in which the

row blocks form a cyclic block design and the column blocks are complete blocks. For example, the

experimental plan in Table 12.1 is a cyclic row–column design. The class of cyclic row–column designs

is very large, and a design with b = vs rows can always be found when a Youden design does not exist.

For example, consider an experiment for comparing v = 8 treatments when there are two blocking

factors having b = 8 and c = 3 levels, respectively (so r = c = 3). There does not exist a Youden

design for b = v = 8 and c = 3, because there does not exist a balanced incomplete block design

for 8 treatments in 8 blocks of size c = 3. (Notice that (11.3.1) gives λ = r(c − 1)/(v − 1) = 6/7

which is not an integer.) A cyclic design that may be suitable for the experiment is given as Plan 5 in

Table 12.5. The design is obtained by cycling the labels in the first row block. Treatment pairs (1, 5),

(2, 6), (3, 7), and (4, 8) never occur together in a row block, but all other pairs of treatments occur in

exactly one row block, so this should be a reasonably good design. The design should be randomized

via the procedure in Sect. 12.2.1 before it is used.

Plan 6 of Table 12.5, which is neither a Youden design nor a cyclic design, could also be used, but

we might guess that it is not quite as good for pairwise comparisons. Treatment 1, for example, appears

in one block with each of treatments 3 and 4, in two blocks with 2 and 7, and not at all with treatments

5, 6, or 8. Thus, the treatments are not quite so evenly distributed in the row blocks of Plan 6 as they

are of Plan 5. Nevertheless, Plan 6 was used for the exercise bike experiment described below, and will

be analyzed using the SAS and R software in Sects. 12.8 and 12.9, respectively.

Example 12.2.1 Exercise bicycle experiment

Yuedong Wang, Dong Xiang, and Yili Lu conducted an experiment in 1992 at the University of

Wisconsin to investigate the effects of exercise on pulse rate. The exercise was performed on a stationary

http://dx.doi.org/10.1007/978-3-319-52250-0_11
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Table 12.6 Row–column

design showing treatments

and data for the exercise

bicycle experiment

Day Subject

Lu Wang Xiang

1 112 45 212 25 221 18

2 222 27 211 20 212 32

3 212 40 222 23 112 28

4 221 17 112 32 122 24

5 211 30 111 36 222 20

6 122 29 221 13 121 20

7 111 34 121 18 211 25

8 121 21 122 22 111 34

bicycle that included both foot pedals and hand bars. The experiment involved three treatment factors

each at two levels. These were “time duration of exercise” with levels 1 and 3 min (coded 1, 2), “exercise

speed” with levels 40 and 60 rpm (coded 1, 2), and “pedal type” with levels foot pedal and hand bars

(coded 1, 2).

The three experimenters served as the b = 3 subjects in the experiment, since they were interested

in the effects of the different exercises on themselves rather than on a large population. Had the latter

been the case, then the subjects would have been selected at random from the population of interest

and regarded as “random effects” (see Chap. 17).

Each subject was assigned a different exercise on each of 8 different days. To minimize any carryover

effect, there was a training period prior to the experiment, and there was at least one day of rest between

observations. The subject’s pulse was taken immediately after completion of the exercise, and the

response variable was the time, in seconds, for 50 heart beats.

Plan 6 of Table 12.5 was used. The design, after randomization, and the corresponding data are

shown in Table 12.6. The rows were randomly assigned to days in the order V, III, VI, VIII, VII, IV,

I, II. The columns were randomly assigned to subjects in the order I = Lu, II = Wang, III = Xiang.

The treatment labels were randomly assigned to treatment combinations in the order

1 5 2 4 7 6 8 3

111 112 121 122 211 212 221 222

The data for this experiment are analyzed by computer software in Sects. 12.8 and 12.9. �

12.3 Analysis of Row–Column Designs

12.3.1 Model for a Row–Column Design

For a row–column design with b rows and c columns, the row–column–treatment model is

Yhqi = μ + θh + φq + τi + ǫhqi , (12.3.1)

ǫhqi ∼ N(0, σ 2) ,

ǫhqi’s are mutually independent ,

h = 1, . . . , b; q = 1, . . . , c; i = 1, . . . , v; (h, q, i) in the design,

http://dx.doi.org/10.1007/978-3-319-52250-0_17
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Table 12.7 Analysis of variance table for a connected row–column design with no interactions

Source of variation Degrees of freedom Sum of squares Mean square Ratio

Rows (unadj) b − 1 ssθ − −
Columns (unadj) c − 1 ssφ − −
Treatments(adj) v − 1 ssTadj msTadj msTadj/msE

Error bc − b − c − v + 2 ssE msE

Total bc − 1 sstot

Formulae

Qi = Ti − 1
c
�b

h=1nh.iBh − 1
b

∑c
q=1 n.qiCq + r

bc
G ssTadj = �v

i=1Qi τ̂i

sstot = �b
h=1�

c
q=1�

v
i=1nhqiy

2
hqi

− 1
bc

G2 ssθ = 1
c
�b

h=1B2
h

− 1
bc

G2

ssE = sstot − ssθ − ssφ − ssTadj ssφ = 1
b
�c

q=1C2
q − 1

bc
G2

Ti = �b
h=1�

c
q=1nhqiyhqi Bh = �c

q=1�
v
i=1nhqiyhqi

Cq = �b
h=1�

v
i=1nhqiyhqi G = �b

h=1�
c
q=1�

v
i=1nhqiyhqi

where θh, φq, and τi denote the effects on the response of row block h, column block q, and treatment i,

respectively. The term “(h, q, i) in the design” means that the model is valid for whichever treatment i

is observed in the cell defined by the hth row block and qth column block. The model includes the usual

assumptions that the error terms ǫhqi are independent and normally distributed with constant variance.

It also includes the assumptions of no interaction between the row and column blocking factors nor

between these and the treatment factors.

12.3.2 Analysis of Variance for a Row–Column Design

We first give an overview of the analysis for connected row–column designs with no interactions.

This is followed by the specific analyses for Latin square designs and Youden designs in Sects. 12.4

and 12.5, respectively. Analysis of general row–column designs can be done by computer, and this is

illustrated via the SAS and R computer packages in Sects. 12.8 and 12.9.

For row–column designs with b row blocks, c column blocks, and r observations on each of v

treatments with the row–column–treatment model (12.3.1), the top portion of Table 12.7 shows the

form of the analysis of variance obtained when the row and column factors are entered into the model

before the treatment factor. The (unadjusted) sum of squares ssθ for row blocks, and the (unadjusted)

sum of squares ssφ for column blocks are calculated in a similar way to the block sum of squares in a

complete block design; that is

ssθ = 1
c

∑b
h=1 B2

h
− 1

bc
G2 and ssφ = 1

b

∑c
q=1 C2

q − 1
bc

G2

where Bh is the total of the observations in the hth row block, Cq is the total of the observations in the

qth column block, and G is the grand total of all the observations.

The sum of squares for treatments adjusted for rows and columns (i.e. adjusted for the fact that not

all treatments may be in every row block and every column block, and some blocks are better than

others) can be shown to be
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ssTadj = �v
i=1Qiτ̂i with Qi = Ti − 1

c

b∑

h=1

nh.iBh − 1

b

c∑

q=1

n.qiCq + r

bc
G , (12.3.2)

where nh.i is the number of times that treatment i appears in row block h, and and n.qi is the number

of times that treatment i appears in column block q. In general, it is not easy to obtain least squares

solutions by hand for the treatment parameters τi in row–column designs except for the cases of Latin

square and Youden designs. Least squares solutions for these special cases are given in Sects. 12.4

and 12.5, respectively. The analysis of a more complicated row–column design is illustrated using the

SAS and R computer packages in Sects. 12.8 and 12.9, respectively.

In general, the sum of squares for error for the row–column–treatment model (12.3.1) is obtained

by subtraction as usual

ssE = sstot − ssθ − ssφ − ssTadj , (12.3.3)

where

sstot =
∑

h

∑

q

∑

i

nhqiy
2
hqi − 1

bc
G2 ,

and nhqi = 1 if treatment label i is allocated to the combination of row block h and column block q

and zero otherwise. As in any connected block design, the numbers of degrees of freedom for rows,

columns and treatments are b − 1, c − 1 and v − 1, respectively. The number of degrees of freedom

for error is obtained by subtraction:

df = (bc − 1) − (b − 1) − (c − 1) − (v − 1) = bc − b − c − v + 2 , (12.3.4)

where bc is the total number of observations.

A test of the null hypothesis HT
0 : {τ1 = τ2 = · · · τv} against the general alternative hypothesis

HT
A :{at least two of the τi’s differ} is given by the decision rule

reject HT
0 if msTadj/msE > Fv−1,bc−b−c−v+2,α (12.3.5)

for some chosen significance level α. The test (12.3.5) is most conveniently set out in an analysis of

variance table, as in the top portion of Table 12.7. The bottom portion of the table shows the specific

formulae.

12.3.3 Confidence Intervals and Multiple Comparisons

The multiple-comparison methods of Bonferroni and Scheffé can be applied for any row–column

design. Simultaneous 100(1 − α)% confidence intervals for treatment contrasts �idiτ̂i are of the form

⎛
⎝∑

i

diτ̂i ± w

√
V̂ar(

∑

i

diτ̂i)

⎞
⎠ , (12.3.6)

where the critical coefficient w is

wB = tbc−b−c−v+2,α/2m or wS =
√

(v − 1)Fv−1,bc−b−c−v+2,α ,
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for the Bonferroni or Scheffé methods, respectively. Tukey and Dunnett methods of pairwise com-

parisons can be used in the special cases of Latin square designs and Youden designs (Sects. 12.4.2

and 12.5.2).

12.4 Analysis of Latin Square Designs

12.4.1 Analysis of Variance for Latin Square Designs

Table 12.7, p. 406, shows the analysis of variance table for the row–column–treatment model (12.3.1)

for any row–column design. In the table, Ti, Bh, Cq, and G are, respectively, the sum of the observations

on the ith level of the treatment factor, the hth level of the row blocking factor, the qth level of the

column blocking factor, and the grand total of all the observations. The constant nhqi is equal to 1 if

treatment i is observed in the combination of row block h and column block q, and nhqi is equal to zero

otherwise. For an s-replicate Latin square design, every treatment appears once in every row block and

s times in every column block, so there are b = vs rows, c = v columns, and we have nh.i = 1, n.qi = s.

It can be shown that, for Latin square designs, least squares solutions for the treatment parameters τi

in model (12.3.1) are given by

τ̂i = 1

vs
Qi , with Qi = Ti − 1

c

∑

h

nh.iBh = Ti − 1

v
G . (12.4.7)

Thus, for an s-replicate Latin square design, the treatment sum of squares (12.3.2) become

ssTadj =
v∑

i=1

Qiτ̂i = 1

vs

v∑

i=1

(
Ti − 1

v
G

)2

,

and we see that the “adjusted” treatment sum of squares for a Latin square design is actually not adjusted

for row-block effects nor for column-block effects. This is because every treatment is observed the

same number of times in every row block and in every column block (even though only bc of the bcv

row–column–treatment combinations are actually observed). The computational formula for ssTadj is

obtained by expanding the terms in parentheses to give

ssTadj = 1

vs

∑

i

T2
i − 1

v2s
G2 .

The error sum of squares and degrees of freedom are obtained by subtraction, as in (12.3.3). For

an s-replicate Latin square design with b = vs rows and c = v columns, we have error degrees of

freedom equal to

df = bc − b − c − v + 2 = v2s − vs − 2v + 2 = (vs − 2)(v − 1) . (12.4.8)

The test for equality of treatment effects compares the ratio of the treatment and error mean squares

with the corresponding value from the F-distribution, in the usual way (see Example 12.4.1). We will

not utilize a test for the hypothesis of negligible row-block or of negligible column-block effects.

However, we conclude that the current experiment has benefited from the use of the row (or column)

blocking factor if the row (or column) mean square exceeds the mean square for error.
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Table 12.8 Unrandomized 2-replicate Latin Square (Plan 2, Table 12.3), and possible randomization for the dairy cow

experiment (with data in parentheses)

Row Column Cow Period

1 2 3 1 2 3

1 A B C 6 2 (63) 3 (101) 1 (1)

2 B C A 4 3 (76) 1 (86) 2 (46)

3 C A B 2 3 (86) 2 (109) 1 (39)

4 A C B 5 1 (35) 2 (75) 3 (34)

5 B A C 1 2 (25) 1 (38) 3 (15)

6 C B A 3 1 (72) 3 (124) 2 (27)

Source Data adapted from Experimental Designs, Second Edition, by Cochran and Cox (1957), Copyright © 1957, John

Wiley & Sons, New York.

Example 12.4.1 Dairy cow experiment

Cochran and Cox (1957, p. 135) described an experiment that studied the effects of three diets on the

milk production of dairy cows. The v = 3 diets (levels of a treatment factor) consisted of roughage

(level 1), limited grain (level 2), and full grain (level 3). A crossover experiment was used, with each of

the b = 6 cows being fed each diet in turn, each for a six-week period. The response variable was the

milk yield for each cow during each of the c = 3 periods. Data were collected using a randomization of

the 2-replicate Plan 2 Latin square in Table 12.3, p. 403, with v = 3 treatment labels, b = vs = 6 rows,

c = 3 columns, and with v = 3 treatments each observed r = vs = 6 times. A possible randomization

and the data collected are shown in Table 12.8.

Provided that each measurement on milk yield has been taken after a cow has been on a new diet for

a sufficiently long period of time to allow the effect of the previous diet to “wash out” of the system, we

need not be concerned with carryover effects. For this experiment, a model without carryover effects

describes the data fairly well.

Table 12.9 shows the analysis of variance table. To test the null hypothesis HT
0 that all three diets

have the same effect, the decision rule is

reject HT
0 if msT/msE > F2,8,.01 = 8.65 ,

with a probability of α = 0.01 of making a Type I error. Since msT/msE = 1138.39/103.06 =
11.05 > 8.65, we reject the null hypothesis at the α = 0.01 significance level and conclude that the

diets do not all have the same effect.

To evaluate whether or not blocking was worthwhile, observe that the mean squares for periods

and cows are both considerably larger than the error mean square. Thus, inclusion of both blocking

factors in the experiment was beneficial in reducing the experimental error. (Since this is a Latin square

design, no adjustment is needed to the row and column sums of squares to draw this conclusion.) �

12.4.2 Confidence Intervals for Latin Square Designs

All treatment contrasts are estimable in Latin square designs. Using the row–column–treatment

model (12.3.1), the least squares estimate of a treatment contrast �diτi, with �di = 0, is obtained

from (12.4.7) as ∑
diτ̂i = 1

vs

∑
diTi , (12.4.9)
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Table 12.9 Analysis of variance table for the dairy cow experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Cow (row) 5 5781.11 1156.22 − −
Period (column) 2 11480.11 5740.06 − −
Diets (treatment) 2 2276.78 1138.39 11.05 0.0050

Error 8 824.44 103.06

Total 17 20362.44

and, since Ti is the sum of vs observations, the corresponding variance is

Var
(∑

diτ̂i

)
=

∑
d2

i

(
σ 2

vs

)
, (12.4.10)

The multiple-comparison methods of Bonferroni, Scheffé, Tukey, and Dunnett can be used for s-

replicate Latin square designs. Formulae for confidence intervals for treatment contrasts �diτi are of

the form ⎛
⎝ 1

vs
�idiTi ± w

√√√√msE

(
�d2

i

vs

) ⎞
⎠ , (12.4.11)

where the appropriate critical coefficients w for the four methods are,

wB = t(vs−2)(v−1),α/2m ; wS =
√

(v − 1)Fv−1,(vs−2)(v−1),α ;
wT = qv,(vs−2)(v−1),α/

√
2 ; wD2 = |t|(0.5)

v−1,(vs−2)(v−1),α
.

Example 12.4.2 Dairy cow experiment, continued

The dairy cow experiment was described in Example 12.4.1, p. 409. Tukey’s method of all pairwise

comparisons can be applied to determine which diets, if any, are significantly different from any of the

others. The treatment sample means, which can be computed from the data in Table 12.8, are

1

vs
T1 = 45.167,

1

vs
T2 = 57.500,

1

vs
T3 = 72.667 ,

so that the least squares estimates of the pairwise differences are

τ̂2 − τ̂1 = 57.500 − 45.167 = 12.333 ,

τ̂3 − τ̂1 = 72.667 − 45.167 = 27.500 ,

τ̂3 − τ̂2 = 72.667 − 57.500 = 15.167 .

The value of the error mean square is msE = 103.06 from the analysis of variance table, Table 12.9.

The error degrees of freedom are given by (12.4.8) as

df = (vs − 2)(v − 1) = (2 × 3 − 1)(3 − 1) = 8 .

Using a simultaneous confidence level of 95%, we obtain the critical coefficient for Tukey’s method

as wT = q3,8,.05/
√

2 = 4.04/
√

2. Hence, using (12.4.11), the minimum significant difference for
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pairwise differences is

msd = (4.04/
√

2)
√

msE(2/6) = 16.743 .

The simultaneous 95% confidence intervals are therefore

τ3 − τ1 ∈ (27.500 ± 16.743) = ( 10.58, 44.24) ,

τ2 − τ1 ∈ (12.333 ± 16.743) = (−4.41, 29.08) ,

τ3 − τ2 ∈ (15.167 ± 16.743) = (−1.58, 31.91) .

From these intervals, we can deduce that at overall significance level α = 0.05, the full grain diet (level

3) results in a mean yield of 10.58–44.24 units higher than the roughage diet (level 1), but the limited

grain diet (level 2) is not significantly different from either of the other two. �

12.4.3 How Many Observations?

The formula for determining the sample size needed to achieve a power π(�) of detecting a difference

� in the treatment effects for given v, α, and σ 2, using a Latin square design, is the same as (10.6.13)

for a randomized complete block design, but with b replaced by v (since r = vs rather than r = bs).

Thus, after simplification of the formula, we need to find s to satisfy

s ≥ 2σ 2φ2

�2
. (12.4.12)

Alternatively, the confidence interval formula (12.4.11) can be used to calculate the sample sizes needed

for achieving confidence intervals of a desired width (see Example 12.4.3).

Example 12.4.3 Sample-size calculation for an s-replicate Latin square

design

Consider an experiment to compare v = 3 computer keyboard designs with respect to the time taken

to type an article of given length. Typists and time periods are the two blocking factors, with each

of b = 3s typists using each of the keyboards in a sequence of c = 3 time periods. An s-replicate

Latin square design will be used, with r = 3s observations per keyboard layout (treatment), and with

sufficient time between observations to prevent a carryover effect.

With 3 treatments, there are 3 pairwise comparisons. Using Tukey’s method of multiple comparisons

and a simultaneous confidence level of 95%, suppose that the experimenters want confidence intervals

with half-width (minimum significant difference) of 10 min or less. The error standard deviation is

expected to be at most 15 min (a variance of at most 225 min2). The error degrees of freedom, as given

in (12.4.8), are

df = (vs − 2)(v − 1) = 2(3s − 2) = 6s − 4 .

Then, using the confidence interval formula (12.4.11) for Tukey’s method of pairwise comparisons,

the minimum significant difference is

msd ≈ q3,6s−4,.05√
2

√
225 × 2

vs
= q3,6s−4,.05

√
225

3s
.

http://dx.doi.org/10.1007/978-3-319-52250-0_10
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To obtain msd ≤ 10, we require 0.75q2
3,6s−4,.05 ≤ s. Sample size is then computed by trial and error

as follows:

s 6s − 4 q3,6s−4,.05 0.75q2
3,6s−4,.05 Required

∞ 3.31 8.22 s ≥ 9

9 50 3.42 8.77 s = 9

So, s = 9, and a 9-replicate Latin square would be needed, giving msd ≈ 3.42

√
225
27

= 9.87 min and

requiring b = vs = 27 typists and r = vs = 27 observations per keyboard layout. �

12.5 Analysis of Youden Designs

12.5.1 Analysis of Variance for Youden Designs

The s-replicate Youden design with v treatments has complete column blocks of size b = vs and row

blocks forming a balanced incomplete block design with blocks of size c. Each treatment is observed

r = cs times. For the row–column–treatment model (12.3.1) with no interactions, a solution to the

normal equations can be shown to be similar to the solution (11.4.9), p. 359, for a balanced incomplete

block design; that is,

τ̂i = c

λv
Qi , where Qi = Ti − 1

c

∑

h

nh.iBh , (12.5.13)

for i = 1, . . . , v, where λ = r(c − 1)/(v − 1).

As in the analysis of a balanced incomplete block design, the estimators of the treatment effects

in a Youden design are not independent of the estimators of the row-block effects. As a result, the

treatment-effect estimators must be adjusted for row blocks. However, since the column blocks form

a randomized complete block design, no adjustment is needed for these. Table 12.7, p. 406, shows the

analysis of variance table for a row–column design with no interactions. Using (12.5.13), the adjusted

treatment sum of squares given in the table becomes

ssTadj =
v∑

i=1

Qiτ̂i = c

λv

v∑

i=1

Q2
i ,

and, because of the complete column blocks, this is exactly the same formula as for a balanced

incomplete block design with blocks of size k = c (see Table 11.7, p. 358).

To test the null hypothesis HT
0 of no treatment differences, at significance level α, the decision rule

is

reject HT
0 if

msTadj

msE
> Fv−1,df,α ,

where, as given in Table 12.7, the number of error degrees of freedom for an s-replicate Youden square

is

df = bc − b − c − v + 2

= vsc − vs − c − v + 2

= (vs − 1)(c − 1) − (v − 1) . (12.5.14)

http://dx.doi.org/10.1007/978-3-319-52250-0_11
http://dx.doi.org/10.1007/978-3-319-52250-0_11
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12.5.2 Confidence Intervals for Youden Designs

All treatment contrasts �diτi are estimable in all Youden designs. The least squares estimate of the

contrast �diτi is ∑

i

diτ̂i = c

λv

∑

i

diQi =
(

v − 1

vs(c − 1)

) ∑

i

diQi ,

since λ = r(c − 1)/(v − 1) as for a balanced incomplete block design with k = c. The variance of the

corresponding estimator is

Var(
∑

i

diτ̂i) =
( c

λv

) ∑

i

d2
i σ 2 =

(
v − 1

vs(c − 1)

) ∑

i

d2
i σ 2 . (12.5.15)

Confidence interval formulae for treatment contrasts �diτi are the same as those for a balanced

incomplete block design with block size k = c; that is,

(
v − 1

vs(c − 1)

) ∑

i

diQi ± w

√
msE

(
v − 1

vs(c − 1)

) ∑
d2

i , (12.5.16)

where w, as usual, is the critical coefficient for the Bonferroni, Scheffé, Tukey, or Dunnett method,

given by

wB = t(vs−1)(c−1)−(v−1),α/2m ; wS =
√

(v − 1)Fv−1,(vs−1)(c−1)−(v−1),α ;
wT = qv,(vs−1)(c−1)−(v−1),α/

√
2 ; wD2 = |t|(0.5)

v−1,(vs−1)(c−1)−(v−1),α
.

12.5.3 How Many Observations?

The methods of sample-size calculation for an s-replicate Youden square are analogous to those for

computing sample sizes for a balanced incomplete block design. To calculate the number of observa-

tions r = cs per treatment that are required to achieve a power π(�) of detecting a difference � in

the treatment effects for given v, α, and σ 2, the power tables in Appendix A.7 can be used in the same

way as for a balanced incomplete block design (Sect. 11.6). Thus, we need to find s satisfying

cs ≥ 2vσ 2φ2

�2

[
c(v − 1)

v(c − 1)

]
,

which reduces to

s ≥ 2σ 2φ2(v − 1)

�2(c − 1)
.

Alternatively, the confidence interval formula (12.5.16) can be used to calculate the sample sizes

needed for achieving confidence intervals of a desired width (see Example 12.5.1).

Example 12.5.1

Suppose an experiment is run to compare six paint additive formulations (levels 2–7 of the treatment

factor) with a standard “control” formulation (level 1) with respect to the drying time (in minutes). The

http://dx.doi.org/10.1007/978-3-319-52250-0_11
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paint is sprayed through c = 4 different nozzles so that c = 4 paints can be sprayed simultaneously. A

total of b = 7s panels will each be painted with strips of 4 of the 7 paints (using a standard formulation

between each test panel to clean the nozzles and create a washout period). The error variability is

expected to be at most 25 min2 (standard deviation at most 5 min), and simultaneous 90% confidence

intervals with half-width of at most 3.5 min are required for the six treatment-versus-control contrasts.

A Youden square with 7 rows, 4 columns, and 7 treatments is shown in Table 12.1. Suppose that s

copies (or column randomizations) of this basic square are to be stacked, giving an s-replicate Youden

design with the same number of observations on the experimental and control treatments. The number

of error degrees of freedom, given in (12.5.14), is then

df = (vs − 1)(c − 1) − (v − 1) = (7s − 1)(4 − 1) − (7 − 1) = 21s − 9 .

Using Dunnett’s method of multiple comparisons for treatment versus control, the minimum significant

difference is

msd = wD2

√
msE ×

(
(v − 1)

vs(c − 1)

)
× 2 ,

so we require

msd ≈ wD2

√
(25)(6)(2)

(7)s(3)
≤ 3.5 ,

that is,

w2
D2 ≤ 0.8575s ,

where wD2 = |t|(.5)
6,21s−9,.1. Using Table A.10 for the values of wD2 = |t|(.5)

6,21s−9,.1, we have

s 21s − 9 wD2 = |t|(.5)
6,21s−9,.1 w2

D2 0.8575s Action

20 411 2.30 5.29 17.15 Decrease s

6 117 2.32 5.38 5.15 Increase s

7 138 2.32 5.38 6.00 Decrease s

So we see that s = 7 stacked Youden squares would be adequate, requiring b = vs = 49 panels

and giving r = sc = 28 observations on each of the v = 7 paint formulations, both experimental

and control. If 49 panels are not available for the experiment, then the experimenter would have to be

satisfied with wider confidence intervals. �

12.6 Checking the Assumptions on the Model

The error assumptions on the row–column–treatment model (12.3.1) can be checked by plotting the

standardized residuals against the run order, the predicted values ŷijk , the levels of the row blocking

factor, the levels of the column blocking factor, the levels of the treatment factor, and the normal scores.

The data collected from a row–column design can be examined by plotting the adjusted observations

against the treatment labels. The observations are adjusted by subtracting the least squares estimates

for row blocks and column blocks (which are adjusted for treatments):

y∗
hqi = yhqi − (θ̂h − θ̂ .) − (φ̂q − φ̂.) . (12.6.17)
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Fig. 12.1 Adjusted data

for the dairy cow

experiment

Diet

y
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q
i

*

1  Roughage 2  Limited grain 3  Full grain

35
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65

80

For the s-replicate Latin square design with b = vs row blocks and c = v column blocks, and the row–

column–treatment model (12.3.1), the row-block and column-block effect estimators are independent

of treatment effects, and (12.6.17) becomes

y∗
hqi = yhqi −

(
1

vs
Bh − 1

v2s
G

)
−

(
1

v
Cq − 1

v2s
G

)
.

For other designs, the adjusted observations can be calculated by computer, as shown in Sects. 12.8 and

12.9. Since the variability due to the blocking factors has been extracted from the adjusted observations,

the data plots will exhibit less variability than really exists.

Example 12.6.1 Dairy cow experiment, continued

For the dairy cow experiment, which was run as a Latin square design, the adjusted observations are

plotted against treatment labels in Fig. 12.1. The plot shows how milk yield tended to increase as the

quality of the diet improves from roughage (level 1) to limited grain (level 2) to full grain (level 3). The

plot is consistent with the results of Example 12.4.1, where simultaneous confidence intervals (with

an overall 95% confidence level) showed a significant difference in diets 1 and 3, but were unable to

distinguish between diets 1 and 2 and between diets 2 and 3. �

The row–column–treatment model (12.3.1) assumes that the two blocking factors do not interact

with each other nor with the treatment factor. If interactions are present, the error variance estimate

will be inflated, decreasing the powers of hypothesis tests and widening confidence intervals for

treatment contrasts. When the column blocks are complete blocks, the column–treatment interaction

can be checked by plotting the row-adjusted observations (as in Chap. 11) against treatments, with plot

labels being the column-block labels. Interaction is indicated by nonparallel lines. The row–column

interaction can be investigated in the same way using the treatment-adjusted observations and plotting

against row labels. The row–treatment interactions can only be investigated if the row blocks are also

complete blocks as in Latin square designs.

http://dx.doi.org/10.1007/978-3-319-52250-0_11
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12.7 Factorial Experiments in Row–Column Designs

The exercise bike experiment of Example 12.2.1, p. 404, was a factorial experiment with three treatment

factors having two levels each. These were “time duration of exercise” (1 and 3 min, coded as 1 and

2), “exercise speed” (40 and 60 rpm, coded as 1 and 2), and “pedal type” (foot pedal and hand bars,

coded as 1 and 2). The data were shown in Table 12.6.

If we use the row–column–treatment model with three-digit labels for the treatment combinations,

then we can write the model as

Yhqijk = μ + θh + φq + τijk + ǫhqijk ,

where θh is effect of day h, φq is the effect of subject q, and τijk is the effect of treatment combination ijk.

If we now rewrite τijk in terms of its constituent main effects and interactions, we obtain the following

form of the row–column–treatment model:

Yhqijk = μ + θh + φq + αi + βj + γk

+ (αβ)ij + (αγ )jk + (βγ )jk + (αβγ )ijk + ǫhqijk ,

h = 1, . . . , 8 ; q = 1, 2, 3 ; i = 1, 2 ; j = 1, 2 ; k = 1, 2 ;

where αi is the effect of the ith duration, βj is the effect of the jth speed, and γk is the effect of the kth

pedal type, and the other terms represent interactions between the treatment factors. The analysis of

this experiment by the programs SAS and R software is shown in Sects. 12.8 and 12.9, respectively,

for both forms of the model. If some of the treatment interactions are thought to be negligible, they

can be dropped from the latter model.

12.8 Using SAS Software

In this section, a sample program is given to illustrate the analysis of row–column designs using the

SAS software. The program uses the data of the exercise bicycle experiment, which was described in

Example 12.2.1, p. 404. The design is a cyclic row–column design with v = 8 treatment labels repre-

senting the eight treatment combinations shown in Table 12.6, and with b = 8 row blocks representing

days and c = 3 column blocks representing subject. The treatment combinations were combinations

of the levels of the three treatment factors “time duration of exercise,” “exercise speed,” and “pedal

type.”

A SAS program for analyzing this experiment is shown in Table 12.10. The data are entered into

a data set called BIKE, using DAY and SUBJECT as the two blocking factors, and using DURAT,

SPEED, and PEDAL as the three treatment factors, and PULSE for the response variable “pulse rate.”

The combinations of the levels of the three treatment factors are recoded as levels of a factor TRTMT.

The MODEL statement in the first GLM procedure causes generation of the analysis of variance table

shown in Fig. 12.2. The blocking factors are entered into the model before the treatment factor, so the

treatment sum of squares is adjusted for block effects whether one looks at the Type I or Type III sums

of squares. The row and column effects are independent of each other, since there is one observation at

each combination of levels of the row and column blocking factors. Consequently, the Type I sums of

squares reproduce the analysis of variance table, Table 12.7, with unadjusted block effects and adjusted

treatment effects. In this particular experiment, the column blocks (subjects) are complete blocks, and
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Table 12.10 SAS program for analysis of a row–column design—Exercise bicycle experiment

DATA BIKE;
INPUT DAY SUBJECT PULSE DURAT$ SPEED$ PEDAL$;
TRTMT = trim(DURAT)||trim(SPEED)||trim(PEDAL);
LINES;
1 1 45 1 1 2
1 2 25 2 1 2
1 3 18 2 2 1
2 1 27 2 2 2
: : : : : :
8 3 34 1 1 1

;
PROC PRINT;
* row-column-treatment model;
PROC GLM;
CLASS DAY SUBJECT TRTMT;
MODEL PULSE = DAY SUBJECT TRTMT / SOLUTION;
OUTPUT OUT=RESIDS PREDICTED=PRED RESIDUAL=Z;
ESTIMATE ’DURATION DIFF’ TRTMT -1 -1 -1 -1 1 1 1 1 / DIVISOR=4;
ESTIMATE ’SPEED DIFF’ TRTMT -1 -1 1 1 -1 -1 1 1 / DIVISOR=4;
ESTIMATE ’PEDAL DIFF’ TRTMT -1 1 -1 1 -1 1 -1 1 / DIVISOR=4;

* Standardize residuals and compute normal scores;
PROC STANDARD STD=1.0; VAR Z;
PROC RANK NORMAL=BLOM; VAR Z; RANKS NSCORE;
* Residual plots can now be generated using PROC SGPLOT;

so the treatment sum of squares is actually only adjusted for row-block (day) effects. The Type III

sums of squares show the row-block (day) effects adjusted for the treatment effects.

The ESTIMATE statements request the SAS software to calculate the information needed to cal-

culate three confidence intervals. The three selected contrasts are the main-effect contrasts comparing

the effect on pulse rate of the two levels of each treatment factor (averaging over any interaction that

might be present). The output, shown in Fig. 12.3, gives the least squares estimates of the contrasts

and their associated standard errors. From this information, confidence intervals can be calculated in

the usual way. The contrast estimates are adjusted for the incomplete row blocks.

12.8.1 Factorial Model

To write the row–column–treatment model in terms of factorial treatment combinations, the model

statement in Table 12.10 is replaced by

MODEL PULSE = DAY SUBJECT DURAT SPEED PEDAL DURAT*SPEED
DURAT*PEDAL SPEED*PEDAL DURAT*SPEED*PEDAL;

The Type III sums of squares are shown in Fig. 12.4, and we can see that the sums of squares for the

main effects and interactions of the three treatment factors do not add to the Type III treatment sum

of squares in Fig. 12.2 due to the individual adjustments for block effects and for the other treatment

factor effects.
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Fig. 12.2 Analysis of

variance for a row–column

design—Exercise bicycle

experiment

Fig. 12.3 Output from the

ESTIMATE
statement—Exercise

bicycle experiment
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Fig. 12.4 Analysis of

variance for a row–column

design—Exercise bicycle

experiment

The ESTIMATE statements for the factorial model become

ESTIMATE ’DURATION DIFF’ DURAT -1 1;
ESTIMATE ’SPEED DIFF’ SPEED -1 1;
ESTIMATE ’FOOT/HAND DIFF’ PEDAL -1 1;

and give output identical to that of Fig. 12.3.

12.8.2 Plots

The statements needed for calculating the standardized residuals and normal scores are also shown in

Table 12.10. Residual plots (not shown here) can then be generated as in Sects. 5.8.1 and 6.8.3.

The SOLUTION option in the MODEL statement causes a set of least squares solutions to the normal

equations to be printed. These are subsequently used to calculate the adjusted data values needed for

examining the data.

For obtaining the adjusted observations, the statements in Table 12.11 would be added to the program

in Table 12.10 for a second and third run of the program. The data are adjusted using (12.6.17); that is,

y∗
hqi = yhqi − (θ̂h − θ̂ .) − (φ̂q − φ̂.) ,

where θ̂h and φ̂q are obtained from the output of the SOLUTION option shown in Fig. 12.2. The second

run of the program takes as input the values of θ̂h and φ̂q from the first run of the program and calculates

θ̂ . = �θ̂h/3 = 1.25 and φ̂. = �φ̂q/8 = 1.66, which are then copied by hand into the statements for

the third run of the program. The symbols @@ allow the input to be entered with more than one record

per line.

In the third run of the program, the data set BIKE5 is created as a copy of the data set BIKE. This

is done to create the new variable YADJ, which contains the values of PULSE, adjusted for the row

and column effects. The SGPLOT procedure is used to plot the adjusted observations by treatment.

The SAS plot is analogous to that in Fig. 12.1 (p. 415) and is not shown here.

http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 12.11 SAS code for calculating and plotting the adjusted observations—Exercise bicycle experiment

* Add the following code for the second run of the program;
DATA BIKE3; * input subject effect estimates from first run;
INPUT SUBJECT SBJHAT; @@;
LINES;
1 5.25 2 -1.50 3 0.00

PROC MEANS MEAN; * print average of the subject effect estimates;
VAR SBJHAT;

DATA BIKE4; * input day effect estimates from first run;
INPUT DAY DHAT @@;
LINES;
1 3.9911 2 1.5625 3 2.5714 4 0.8036
5 2.5179 6 1.6334 7 0.2054 8 0.0000

PROC MEANS MEAN; * print average of the day effect estimates;
VAR DHAT;

* Add the following code for the third run;
* Adjust data for subject and day effects, then plot adjusted data;
DATA BIKE5; SET BIKE;
IF SUBJECT = 1 THEN YADJ = PULSE-(5.25-1.25);
ELSE IF SUBJECT = 2 THEN YADJ = PULSE-(-1.50-1.25);
ELSE IF SUBJECT = 3 THEN YADJ = PULSE-(0.00-1.25);

IF DAY = 1 THEN YADJ = YADJ-(3.9911-1.660);
ELSE IF DAY = 2 THEN YADJ = YADJ-(1.5625-1.6607);
ELSE IF DAY = 3 THEN YADJ = YADJ-(2.5714-1.6607);
ELSE IF DAY = 4 THEN YADJ = YADJ-(0.8036-1.6607);

ELSE IF DAY = 5 THEN YADJ = YADJ-(2.5179-1.6607);
ELSE IF DAY = 6 THEN YADJ = YADJ-(1.6334-1.6607);
ELSE IF DAY = 7 THEN YADJ = YADJ-(0.2054-1.6607);
ELSE IF DAY = 8 THEN YADJ = YADJ-(0.0000-1.6607);

PROC SGPLOT;
SCATTER X = TRTMT Y = YADJ;
X AXIS LABEL = ’Treatment’; REFLINE 0/ AXIS = X;
Y AXIS LABEL = ’Adjusted Observations’; REFLINE 0/ AXIS = Y;

12.9 Using R Software

In this section, a sample program is given to illustrate the analysis of row–column designs using the R

software. The program uses the data of the exercise bicycle experiment, which was described in Exam-

ple 12.2.1, p. 404. The design is a cyclic row–column design with v = 8 treatment labels representing

the eight treatment combinations shown in Table 12.6, and with b = 8 row blocks representing days

and c = 3 column blocks representing subject. The treatment combinations were combinations of the

levels of the three treatment factors “time duration of exercise,” “exercise speed,” and “pedal type.”

An R program for analyzing this experiment is shown in Table 12.12. The data are entered into

a data set called bike.data, using fDay and fSubject as the two blocking factors, and using

fDurat, fSpeed, and fPedal as the three treatment factors, and Pulse for the response variable

“pulse rate.” The combinations of the levels of the three treatment factors are recoded as levels of a

factor fTrtmt.

In the second block of code, the linear models function lm is used to fit the row–column–treatment

model (12.3.1), then corresponding anova and drop1 functions generate the type 1 and type 3
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Table 12.12 R program for analysis of a row–column design—Exercise bicycle experiment

bike.data = read.table("data/exercise.bicycle.txt", header=T)
head(bike.data, 3)

Day Subject Durat Speed Pedal Pulse Trtmt
1 1 1 1 1 2 45 112
2 2 1 2 2 2 27 222
3 3 1 2 1 2 40 212

# Create factor variables
bike.data = within(bike.data,
{fDay=factor(Day); fSubject=factor(Subject); fDurat=factor(Durat);
fSpeed=factor(Speed); fPedal=factor(Pedal); fTrtmt=factor(Trtmt) })

# ANOVA: treatment combinations
modelTC = lm(Pulse ˜ fDay + fSubject + fTrtmt, data=bike.data)
anova(modelTC)
drop1(modelTC, ˜., test = "F")
# Treatment contrasts
library(lsmeans)
lsmTrtmt = lsmeans(modelTC, ˜ fTrtmt)
summary(contrast(lsmTrtmt,

list(DurationDiff=c(-1,-1,-1,-1, 1, 1, 1, 1)/4,
SpeedDiff=c(-1,-1, 1, 1,-1,-1, 1, 1)/4,
PedalDiff=c(-1, 1,-1, 1,-1, 1,-1, 1)/4)),

infer=c(T,T))

# Compute variables for residual plots
bike.data = within(bike.data, {

# Compute predicted, residual, and standardized residual values
ypred = fitted(modelTC); e = resid(modelTC); z = e/sd(e);
# Compute Blom’s normal scores
n = length(e); q = rank(e); nscore = qnorm((q-0.375)/(n+0.25))
# Compute vbl TLevel with levels 1:8 for equispaced plotting vs TC’s
TLevel = 4*(Durat-1) + 2*(Speed-1) + (Pedal-1) })

# Residual plots
plot(z ˜ TLevel, data=bike.data, xaxt="n", xlab="Treatment")
axis(1, at=bike.data$TLevel, labels=bike.data$fTrtmt)

plot(z ˜ ypred + Day + Subject + nscore, data=bike.data)

analysis of variance tables, respectively, shown at the top of Table 12.13. The blocking factors are

entered into the model before the treatment factor, so the treatment sum of squares is adjusted for

block effects whether one looks at the Type I or Type III sums of squares. The row and column effects

are independent of each other, since there is one observation at each combination of levels of the

row and column blocking factors. Consequently, the Type I sums of squares reproduce the analysis

of variance table, Table 12.7, with unadjusted block effects and adjusted treatment effects. In this

particular experiment, the column blocks (subjects) are complete blocks, and so the treatment sum of

squares is actually only adjusted for row-block (day) effects. The Type I sums of squares show the

row-block (day) effects adjusted for the treatment effects.

The summary and contrast functions of the lsmeans package are coupled to calculate esti-

mates, standard errors, tests and confidence for the three main-effect contrasts comparing the effect
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Table 12.13 Analysis of variance and contrast estimation for a row–column design—Exercise bicycle experiment

> # ANOVA: treatment combinations
> modelTC = lm(Pulse ˜ fDay + fSubject + fTrtmt, data=bike.data)
> anova(modelTC)

Analysis of Variance Table

Response: Pulse
Df Sum Sq Mean Sq F value Pr(>F)

fDay 7 202 28.9 1.20 0.406
fSubject 2 201 100.5 4.19 0.064
fTrtmt 7 854 122.1 5.09 0.024
Residuals 7 168 24.0

> drop1(modelTC, ˜., test = "F")

Single term deletions

Model:
Pulse ˜ fDay + fSubject + fTrtmt

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 168 80.7
fDay 7 24 192 69.9 0.14 0.990
fSubject 2 201 369 95.6 4.19 0.064
fTrtmt 7 854 1022 110.0 5.09 0.024

> # Treatment contrasts
> library(lsmeans)
> lsmTrtmt = lsmeans(modelTC, ˜ fTrtmt)
> summary(contrast(lsmTrtmt,
+ list(DurationDiff=c(-1,-1,-1,-1, 1, 1, 1, 1)/4,
+ SpeedDiff=c(-1,-1, 1, 1,-1,-1, 1, 1)/4,
+ PedalDiff=c(-1, 1,-1, 1,-1, 1,-1, 1)/4)),
+ infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value
DurationDiff -5.3438 2.7185 7 -11.7721 1.0846 -1.966 0.0901
SpeedDiff -10.3214 2.4709 7 -16.1641 -4.4788 -4.177 0.0042
PedalDiff 4.3080 2.7185 7 -2.1203 10.7364 1.585 0.1571

Results are averaged over the levels of: fDay, fSubject
Confidence level used: 0.95

on pulse rate of the two levels of each treatment factor (averaging over any interaction that might be

present). The corresponding output is shown in the bottom of Table 12.13.

Predicted values and residuals are available, and the residuals can be standardized and plotted as in

Sects. 5.9.1 and 6.9.3. Sample code is provided at the bottom of Table 12.12.

http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_6


12.9 Using R Software 423

Table 12.14 Analysis of variance for a row–column design—Exercise bicycle experiment

> # ANOVA: factorial effects
> modelFE = lm(Pulse ˜ fDay + fSubject + fDurat*fSpeed*fPedal,
+ data=bike.data)
> anova(modelFE)
> drop1(modelFE, ˜., test = "F")

Single term deletions

Model:
Pulse ˜ fDay + fSubject + fDurat * fSpeed * fPedal

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 168 80.7
fDay 7 23.7 192 69.9 0.14 0.990
fSubject 2 201.0 369 95.6 4.19 0.064
fDurat 1 129.2 297 92.4 5.38 0.053
fSpeed 1 269.1 437 101.6 11.22 0.012
fPedal 1 1.1 169 78.9 0.05 0.833
fDurat:fSpeed 1 15.0 183 80.7 0.63 0.455
fDurat:fPedal 1 36.5 204 83.4 1.52 0.257
fSpeed:fPedal 1 24.3 192 81.9 1.01 0.348
fDurat:fSpeed:fPedal 1 7.7 176 79.8 0.32 0.588

12.9.1 Factorial Model

To write the row–column–treatment model in terms of factorial effects, the linear models statement in

Table 12.12 is replaced by

modelFE = lm(Pulse ˜ fDay + fSubject + fDurat*fSpeed*fPedal,
data=bike.data)

The Type III sums of squares are shown in Table 12.14, and we can see that the sums of squares for the

main effects and interactions of the three treatment factors do not add to the Type III treatment sum of

squares in Table 12.13 due to the individual adjustments for block effects and for the other treatment

factor effects.

The statements to estimate contrasts for the factorial model become

lsmDurat = lsmeans(modelFE, ˜ fDurat)
summary(contrast(lsmDurat, list(DurationDiff=c(-1, 1))), infer=c(T,T))
lsmSpeed = lsmeans(modelFE, ˜ fSpeed)
summary(contrast(lsmSpeed, list(SpeedDiff=c(-1, 1))), infer=c(T,T))
lsmPedal = lsmeans(modelFE, ˜ fPedal)
summary(contrast(lsmPedal, list(PedalDiff=c(-1, 1))), infer=c(T,T))

and give output identical to that of Table 12.13.
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Table 12.15 R code for calculating and plotting the adjusted observations—Exercise bicycle experiment

bike.data = read.table("data/exercise.bicycle.txt", header=T)
# Create factor variables, plus numeric variable TLevel for plotting
bike.data = within(bike.data,

{fDay=factor(Day); fSubject=factor(Subject); fDurat=factor(Durat);
fSpeed=factor(Speed); fPedal=factor(Pedal); fTrtmt=factor(Trtmt);
# Vbl TLevel with treatment levels 1:8 for equispaced plotting;
TLevel = 4*(Durat-1) + 2*(Speed-1) + (Pedal-1) })

# ANOVA: treatment combinations
modelTC = lm(Pulse ˜ fDay + fSubject + fTrtmt, data=bike.data)

# Plotting data adjusted for row and column effects
modelTC$coefficients # Display all model coefficient estimates

(Intercept) fDay2 fDay3 fDay4 fDay5 fDay6
41.7500 -2.4286 -1.4196 -3.1875 -1.4732 -2.3571

fDay7 fDay8 fSubject2 fSubject3 fTrtmt112 fTrtmt121
-3.7857 -3.9911 -6.7500 -5.2500 -1.2143 -14.7054

fTrtmt122 fTrtmt211 fTrtmt212 fTrtmt221 fTrtmt222
-9.5714 -10.1875 -4.1339 -19.9018 -12.6429

thetahat = c(0, modelTC$coefficients[2:8]) # Row effect estimates
thetamean = mean(thetahat) # Mean row effect estimate
phihat = c(0, modelTC$coefficients[9:10]) # Column effect estimates
phimean = mean(phihat) # Mean column effect estimate
# Compute adjusted y-values
bike.data$yadj = ( bike.data$Pulse

- (thetahat[bike.data$Day] - thetamean)
- (phihat[bike.data$Subject] - phimean) )

# Plot adjusted response versus treatment
plot(yadj ˜ TLevel, data=bike.data, xaxt="n", xlab="Treatment",

ylab="y Adjusted")
axis(1, at=bike.data$TLevel, labels=bike.data$fTrtmt)

12.9.2 Plots

The statements needed for calculating the standardized residuals and normal scores and for generating

the residual plots are also shown in Table 12.12. These are as discussed in Sects. 5.9.1 and 6.9.3. The

plot statement is used to generate the usual residual plots (not shown here).

The R program in Table 12.15 illustrates how to compute the adjusted observations—namely, the

observations adjusted for row and column effect estimates—and how to plot the adjusted observations

versus treatment. The data are adjusted using (12.6.17); that is,

y∗
hqi = yhqi − (θ̂h − θ̂ .) − (φ̂q − φ̂.) .

http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Toward this end, having saved the fitted row-column design model as modelTC, the statement

modelTC$coefficients displays a set of least squares solutions to the normal equations. These

are shown for example in Table 12.15. The row and column effect estimates θ̂h and φ̂q are obtained

from the column modelTC$coefficient of displayed least squares estimates by specifying the

appropriate entries, and the mean of each collection of estimates is computed. Given this information,

the adjusted observations are computed.

The plot function is used to plot the adjusted observations versus treatment. The adjusted obser-

vations are actually plotted against treatment levels 1–8, so the treatment combinations are equally

spaced on the x-axis of the plot, but these equispaced levels are replaced by the treatment combination

labels 111–222. The R plot is analogous to that in Fig. 12.1 (p. 415) and is not shown here.

Exercises

1. Randomization

(a) Randomize the plan in Table 12.1 (p. 400) so that it can be used for an experiment with seven

subjects, each being assigned a sequence of four out of a possible seven antihistamines over

four time periods.

(b) Discuss whether or not one would need to include a carryover effect in the model, or whether

this could be avoided through the design of the experiment.

2. Latin squares

(a) Show that there is only one standard 3×3 Latin square. (Hint: Given the letters in the first row

and the first column, show that there is only one way to complete the Latin square.)

(b) Show that there are exactly four standard 4×4 Latin squares.

3. Sample sizes

Consider an experiment to compare 4 degrees of twist in a cotton-spinning experiment with respect

to the number of breaks per 100 pounds. A replicated Latin square design is to be used, with time

periods and machines being the row and column blocking factors.

(a) Determine the number s of Latin squares and the number r of observations per degree of twist

to include in the experiment if each interval in a simultaneous set of 95% confidence intervals

for all pairwise comparisons is to have a minimum significant difference (half-width) of 5

breaks per 100 pounds. The error standard deviation is thought to be at most 6 breaks per 100

pounds. Investigate both the Tukey and the Bonferroni methods.

(b) Discuss how the resulting design would be randomized.

4. Youden design randomization

(a) Find a Youden square (plan of treatment labels in rows and columns) for 5 treatments in 5 rows

and 4 columns.

(b) Randomize the design found in part (a), assigning the rows to 5 different drying tempera-

tures, the columns to 4 different paint nozzles, and the treatment labels to 5 different paint

formulations.
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Table 12.16 Latin square design showing treatments and data for the video game experiment

Day

1 2 3 4 5

Time order 1 1 94 3 100 4 98 2 101 5 112

2 3 103 2 111 1 51 5 110 4 90

3 4 114 1 75 5 94 3 85 2 107

4 5 100 4 74 2 70 1 93 3 106

5 2 106 5 95 3 81 4 90 1 73

5. Row–column design randomization

Consider an experiment to compare 5 protocols with respect to a resting metabolism rate measure-

ment. A row–column design is to be used, blocking on subjects and time periods. Since subjects

prefer to stay in a study for a short length of time, only 3 time periods will be used, with each

subject assigned a different protocol in each of the 3 time periods. For 10 subjects, the following

experimental plan with 10 rows and 3 columns could be used:

Column Column

Row I II III Row I II III

I 1 2 3 VI 1 2 4

II 2 3 4 VII 2 3 5

III 3 4 5 VIII 3 4 1

IV 4 5 1 IX 4 5 2

V 5 1 2 X 5 1 3

(a) Does this experimental plan have treatments evenly distributed across rows and columns?

Explain what you mean by “evenly distributed.”

(b) Determine the number of replicates s of this experimental plan, and the corresponding number

of observations r per protocol to include in the experiment if each interval in a set of simulta-

neous 95% confidence intervals for all pairwise comparisons is to have a minimum significant

difference (half-width) of 150 units. The error standard deviation is thought to be at most

250 units. Investigate both the Tukey and the Bonferroni methods.

(c) Discuss how the resulting design would be randomized.

6. Video game experiment

Professor Robert Wardrop, of the University of Wisconsin, conducted an experiment in 1991

to evaluate in which of five sound modes he best played a certain video game. The first three

sound modes corresponded to three different types of background music, as well as game sounds

expected to enhance play. The fourth mode had game sounds but no background music. The fifth

mode had no music or game sounds. Denote these sound modes by the treatment factor levels

1–5, respectively.

The experimenter observed that the game required no warm up, that boredom and fatigue would

be a factor after 4–6 games, and that his performance varied considerably on a day-to-day basis.

Hence, he used a Latin square design, with the two blocking factors being “day” and “time order

of the game.” The response measured was the game score, with higher scores being better. The

design and resulting data are given in Table 12.16.
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(a) Write down a possible model for these data and check the model assumptions. If the assump-

tions appear to be approximately satisfied, then answer parts (b)–(f).

(b) Plot the adjusted data and discuss the plot.

(c) Complete an analysis of variance table.

(d) Evaluate whether blocking was effective.

(e) Construct simultaneous 95% confidence intervals for all pairwise comparisons, as well as the

“music versus no music” contrast

1

3
(τ1 + τ2 + τ3) − 1

2
(τ4 + τ5)

and the “game sound versus no game sound” contrast

1

4
(τ1 + τ2 + τ3 + τ4) − τ5 .

(f) What are your conclusions from this experiment? Which sound mode(s) should Professor

Wardrop use?

7. Video game experiment, continued

Suppose that in the video game experiment of Exercise 6, Professor Wardop had run out of time

and that only the first four days of data had been collected. The design would then have been a

Youden design. Repeat parts (c), (e), and (f) of Exercise 6. Do your conclusions remain the same?

Is this what you expected? Why or why not?

8. Air freshener experiment

A. Cunningham and N. O’ Connor (1968, European Journal of Marketing 2, 147–151) conducted

a two-replicate Latin square design to compare the effects of four price-and-display treatments on

the sales of a brand of air fresheners. Treatments 1–3 corresponded to high, middle, and low prices,

respectively, and each had an extra display. Treatment 4 corresponded to the middle price and no

extra display. The response variable was the unit sales for a one-week period. The experiment

involved two blocking factors defined by stores (c = 8 levels) and one-week periods (b = 4

levels). The design and data are given in Table 12.17.

(a) Factors such as product location and shelf stocking could affect sales. Discuss how these factors

might be controlled in such an experiment.

(b) Check the model assumptions.

(c) Plot the adjusted data and comment on the results.

(d) Complete an analysis of variance table.

Table 12.17 Latin square design and data for the air freshener experiment

Week Store

1 2 3 4 5 6 7 8

1 2 31 1 23 3 12 4 3 1 10 3 30 2 23 4 14

2 1 19 4 16 2 14 3 4 2 21 4 25 3 17 1 14

3 4 15 3 30 1 12 2 6 3 12 1 47 4 5 2 3

4 3 16 2 27 4 5 1 11 4 12 2 38 1 13 3 6

Source Data adapted from Cunningham and O’Connor, European Journal of Marketing, Copyright © Emerald Group

Publishing Limited
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(e) Evaluate whether blocking was effective.

(f) Test for equality of treatment effects using a 5% significance level.

(g) Construct simultaneous 95% confidence intervals for all pairwise comparisons of the treat-

ments. What would you recommend for the sales of air fresheners if the results of this experi-

ment are still valid today?

9. Air freshener experiment, continued

Suppose that the air freshener experiment of Exercise 8 had to be stopped after only 3 weeks. The

resulting design would then be a replicated Youden design. Repeat parts (d)–(g) of Exercise 8. Do

your conclusions remain the same? Is this what you expected? Why or why not?

10. Quantity perception experiment

An experiment was run in 1996 by M. Gbenado, A. Veress, L. Heimenz, J. Monroe, and S. Yu

to investigate the effect of color on the perception of quantity. Subjects were recruited at random

from the student population. A number of small candies of a specific color were tipped onto a

flat tray. A subject was allowed to view the tray for 3 sec and then asked to make a guess as to

the number of candies on the tray. The response was the difference between the actual number of

candies on the tray and the number guessed by the subject.

The treatment factors of interest were “actual number of candies on the tray” and “color.” The

selected levels were 17, 29, and 41 for the treatment factor “number”, and yellow, orange, brown

for the factor “color.” The experimenters decided that each subject should view all nine treatment

combinations, and they based their design on 9 × 9 Latin squares.

We consider only part of the original study, constituting a 2-replicate Latin square, as shown in

Table 12.18 2-replicate Latin square design and data in parentheses for the quantity perception experiment—data are

‘true number’ minus ‘guessed number’

Subj Time Order

1 2 3 4 5 6 7 8 9

1 23 (4) 22 (−3) 11 (0) 12 (−3) 32 (−1) 13 (−3) 31 (−6) 33 (−9) 21 (−1)

2 12 (2) 31 (16) 32 (21) 21 (9) 22 (4) 33 (16) 23 (9) 11 (2) 13 (2)

3 21 (4) 23 (−1) 12 (7) 13 (−5) 33 (−1) 11 (−13) 32 (−9) 31 (−19) 22 (−16)

4 32 (21) 12 (4) 22 (3) 31 (11) 13 (0) 21 (4) 11 (0) 23 (4) 33 (11)

5 31 (7) 11 (−2) 21 (2) 33 (3) 12 (−3) 23 (3) 13 (−4) 22 (−5) 32 (−7)

6 11 (3) 33 (7) 31 (14) 23 (11) 21 (12) 32 (17) 22 (10) 13 (5) 12 (0)

7 22 (11) 21 (14) 13 (0) 11 (1) 31 (16) 12 (1) 33 (13) 32 (14) 23 (7)

8 13 (7) 32 (16) 33 (16) 22 (4) 23 (4) 31 (16) 21 (14) 12 (7) 11 (2)

9 33 (21) 13 (2) 23 (10) 32 (24) 11 (6) 22 (13) 12 (2) 21 (8) 31 (20)

10 33 (16) 31 (20) 22 (6) 21 (6) 11 (7) 23 (6) 12 (2) 13 (3) 32 (14)

11 12 (2) 22 (4) 32 (11) 13 (2) 21 (9) 33 (1) 23 (4) 31 (−4) 11 (7)

12 13 (−4) 23 (−11) 33 (−4) 11 (−3) 22 (4) 31 (11) 21 (−1) 32 (1) 12 (−3)

13 21 (4) 12 (−1) 11 (2) 32 (11) 31 (11) 13 (−3) 33 (1) 22 (−1) 23 (11)

14 22 (2) 13 (−7) 12 (−9) 33 (8) 32 (−2) 11 (−6) 31 (−9) 23 (4) 21 (2)

15 31 (21) 32 (21) 23 (14) 22 (14) 12 (4) 21 (16) 13 (0) 11 (5) 33 (11)

16 11 (2) 21 (9) 31 (21) 12 (6) 23 (9) 32 (18) 22 (9) 33 (16) 13 (2)

17 32 (6) 33 (6) 21 (−1) 23 (−1) 13 (2) 22 (4) 11 (−3) 12 (−1) 31 (6)

18 23 (4) 11 (2) 13 (2) 31 (11) 33 (6) 12 (2) 32 (6) 21 (−1) 22 (4)
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Table 12.18. Subjects represent the row blocks, and time order represents the column blocks. The

treatment combinations have been coded as follows:

1 = (17, yellow) 2 = (17, orange) 3 = (17, brown)

4 = (29, yellow) 5 = (29, orange) 6 = (29, brown)

7 = (41, yellow) 8 = (41, orange) 9 = (41, brown)

(a) The experiment was conducted in a busy hallway at The Ohio State University. Subjects were

recruited from the population of noncolorblind students walking past the table. Recruited

subjects were not allowed to view the experiment in progress with previous subjects, but they

were paid for their participation in candies. Discuss whether or not the subjects in this study

are likely to be representative of some larger population of subjects. Are the conclusions of

the study likely to be relevant to noncolorblind people in general?

(b) Fit a model that includes the effects of the two blocking factors, “subject” and “time-order”, the

treatment effect, and the treatment×time-order interaction. By looking at a computer calculated

analysis of variance table, verify that the interaction (adjusted for subjects) can be measured

with the full set of (v − 1)2 = 64 degrees of freedom.

(c) For the model that includes treatment×time-order interaction, check whether the residuals are

approximately normally distributed and whether they have approximately the same variance

for each treatment. Do you prefer to use the original response variable “guessed number”

or the transformed response “square root of guessed number” or “(true number − guessed

number)/(true number)” or some other transformation?

(d) Present an analysis of variance table and test any hypotheses that you think are of interest.

State your conclusions.

(e) Rewrite your model in terms of main effects and interactions of the two treatment factors. Redo

your analysis of variance table. What can you conclude from the experiment?

(f) If you were to plan a followup experiment, what would you wish to study? Write up a checklist

for such an experiment.

11. Caffeine experiment

An experiment was run by Lisa Carpinello in 2001 to study the effects of caffeine on a subject’s

blood pressure readings. Two treatment conditions were studied; subject abstaining from caffeine

for two hours in advance of the blood pressure readings (level 0), and subject consuming 12 ounces

of coffee with one tablespoon of non-dairy creamer one hour before the readings (level 1).

The investigator measured the subject’s blood pressure at 9am and 2pm each day for eight days,

with the subject sitting quietly for five minutes before the readings were taken. The ordered pairs

of treatments were randomly assigned to the days in such a way that on four of the days, the

treatment order was level 0 at 9am, level 1 at 2pm, and, on the other four days, the treatment order

was reversed (i.e. 1 at 9am, 0 at 2pm). The design can be represented as a randomized 4-replicate

Table 12.19 Latin square

design and systolic blood

pressure readings (mm Hg)

for the caffeine experiment

Time: 9am Time: 2pm Time: 9am Time: 2pm

Day 1 1 121 0 118 Day 5 0 126 1 130

Day 2 1 123 0 119 Day 6 1 129 0 123

Day 3 0 111 1 117 Day 7 1 127 0 118

Day 4 0 120 1 129 Day 8 0 121 1 130
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Latin square design with rows representing days and columns time of day. The design and data

are shown in Table 12.19.

(a) Plot the data and comment on the results.

(b) Write down a model for this experiment and check the assumptions on your model.

(c) Complete an analysis of variance table and evaluate whether blocking was effective.

(d) Test for equality of treatment effects using a 5% significance level.

(e) Construct a 95% confidence interval for comparing the treatments, and interpret the results.

12. Golf driver experiment

An experiment was conducted by Dale Meyer in 2001 to compare four different golf clubs (drivers)

in terms of the distance golf balls travel when hit. Two expensive drivers (coded 1 and 2) and two

cheaper ones (coded 3 and 4) were used. Four golfers each hit four shots in each of four rounds,

each golfer using each of the four drivers once per round, and balancing for the order in which

each driver was used. A different Latin square was used as the design in each round. The final

design is shown in Table 12.20 with driver as the treatment factor, and rows and columns defined

by golfer and order. Notice that, not only do the combinations of golfer/order/driver constitute a

Latin square in each round, but so do combinations of round/order/driver for each golfer, and so

do combinations of round/golfer/driver for each order. So the design is extremely well balanced

and this allows the golfer×driver interaction to measured without adjusting for order or round.

The experimenter was interested in comparing the driver effects and the golfer×driver interaction.

No other interaction effects were anticipated. If the golfer×driver interaction were to be significant,

then the experimenter also wanted to compare the driver effects separately for each golfer. For each

observation, a golf ball was hit in the golf simulator of a golf store, and the simulated distances

of the shots (in yards) were recorded and are shown in Table 12.20.

Table 12.20 Driver-distance (yards) pairs for the golf driver experiment

Round Golfer Order

1 2 3 4

1 1 1 175 2 90 3 176 4 102

1 2 2 157 1 149 4 166 3 140

1 3 3 196 4 182 1 199 2 158

1 4 4 147 3 216 2 197 1 134

2 1 2 147 1 191 4 137 3 165

2 2 1 124 2 135 3 171 4 79

2 3 4 180 3 195 2 206 1 184

2 4 3 167 4 161 1 143 2 121

3 1 3 187 4 166 1 176 2 181

3 2 4 135 3 123 2 168 1 131

3 3 1 197 2 165 3 200 4 171

3 4 2 216 1 158 4 181 3 180

4 1 4 176 3 192 2 193 1 154

4 2 3 176 4 125 1 95 2 187

4 3 2 150 1 188 4 201 3 192

4 4 1 162 2 170 3 214 4 123
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(a) Suggest a model for this experiment. By looking at computer calculated interaction degrees

of freedom and the adjusted and unadjusted sums of squares, verify that the golfer×driver

interaction can be measured based on the full set of (v − 1)2 = 9 degrees of freedom, and

without adjusting for order or round. Test whether the golfer×driver interaction is significantly

different from zero using α = 0.01.

(b) If there is no significant golfer×driver interaction, compare the driver effects (averaged over

golfer, order and round) using simultaneous 99% confidence intervals. Which method of mul-

tiple comparisons did you use and why? What can you conclude?

(c) Compare the pairwise effects of the drivers for each golfer, using individual 99% confidence

intervals. Which method of multiple comparisons did you use and why? State your overall

confidence level and interpret your results.



13Confounded Two-Level Factorial
Experiments

13.1 Introduction

In Chaps. 6 and 7 we discussed factorial experiments arranged as completely randomized designs, and

in Chaps. 10 and 11 we looked at factorial experiments arranged as block designs. Factorial experiments

that involve several treatment factors tend to be large. Even a modest experiment with four factors having

2, 2, 3, and 3 levels has a total of 36 treatment combinations. Since experimenters generally are working

to a restricted budget and since observations cost time and money, many factorial experiments are

single-replicate experiments (one observation per treatment combination). In this chapter we consider

single-replicate experiments arranged in blocks where every treatment factor has two levels. This will

be extended in Chap. 14 to cover treatment factors with more than two levels. Then, in Chap. 15, we

will look at experiments in which only a fraction of the treatment combinations can be observed.

In Sect. 13.2, we discuss alternative codings of treatment combinations, and the general problem of

confounding together with its implications for analysis. Methods of designing single-replicate exper-

iments so that information is lost on as few lower-order treatment contrasts as possible are the main

focus of Sects. 13.3 and 13.4, followed by an example in Sect. 13.5. Section 13.6 describes plans for

the design of confounded experiments.

In Sects. 13.7–13.10 we return to the subject of multi-replicate factorial experiments in blocks and

compare the traditional incomplete block designs with the multiple use of single-replicate confounded

designs. Analysis of confounded factorial experiments by the computer packages SAS and R is con-

sidered briefly in Sects. 13.11 and 13.12.

13.2 Single Replicate Factorial Experiments

13.2.1 Coding and Notation

A factorial experiment that involves two treatment factors each having two levels is known as a 2 × 2,

or 22, experiment. Similarly, an experiment with two factors each having 3 levels is known as a 3 × 3,

or 32, experiment. A 24 ×32 experiment has six treatment factors, the first four having two levels each,

and the last two having three levels each. Other factorial experiments are described in a similar manner.

A factorial experiment is called symmetric if all factors have the same number of levels. Otherwise, it is

called asymmetric. In this chapter we will deal only with symmetric 2p experiments. Other situations

will be discussed in Chap. 14.
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The levels of a two-level treatment factor are often referred to as the “low” and “high” levels, and

in Chaps. 6 and 7 we coded these as 1 and 2. The codings 0 and 1, or −1 and +1, are also commonly

used. A 22 experiment then has four treatment combinations coded as (11, 12, 21, 22) or as (00, 01,

10, 11) or as (−1−1, −1+1, +1−1, +1+1). A fourth standard coding for the treatment combinations

is ((1), b, a, ab), where the letter a or b appears if the corresponding factor A or B is at its high level,

and is absent if the corresponding factor is at its low level. The symbol (1) means that both factors are

at their low level.

Coding is a matter of personal choice. Although we have coded the levels as 1 and 2 until now, the

other three codings are more usual when talking about single-replicate factorial experiments. We will

code the levels as 0 and 1 throughout this and the next two chapters.

13.2.2 Confounding

A factorial experiment with v treatment combinations uses v − 1 degrees of freedom to measure all of

the main effects and interactions. In a single-replicate experiment, there are only v observations and

v − 1 total degrees of freedom. Thus, the experiment is not large enough to allow measurement of all

of the factorial effects and also estimation of the error variance. Three ways around this problem for

statistical inference in completely randomized designs were discussed in Sects. 6.7 and 7.5.

The problem is worse when the experiment is to be run as a block design. If there are b blocks in

the design, b − 1 of the total degrees of freedom are used to measure the block differences, leaving

only (v −1)− (b −1) = v −b degrees of freedom available for measuring the treatment contrasts and

the error variance. The result of this is that b − 1 of the treatment contrasts can no longer be measured.

They cannot be distinguished from block contrasts and are said to be confounded with blocks. Such a

design is useful only when at most v − b treatment contrasts are to be measured.

Care is required in designing this type of experiment. If v treatment combinations are arbitrarily

divided into b blocks of size v/b, the important treatment contrasts will not necessarily be estimable.

The estimable contrasts are those that are orthogonal to the confounded contrasts. This means that the

experiment should be designed in such a way that the confounded contrasts belong only to interactions

that are expected to be negligible. Fortunately, in some cases this is not difficult to achieve, and we

will examine these cases in this chapter. For a 2p experiment, we will restrict attention to designs with

b = 2s blocks of size k = 2p−s .

13.2.3 Analysis

The standard block–treatment model for a single-replicate factorial experiment arranged as an incom-

plete block design has the same form as model (11.4.2), p. 356, used for incomplete block designs in

Chap. 11; that is,

Yhi = μ + θh + τi + ǫhi ,

ǫhi ∼ N (0, σ 2) ,

ǫhi
′s are mutually independent ,

h = 1, . . . , b; i = 1, . . . , v; (h, i) is in the design.

(13.2.1)

As usual, Yhi is the random variable representing the observation on treatment combination i in

block h (if it appears in the design), ǫhi is the corresponding error random variable, μ is a constant, τi is

the effect of the i th treatment combination, and θh is the effect of the hth block. The block×treatment

interaction is assumed to be negligible.
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Table 13.1 Outline

analysis of variance table

for single-replicate

factorial experiments

constructed by the methods

of this chapter

Source of variation Degrees of freedom Sum of squares

Blocks b − 1 ssθ = 1
k
�B2

h − 1
v

G2

.

.

.
.
.
.

�ci τi 1 ssc = (��ci yhi )
2

�c2
i

(at most v − b of these)

.

.

.
.
.
.

Error df (by subtraction) ssE (by subtraction)

Total v − 1 sstot = ��y2
hi − 1

v
G2

Analysis of all single-replicate designs described in this chapter is straightforward. Because of the

way in which the designs will be constructed, contrasts in the important main effects and interactions

will be completely orthogonal to block contrasts. As a consequence, these contrasts will have no ad-

justment for blocks, and their estimates and sums of squares can be calculated in exactly the same

way as for completely randomized designs (see Chaps. 6 and 7). An outline of an analysis of variance

table is shown in Table 13.1. The maximum number of degrees of freedom available for estimating

main effects and interactions is v − b if no estimate of the error variance is required; otherwise, it is

v − b − 1. The unadjusted sum of squares for blocks ssθ can be calculated either as the total of all the

confounded contrast sums of squares or by the usual formula, which was given in Table 11.7, p. 358, as

ssθ = 1

k
�h B2

h − 1

v
G2 , (13.2.2)

where Bh is the total of the observations in the hth block and G is the grand total of all the observations.

13.3 Confounding Using Contrasts

13.3.1 Contrasts

Treatment contrasts for factorial experiments were discussed in Sects. 6.3, 7.2.4, and 7.3. When there

are two factors, A and B, each having two levels, there are v = 4 treatment combinations in total, and

it is possible to find a set of three orthogonal contrasts, one for the main effects of each of A and B

and one for their interaction. The coefficient lists [c00, c01, c10, c11] for these contrasts are

For A : [ −1, −1, 1, 1 ] ,

For B : [ −1, 1, −1, 1 ] ,

For AB : [ 1, −1, −1, 1 ] .

Each coefficient for the AB interaction is the product of the corresponding coefficients for the main

effects of A and B. Similarly, for three factors, the coefficient lists for the seven contrasts are shown

in Table 13.2 written as columns. The interaction coefficients are, again, the product of corresponding

main-effect coefficients. The row labels in Table 13.2 are the treatment combinations (in lexicographical

order) whose observations are to be multiplied by the contrast coefficients when estimating the contrast.

The seven contrasts are orthogonal. This can be verified by multiplying together corresponding digits
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Table 13.2 Contrasts for a 23 experiment

A B C AB AC BC ABC

000 −1 −1 −1 1 1 1 −1

001 −1 −1 1 1 −1 −1 1

010 −1 1 −1 −1 1 −1 1

011 −1 1 1 −1 −1 1 −1

100 1 −1 −1 −1 −1 1 1

101 1 −1 1 −1 1 −1 −1

110 1 1 −1 1 −1 −1 −1

111 1 1 1 1 1 1 1

in any two columns and showing that the sum of the products is zero. A table of orthogonal contrasts,

such as Table 13.2, is sometimes called an orthogonal array.

Such contrasts in a 2p experiment all have the same variance, since �c2
i = v = 2p for all contrasts

and Var(�ci τ̂i ) = �c2
i σ

2 = vσ 2. The main effect of A is often measured by the A contrast divided

by v/2, so that it compares the average of all treatment combinations at the high level of A with the

average of the treatment combinations at the low level. If the interaction contrast coefficients are also

divided by v/2, the contrast estimators all have variance
∑

c2
i σ

2 = 4σ 2/v, and the AB interaction,

for example, then compares the average response when factors A and B are at the same level with the

average response when they are at different levels. We shall use either v/2 or 1 for the divisor for all

contrasts in 2p experiments both here and in Chap. 15.

13.3.2 Experiments in Two Blocks

We start with an example. Suppose that a single-replicate 23 experiment is to be run in two blocks

of size four. Suppose also that the experimenter knows that one of the factors, say factor A, does not

interact with either of the other two factors. This means that the interactions AB, AC , and ABC may

be assumed to be negligible and that the contrasts labeled A, B, C , and BC in Table 13.2 are the only

contrasts to be measured.

Since there will be b = 2 blocks, it follows that b − 1 = 1 degree of freedom will be used

to measure block differences and one treatment contrast will be confounded with blocks. Without

too much difficulty, we can ensure that the confounded contrast is one of the negligible contrasts.

For example, we can confound the negligible ABC contrast by placing in one block those treatment

combinations corresponding to −1 in the ABC contrast, and placing in the second block those treatment

combinations corresponding to +1 in the same contrast. Referring to Table 13.2, we can see that the

design in Table 13.3 results. The ABC contrast is now identical to a block contrast that compares Block I

with Block II, and consequently, the ABC contrast is confounded with blocks. The other two negligible

contrasts, AB and AC , provide two degrees of freedom to estimate σ 2. Since all the nonnegligible

factorial contrasts are orthogonal to AB, AC , and ABC , they can be measured as though there were no

blocks present. Block design randomization (see Sect. 11.2.2) needs to be carried out before the design

in Table 13.3 can be used in practice.

Table 13.3 23 experiment

in 2 blocks of 4,

confounding ABC

Block I 000 011 101 110

Block II 001 010 100 111

http://dx.doi.org/10.1007/978-3-319-52250-0_15
http://dx.doi.org/10.1007/978-3-319-52250-0_11
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Table 13.4 Data for the field experiment (ABCD is confounded)

Block I Block II

TC Yield TC Yield

0000 58 0001 55

0011 51 0010 45

0101 44 0100 42

0110 50 0111 36

1001 43 1000 53

1010 50 1011 55

1100 41 1101 41

1111 44 1110 48

Source Data adapted from Experimental Designs, Second Edition, by W.G. Cochran and G.M. Cox, 1957, John Wiley

& Sons, New York

A similar method of confounding can be used for any 2p experiment in b = 2 blocks of size

k = 2p−1. All factorial contrasts except for the one confounded contrast can be estimated.

Example 13.3.1 Field experiment

The data shown in Table 13.4 form part of the results of a field experiment on the yield of beans using

various types of fertilization. The experiment was conducted at Rothamsted Experimental Station in

1936 and was reported by W.G. Cochran and G.M. Cox in their book Experimental Designs. There

were four treatment factors each at two levels. Factor A was the amount of dung (0 or 10 tons) spread

per acre, factors B, C , and D were the amounts of nitrochalk (0 and 45 lb), superphosphate (0 and

67 lb), and muriate of potash (0 and 112 lb), respectively, per acre. The experimental area was divided

into two possibly dissimilar blocks of land, each of which was subdivided into eight plots (experimental

units). Since this was a single-replicate experiment with 24 = 16 treatment combinations (TC) divided

into b = 2 blocks of size k = 8, one treatment contrast had to be confounded. The experimenters

chose to confound the ABCD contrast, since the four-factor interaction was of least interest.

The ABCD contrast is shown below, and it can be verified that the treatment combinations cor-

responding to contrast coefficient +1 appear in Block I of Table 13.4, while those corresponding to

coefficient −1 appear in Block II. All the other factorial contrasts are orthogonal to the ABCD contrast,

so they can all be estimated without adjusting for the block effects. We take as examples the B and BC

contrasts shown below.

TC 0000 0001 0010 0011 0100 0101 0110 0111

yhi jkl 58 55 45 51 42 44 50 36

B −1 −1 −1 −1 1 1 1 1

BC 1 1 −1 −1 −1 −1 1 1

ABCD 1 −1 −1 1 −1 1 1 −1

TC 1000 1001 1010 1011 1100 1101 1110 1111

yhi jkl 53 43 50 55 41 41 48 44

B −1 −1 −1 −1 1 1 1 1

BC 1 1 −1 −1 −1 −1 1 1

ABCD −1 1 1 −1 1 −1 −1 1

Using rule 10 of Sect. 7.3, the least squares estimate of the B contrast is y..1..−y..0.. = 1
8
�ci jkl yhi jkl ,

where the sum is to be taken over the four subscripts, and the contrast coefficients ci jkl are given in

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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standard order above. Multiplying the contrast coefficients by the data values, we obtain

For B : 1
8

∑
ci jkl yhi jkl = − 8.00.

Similarly, if we divide the BC contrast shown above by the same divisor v/2, we obtain the contrast

estimate

For BC : 1
8

∑
ci jkl yhi jkl = 1

8
(y..00. − y..01. − y..10. + y..11.) = 2.25.

Using (6.7.53), the sum of squares for testing the hypothesis that the main effect of B is negligible

is

ssB =
(

1
8

∑
ci jkl yhi jkl

)2

∑ (
1
8
ci jkl

)2
= (−8.00)2

16
64

= 256.0.

Similarly, the sum of squares for testing the hypothesis that the interaction between B and C is negligible

is

ss(BC) = (2.25)2

16
64

= 20.25.

An alternative way to calculate the sums of squares is to use the method of Sect. 7.3. Following the

rules in that section, we obtain

ssB = acd
∑

j

y2
.. j.. − abcd y2

.....

= 8
[
(51.25)2 + (43.25)2

]
− 16(47.25)2 = 256.0 ,

and

Table 13.5 Analysis of variance for the field experiment

Source of variation Degrees of freedom Sum of squares Contrast estimate (divisor v/2)

Block (ABCD) 1 2.25

A 1 2.25 −0.75

B 1 256.00 −8.00

C 1 0.25 0.25

D 1 20.25 −2.25

AB 1 6.25 1.25

AC 1 81.00 4.50

AD 1 0.00 0.00

BC 1 20.25 2.25

BD 1 12.25 −1.75

CD 1 1.00 0.50

ABC 1 16.00 −2.00

ABD 1 16.00 2.00

ACD 1 20.25 2.25

BCD 1 121.00 −5.50

Total 15 575.00

http://dx.doi.org/10.1007/978-3-319-52250-0_6
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ss(BC) = ad
∑

j

∑

k

y2
.. jk. − acd

∑

j

y2
.. j.. − abd

∑

k

y2
...k. + abcd y2

.....

= 4
[
(52.25)2 + (50.25)2 + (42.00)2 + (44.50)2

]

− 8
[
(51.25)2 + (43.25)2

]
− 8

[
(47.125)2 + (47.375)2

]

+ 16(47.25)2 = 20.25.

The complete analysis of variance table is shown in Table 13.5. The important contrasts can be

identified using one of the methods of Sect. 7.5. A half-normal probability plot of the 14 contrast

estimates is shown in Fig. 13.1. Note that we have not included the confounded ABCD contrast in the

half-normal probability plot. Although it is not the case here, the block effect is usually expected to be

large and may draw attention away from the important treatment contrasts.

The contrasts B, BCD, and AC may or may not be important, since their plotted points roughly line

up with those of the seven smallest absolute estimates, but not with those of the 11 smallest absolute

estimates. Suppose they are considered important. We notice that the contrast estimate for B is negative,

suggesting that the addition of nitrochalk decreased the yield of beans when averaged over the levels

of A, C , and D. The interaction plot for BCD is shown in Fig. 13.2 and that for AC in Fig. 13.3. We

see from Fig. 13.2 that the BCD interaction can be characterized by the fact that the CD interaction

changes as B changes from its low level to its high level. If the objective of the experiment is to increase

yield, then comparison of the two plots in Fig. 13.2 suggests that B should be set at its low level, unless

Fig. 13.1 Half-normal

probability plot for the
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Fig. 13.3 AC interaction

plot for the field

experiment
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the high level of C and the low level of D are used. This tends to agree with the earlier observation

that the contrast estimate for B is negative, suggesting that the low level is better. If B is set at its low

level, the left-hand graph of Fig. 13.2 suggests that both C and D should be at their low levels. The

AC interaction plot in Fig. 13.3 shows that either both C and A should be at their low levels or both C

and A should be at their high levels. The contrast estimators for A and D are both negative, suggesting

that on average the low level is better, although the difference in yield is minor. More importantly, the

low levels in this experiment are cheaper. Therefore, all the evidence points towards not adding any

fertilizer ingredients in the quantities studied in the experiment. A followup experiment could be run

with the same four factors but with an increased “high” level of C and lower “high” levels of A, B,

and D. Since it is possible that the response is quadratic for each of the factors, a 34 experiment could

be run.

Suppose the experimenters had known ahead of time that factors A and D do not interact, so that

interactions AD, ABD and ACD could have been assumed negligible; then the corresponding terms

would have been omitted from the model. There would then have been 3 degrees of freedom for

estimating the error variance. The error sum of squares would have been the total of the sums of

squares for AD, ABD, and ACD listed in Table 13.5, so that

σ̂ 2 = msE = 1

3
(ss(AD) + ss(ABD) + ss(ACD)) = 1

3
(36.25) = 12.0833.

The analysis of variance table would then have been as shown in Table 13.6, and we see that at an

overall significance level of at most α = 11(0.005) = 0.055, none of the contrasts would have been

judged as significantly different from zero, since F1,3,0.005 = 55.55.

Confidence intervals could be calculated for each contrast at an overall confidence level of at least

94.5%, using the Bonferroni method (formula (4.4.21)) with each interval at individual level 99.5%,

with error degrees of freedom df = 3 and with ri = 8 being the number of observations averaged over

to obtain the estimate. For example, a confidence interval for the difference in the high and low levels

of B is

β∗
1 − β∗

0 ∈
(

1

8
�ci jkl yhi jkl ± t3,0.0025

√
msE (16/64)

)

= (−8 ± 7.4532×1.7381) = (−20.954, 4.954) .

http://dx.doi.org/10.1007/978-3-319-52250-0_4
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Table 13.6 Analysis of variance for the field experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Block 1 2.25 2.25 − −
A 1 2.25 2.25 0.186 0.6952

B 1 256.00 256.00 21.186 0.0193

C 1 0.25 0.25 0.021 0.8947

D 1 20.25 20.25 1.676 0.2861

AB 1 6.25 6.25 0.517 0.5240

AC 1 81.00 81.00 6.703 0.0811

BC 1 20.25 20.25 1.676 0.2861

BD 1 12.25 12.25 1.014 0.3882

CD 1 1.00 1.00 0.083 0.7923

ABC 1 16.00 16.00 1.324 0.3332

BCD 1 121.00 121.00 10.014 0.0507

Error 3 36.25 12.0833

Total 15 575.00

We remind the reader that if both of the above analyses are done, that is, if the interactions AD,

ABD, and ACD are dropped from the model after examining the half-normal probability plot, then it is

no longer meaningful to talk about the significance levels of the tests or the confidence interval levels

(see Sect. 6.5.6, p. 170). �

13.3.3 Experiments in Four Blocks

We can extend the method of confounding that we used for two blocks to obtain b = 4 = 22 blocks.

We then need to use two contrasts to divide up the treatment combinations. For example, suppose that

in a 24 experiment, all interactions except for the two-factor interactions are thought to be negligible.

We can select one of the negligible interactions to produce two blocks of size 8 and then select a second

interaction to subdivide each of these two blocks into two smaller blocks, giving a total of 4 blocks of

size 4. Since b − 1 = 3 degrees of freedom are needed to measure blocks, a third treatment contrast

must also be confounded. We require this third contrast to be among the negligible contrasts, so care

must be taken as to which pair of contrasts is initially selected for confounding. The choice of ABCD

and ABC , for example, is a very poor choice even if these high-order interactions may be thought to

be negligible. We can see this by examining the design and the third confounded contrast as follows.

The two contrasts and the corresponding treatment combinations (TC) are shown in Table 13.7. The

treatment combinations are divided into 2 blocks of size 8 according to the coefficients in the ABCD

contrast. Each of these blocks is then subdivided into 2 blocks of size 4 according to the coefficients in

the ABC contrast. The b = 4 blocks of size k = 4 are therefore determined by the pairs of coefficients

(ABCD, ABC) = (−1, −1) or (−1, 1) or (1, −1) or (1, 1) in the two contrasts. The resulting design

is shown in Table 13.7 (prior to randomization).

Examination of the blocks in the design shows that all of the treatment combinations in Block I and

Block IV have the fourth digit equal to 1, and all of those in Blocks II and III have the fourth digit

equal to 0. This means that the high and low levels of factor D cannot be compared within the same

block, and therefore the contrast for the main effect of D must be the third contrast confounded with

blocks.

http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 13.7 24 experiment in 4 blocks of 4, confounding ABCD, ABC , D

TC 0000 0001 0010 0011 0100 0101 0110 0111

ABCD 1 −1 −1 1 −1 1 1 −1

ABC −1 −1 1 1 1 1 −1 −1

TC 1000 1001 1010 1011 1100 1101 1110 1111

ABCD −1 1 1 −1 1 −1 −1 1

ABC 1 1 −1 −1 −1 −1 1 1

Block Contrast

coeffi-

cients

(ABCD, ABC)

Treatment combinations

I (−1, −1) 0001 0111 1011 1101

II (−1, 1) 0010 0100 1000 1110

III ( 1, −1) 0000 0110 1010 1100

IV ( 1, 1) 0011 0101 1001 1111

We could have predicted this outcome, since if corresponding coefficients of the two contrasts ABCD

and ABC shown in Table 13.7 are multiplied together, the coefficients of the D contrast results. Notice

that in symbols, we can write

(ABCD)(ABC) = A2 B2C2 D = D,

where any letter with exponent 2 is ignored. The squared coefficients of any 2p factorial contrast are

all +1, so multiplying the D contrast by C2, say, is the same as multiplying the contrast coefficients

by +1 and C2D = D. Multiplication of the contrast names in this way gives a quick, easy method of

checking which third contrast is confounded without writing out the contrasts and without writing out

the design.

The above design is not suitable for the stated experiment. Suppose that the contrasts ABD and BCD

were selected for confounding instead. The third confounded contrast would then be (ABD)(BCD) =
AB2CD2 = AC . This, too, is not suitable since all two-factor interactions were to have been measured.

Unfortunately, there is no choice that will meet the specifications of this particular experiment. The

number of blocks and the block sizes are too small to measure everything that is required. At least one

two-factor interaction would have to be sacrificed, or a larger experiment must be run.

Example 13.3.2 25 experiment in 4 blocks of 8

In Sect. 13.5 we will describe a 25 experiment that was run in b = 4 blocks of size k = 8. In designing

such an experiment, one needs to select two contrasts for confounding and to check that the third

confounded contrast is acceptable. As in the discussion above, selecting the 5-factor interaction for

confounding will generally be a poor choice, since no matter which other interaction is selected for

the second confounded interaction, a 2-factor interaction or main effect will be among the confounded

contrasts. For example,

(ABCD)(ABCDE) = E and (ABC)(ABCDE) = DE .

If an experimenter knew ahead of time that factors D and E do not interact, then the second choice

might be acceptable. In general, though, most experimenters would prefer not to confound low-order

interactions. So, a selection of a 3-factor interaction and a 4-factor interaction with as few letters in

common as possible will generally be the best choice. For example,
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(ABCD)(CDE) = ABE .

There are many selections of this type, and the experimenter would wish to avoid confounding any

3-factor interaction that might be of some interest. The selection made in Sect. 13.5 is ABD, BCE , and

their product ACDE . If the treatment combinations are written out in standard order together with the

contrast coefficients for ABD and BCE , it can be verified that the pairs of contrast coefficients give the

four blocks shown in Table 13.11 (p. 448). �

13.3.4 Experiments in Eight Blocks

If an experiment is required in b = 23 blocks, then three contrasts must be selected for confounding. A

single-replicate design in eight blocks confounds b − 1 = 7 treatment contrasts in total, including the

three contrasts initially selected and all products of these. For example, suppose that a 26 experiment

is required in b = 23 = 8 blocks of 8, and that the two-factor interactions are of interest together with

the four three-factor interactions ACE , ACD, ADE , and CDE (these are the four 3-factor interactions

that do not contain B or F). A suitable choice might be to confound the interactions BCD, ABE , and

ADF . The other four confounded contrasts would be

(BCD)(ABE) = ACDE,

(BCD)(ADF) = ABCF,

(ABE)(ADF) = BDEF,

(BCD)(ABE)(ADF) = CEF .

The list of seven confounded contrasts is called the confounding scheme for the design. The reader

is invited to write out the three selected contrasts and verify that the design in Table 13.10 (p. 446)

results. The fact that ACDE , ABCF , BDEF , and ABE are also confounded can be verified by showing

that the coefficients of each of these four contrasts are constant for all treatment combinations within

each block.

Note that the same design will be obtained for any initial selection of three of the above seven

confounded contrasts, provided that no selected contrast is a product of the other two. For example,

suppose that ABCF , ABE , and CEF are initially selected. The selected contrasts ABCF and ABE divide

the treatment combinations into four blocks, but CEF does not subdivide these blocks further, since

it is the third contrast automatically confounded in the four blocks, i.e., (ABCF)(ABE) = CEF . A

different third contrast needs to be chosen, and any of the remaining four contrasts will do. Three

selected contrasts satisfying the requirement that no selected contrast be a product of the other two is

called a set of three independent contrasts.

13.3.5 Experiments in More Than Eight Blocks

The same ideas can be used for 2p experiments in 2s blocks of size k = 2p−s by selecting s independent

contrasts to subdivide the treatment combinations into blocks; s contrasts are independent if none can

be obtained as the product of two or more of the other s − 1 contrasts. Although the multiplication

of contrast names is a convenient method to determine the list of confounded contrasts, it becomes

harder to use the contrasts themselves for constructing the design as the number of factors increases.
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Table 13.8 23 experiment

in 2 blocks of 4,

confounding ABC

Block I 000 011 101 110

Block II 001 010 100 111

In the next section, we present a method of constructing block designs for single-replicate factorial

experiments that avoids writing out the contrasts.

13.4 Confounding Using Equations

13.4.1 Experiments in Two Blocks

The design in Table 13.8 (given previously in Table 13.3) was constructed by allocating the treatment

combinations to blocks in such a way that the contrast that compares Block I with Block II is identical

to the ABC contrast. The ABC contrast is confounded with blocks and cannot be estimated, but all of

the other factorial contrasts are estimable because they are orthogonal to the confounded contrast.

If the treatment combinations in the two blocks of the design are examined closely, an interesting

property becomes apparent. All the treatment combinations in the first block have an even number of

1’s, and all those in the second block have an odd number of 1’s. We could, in fact, have predicted

this property. The ABC contrast is the product of the A, B, and C contrasts (see Sect. 13.3.1), and so

the only way to achieve a coefficient −1 in the ABC contrast is for there to be an odd number of −1’s

among the corresponding coefficients in the A, B, and C contrasts. This means that there must be

an odd number of 0’s and an even number of 1’s in the corresponding treatment combination. Thus,

if we want to confound ABC without writing out the contrasts, we can simply allocate a treatment

combination a1a2a3 to Block I if it has an even number of 1’s among its digits, and to Block II if it has

an odd number of 1’s. Equivalently, we allocate a1a2a3 to Block I if a1 + a2 + a3 is an even number

and to Block II if a1 + a2 + a3 is an odd number. Instead of writing “a1 + a2 + a3 is an even number,”

we write “a1 + a2 + a3 = 0 (mod 2)” and instead of writing “a1 + a2 + a3 is an odd number,” we

write “a1 + a2 + a3 = 1 (mod 2)”. Working mod 2, or modulo 2, means that we subtract 2 repeatedly

from the number until we reach either 0 or 1, or equivalently, we divide by 2 and take the remainder

which is either 0 or 1. For example, 5 = 1 (mod 2), but 8 = 0 (mod 2). We call the pair of equations

“a1 + a2 + a3 = 0 (mod 2)” and “a1 + a2 + a3 = 1 (mod 2)” the confounding equations. The design

of Tables 13.3 and 13.8 is constructed using the following rule:

Block I: Treatment combinations with a1 + a2 + a3 = 0 (mod 2) ,

Block II: Treatment combinations with a1 + a2 + a3 = 1 (mod 2) .

If the AC contrast were to be confounded in the 23 experiment instead of the ABC contrast, only

the first and third digits of each treatment combination would be used to allocate it to a block. This is

because only the first and third digits of the treatment combination govern the coefficients in the AC

contrast. We would use the pair of confounding equations a1+a3 = 0 (mod 2) and a1+a3 = 1 (mod 2),

and the design would be constructed using the rule

Block I: Treatment combinations with a1 + a3 = 0 (mod 2) ,

Block II: Treatment combinations with a1 + a3 = 1 (mod 2) ,

giving the design of Table 13.9. It can be verified that AC is indeed confounded with blocks in this

design, since the coefficients of the AC contrast (shown in Table 13.2) are all equal to +1 for the
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Table 13.9 23

experiments in 2 blocks of

4, confounding AC

Block I 000 010 101 111

Block II 001 011 100 110

treatment combinations in Block I and −1 for those in Block II. All other contrasts are estimable

because they are orthogonal to the confounded AC contrast.

We may now generalize to 2p experiments in 2 blocks of size 2p−1. If the interaction Az1 Bz2C z3 · · ·
P z p is to be confounded with blocks, where zi = 1 if the factor is present in the interaction and zi = 0

if it is not, the blocks of the design are

Block I: Treatment combinations with

z1a1 + z2a2 + z3a3 + · · · + z pap = 0 (mod 2) ,

Block II: Treatment combinations with

z1a1 + z2a2 + z3a3 + · · · + z pap = 1 (mod 2) .

13.4.2 Experiments in More Than Two Blocks

We obtain designs with 4, 8, 16, . . . blocks by using more than one pair of confounding equations. We

label the pairs of confounding equations as L1, L2, etc. For example, the (unsatisfactory) design

Block Treatment Combinations

I 0000 0110 1010 1100

II 0011 0101 1001 1111

III 0001 0111 1011 1101

IV 0010 0100 1000 1110

from Table 13.7 for a 24 experiment in 4 blocks of size 4 was produced by confounding the ABCD

and ABC contrasts. Using the ABCD contrast to produce two blocks is equivalent to using the pair of

confounding equations L1 = a1 + a2 + a3 + a4 = 0 (mod 2) and L1 = 1 (mod 2), and using the ABC

contrast is equivalent to using the pair of confounding equations L2 = a1 + a2 + a3 = 0 (mod 2) and

L2 = 1 (mod 2). Thus there are four possible values for the pair (L1, L2), and it can be verified that

the blocks of the design satisfy

Block I: L1 = a1 + a2 + a3 + a4 = 0; L2 = a1 + a2 + a3 = 0 (mod 2) ;
Block II: L1 = a1 + a2 + a3 + a4 = 0; L2 = a1 + a2 + a3 = 1 (mod 2) ;
Block III: L1 = a1 + a2 + a3 + a4 = 1; L2 = a1 + a2 + a3 = 0 (mod 2) ;
Block IV: L1 = a1 + a2 + a3 + a4 = 1; L2 = a1 + a2 + a3 = 1 (mod 2) .

We already know from Sect. 13.3.3 that a third contrast, namely contrast D, is confounded in this

design. If we add the two confounding equations used to create each block, we have, for Block I,

L1 = a1 + a2 + a3 + a4 = 0 (mod 2)

+ L2 = a1 + a2 + a3 = 0 (mod 2)

L1 + L2 = 2a1 + 2a2 + 2a3 + a4 = 0 (mod 2)

If all coefficients are reduced modulo 2, the sum gives a4 = 0 (mod 2), which indicates that the D

contrast is also confounded.
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As has been demonstrated, there is a correspondence between the contrasts, the contrast names, and

the confounding equations. The contrast names are the most convenient for checking the total list of

confounded contrasts, and the equations are the most convenient for constructing the design.

Design construction can be done in several ways. One way is to examine each of the 2p treatment

combinations and allocate them to blocks according to their values obtained in the left sides of the con-

founding equations. Another way is to identify the treatment combinations that make the confounding

equations equal to zero. These will form Block I of the design. The other blocks of the design are

obtained by adding (modulo 2) to the treatment combinations in Block I any treatment combination

that has not yet appeared in a block. This is illustrated in the following example.

Example 13.4.1 26 experiment in 8 blocks of 8

A confounding scheme was found in Sect. 13.3.4 for a 26 experiment in 8 blocks of 8 by selecting

contrasts BCD, ABE , and ADF for confounding. It was shown that contrasts ACDE , ABCF , BDEF ,

and CEF were also confounded. Writing out the equations for the three selected contrasts, we have

L1 = a2 + a3 + a4 = 0 or 1 (mod 2) ,

L2 = a1 + a2 + a5 = 0 or 1 (mod 2) ,

L3 = a1 + a4 + a6 = 0 or 1 (mod 2) .

The equations corresponding to the other four confounded contrasts are obtained by setting L1 + L2,

L1 + L3, L2 + L3, and L1 + L2 + L3 equal to 0 or 1 (mod 2).

The design is shown in Table 13.10. It can be constructed systematically as follows. The first

treatment combination 000000 gives 0 for each of L1, L2, L3 and is allocated to Block I. The second

treatment combination 000001 gives values 0, 0, 1 for the three L i and is allocated to Block II, and so

on.

Alternatively, one can look for the eight treatment combinations that give zero for each of L1, L2,

and L3 and construct Block I first. Solving L1 = 0, L2 = 0, and L3 = 0 each for the last ai gives

a4 = a2 + a3 (mod 2), a5 = a1 + a2 (mod 2) and a6 = a1 + a4 (mod 2), respectively. For each one

Table 13.10 26 experiment in 8 blocks of 8, confounding ABE , ADF , BCD, CEF , ABCF , ACDE , BDEF

Block L1, L2, L3 Treatment Combinations

I 0, 0, 0 000000 001101 010111 011010

100011 101110 110100 111001

II 0, 0, 1 000001 001100 010110 011011

100010 101111 110101 111000

III 0, 1, 0 000010 001111 010101 011000

100001 101100 110110 111011

IV 0, 1, 1 000011 001110 010100 011001

100000 101101 110111 111010

V 1, 0, 0 000101 001000 010010 011111

100110 101011 110001 111100

VI 1, 0, 1 000100 001001 010011 011110

100111 101010 110000 111101

VII 1, 1, 0 000111 001010 010000 011101

100100 101001 110011 111110

VIII 1, 1, 1 000110 001011 010001 011100

100101 101000 110010 111111
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of of the eight combinations a1, a2, a3 of factors A, B, and C , the corresponding values of a4, a5, and

a6 can thus be computed to obtain one of the eight treatment combinations of Block I. For example, if

a1 = a2 = a3 = 1, then a4 = a2 + a3 = 1 + 1 = 0 (mod 2), a5 = a1 + a2 = 1 + 1 = 0 (mod 2), and

a6 = a1 + a4 = 1 + 0 = 1 (mod 2), so the treatment combination 111001 is in Block I.

Each of the other blocks is obtained by adding a new treatment combination to those in Block I—

“new” meaning not yet in a block. For example, the treatment combination 000001 is not in Block I and

if 000001 is added modulo 2 to the eight treatment combinations in Block I, then Block II results. For

example, 000001 is added to 111001 of Block I by adding corresponding digits and reducing modulo 2;

that is,

000001 + 111001 = 111002 = 111000 (mod 2),

so 111000 is also in Block II.

A third block can be obtained by taking any treatment combination not in the first two blocks, and

adding it to each treatment combination in Block I. Proceeding in this fashion, blocks are constructed

until each treatment combination has been allocated to some block. �

13.5 A Real Experiment—Mangold Experiment

O. Kempthorne in his book Design and Analysis of Experiments describes an experiment run at Rotham-

sted Agricultural Station to investigate the effects of five different fertilizers on the growth of mangold

roots. The five factors were Sulphate of ammonia (factor A at levels 0 or 0.6 cwt per acre), Super-

phosphate (factor B at levels 0 or 0.5 cwt per acre), Muriate of potash (factor C at levels 0 or 1.0 cwt

per acre), Agricultural salt (factor D at levels 0 or 5 cwt per acre), and Dung (factor E at levels 0 or

10 tons per acre). The experimental area was divided into b = 4 blocks of size k = 8. All 3-, 4-, and

5-factor interactions were expected to be negligible. The two three-factor interactions ABD, BCE , and

their product ACDE were selected for confounding.

The division of the 32 treatment combinations into the four blocks was then determined from the

confounding equations corresponding to ABD and BCE ; that is,

L1 = a1 + a2 + a4 = 0 or 1 (mod 2) ,

L2 = a2 + a3 + a5 = 0 or 1 (mod 2) .

The blocks can be formed by systematically working through all 32 treatment combinations and

assigning them to the blocks according to the values of L1 and L2 and the rule

Block I: L1 = 0(mod 2) and L2 = 0(mod 2) ,

Block II: L1 = 0(mod 2) and L2 = 1(mod 2) ,

Block III: L1 = 1(mod 2) and L2 = 0(mod 2) ,

Block IV: L1 = 1(mod 2) and L2 = 1(mod 2) .

Alternatively, we can notice that L1 = 0 gives a4 = a1 + a2 (mod 2) and L2 = 0 gives

a5 = a2 + a3 (mod 2). Computing these for each combination of levels a1a2a3 of the first three

factors gives Block I as

Block I: 00000 10010 00101 10111

11100 01110 11001 01011



448 13 Confounded Two-Level Factorial Experiments

Any treatment combination that is not in Block I can be added to the treatment combinations in Block

I to obtain a second block. So, if we add 00001, for example, we obtain

Block II: 00001 10011 00100 10110

11101 01111 11000 01010

Any treatment combination not in Blocks I and II can now be added to the treatment combinations in

Block I to obtain a third block. Since 00010, for example, has not appeared in Blocks I or II, we can

add it to the treatment combinations in Block I to obtain Block III. Block IV can then be obtained by

adding a treatment combination, say 00011, that has not appeared in the previous three blocks.

Block III: 00010 10000 00111 10101

11110 01100 11011 01001

Block IV: 00011 10001 00110 10100

11111 01101 11010 01000

The order of the treatment combinations was randomized within each block, and the order of the

blocks was randomized. The final design, together with the resulting yields (in pounds) of mangold

roots, is shown in Table 13.11.

The contrasts for the main effects and interactions are obtained as usual. The contrast for comparing

the high and low levels of superphosphate (B), for example, is
∑

i ciτi , where τi is the effect of the i th

treatment combination, and the coefficient ci is the i th element of

1
16

[−1, −1, −1, −1, −1, −1, −1, −1, 1, 1, 1, 1, 1, 1, 1, 1,

−1, −1, −1, −1, −1, −1, −1, −1, 1, 1, 1, 1, 1, 1, 1, 1 ] .

Table 13.11 Yields (in pounds) of mangold roots for the mangold experiment

Block Treatment Combinations

(Yield)

I 01101 00011 10100 11111

(844) (1104) (1156) (1508)

11010 00110 10001 01000

(1312) (1000) (1176) (888)

II 00001 01111 00100 10011

(1248) (1100) (784) (1376)

11101 10110 11000 01010

(1356) (1376) (1008) (964)

III 00101 11001 01011 01110

(896) (1284) (996) (860)

10010 11100 00000 10111

(1184) (984) (740) (1468)

IV 10101 11110 00111 11011

(1328) (1292) (1008) (1324)

01001 01100 00010 10000

(1008) (692) (780) (1108)

Source Design and Analysis of Experiments, by O. Kempthorne, 1976. Reprinted by permission of Krieger Publishing

company Inc.
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Equivalently, ci = −1/16 if the i th treatment combination has B at the low level, and ci = 1/16

otherwise. There is only one observation on each treatment combination, so a least squares estimate

of τi is just yi (the observation on the i th treatment combination). The least squares estimate of the

contrast for comparing the high and low levels of B is

∑

i

ci τ̂i = −312/16 = −19.5 .

The contrast estimates for each of the main effects and also the interactions are shown in Table 13.12.

To test the hypothesis that adding superphosphate has no effect on the yield of mangold roots, we

test the null hypothesis H B
0 :

∑
i ciτi = 0 against the alternative hypothesis H B

A :
∑

i ciτi �= 0 using

the rules of Sect. 7.3; that is,

reject H B
0 if

ssB

msE
= (

∑
i ci τ̂i )

2

(∑
i c2

i

)
msE

= (
∑

i ci yi )
2

(32/162) msE
> F1,13,α/m .

If the 3-, 4-, and 5-factor interactions are assumed to be negligible, the total of their contrast sums of

squares, apart from ABD, BCE , and ACDE , which are confounded with blocks, forms the error sum

of squares with 13 degrees of freedom, (10 − 2 = 8 from the 3-factor interactions, 5 − 1 = 4 from the

4-factor interactions, and 1 from the 5-factor interaction). There are m = 15 contrasts of interest, so

if each individual contrast is tested at significance level α/m = 0.005, the overall significance level

would be at most α = 0.075. For the main effect of B,

(
∑

i ci yi )
2

(32/162) msE
= 8(−19.5)2

msE
= 3042.00

6791.23
< F1,13,0.005 = t2

13,0.0025 = 11.37 ,

Table 13.12 Analysis of variance for the mangold experiment (ABD, BCE , ACDE are confounded)

Source of variation Degrees of freedom Sum of squares Mean square Ratio Contrast estimate p-values

Block 3 52832 17610.67 – – –

A 1 887112 887112.00 130.63 333.0 0.0001

B 1 3042 3042.00 0.45 −19.5 0.5150

C 1 722 722.00 0.11 9.5 0.7496

D 1 144722 144722.00 21.31 134.5 0.0005

E 1 262088 262088.00 38.59 181.0 0.0001

AB 1 338 338.00 0.05 6.5 0.8269

AC 1 48050 48050.00 7.08 77.5 0.0196

AD 1 16562 16562.00 2.44 45.5 0.1424

AE 1 288 288.00 0.04 −5.0 0.8400

BC 1 6272 6272.00 0.92 −28.0 0.3541

BD 1 5832 5832.00 0.86 27.0 0.3710

BE 1 98 98.00 0.01 −3.5 0.9062

CD 1 30752 30752.00 4.53 62.0 0.0530

CE 1 882 882.00 0.13 −10.5 0.7244

DE 1 13778 13778.00 2.03 −41.5 0.1779

Error 13 88286 6791.23

Total 31 1561656

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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so we fail to reject the null hypothesis H B
0 and conclude that there is no evidence to suggest a difference

in yield due to the high and low levels of superphosphate. The ratio for each of the other hypothesis

tests is given in Table 13.12, and we see that the only hypotheses that would be rejected at overall

significance level 0.075 are the hypotheses of no effect of A or D or E .

The block sum of squares is the sum of the ABD, BCE , and ACDE contrast sums of squares, or

alternatively, it can be calculated as

ssθ = 1

8

∑

h

B2
h − 1

32
G2 = 52832.0

as in (13.2.2), where Bh = yh..... and G = y....... The block mean square is more than twice the size of

the error mean square, indicating that the creation of blocks in this experiment was useful for reducing

the error variability, assuming that the effects confounded with blocks are negligible.

Since none of the interactions appear to be significantly different from zero, the main effects can

be investigated. The contrast estimates of the significant main effects are all positive, suggesting that

the high levels of A, D, and E increase the yield of mangold roots significantly. Confidence intervals

for all the main-effect contrasts can be obtained via Bonferroni’s method using formula (4.4.21), but

with error degrees of freedom df = 13. If we select the confidence level to match the α level of the

hypothesis tests, we obtain a set of simultaneous confidence intervals with overall confidence level of

at least 92.5% as follows:

For A :
(

y.1.... − y.0....± t13,0.0025

√
32σ̂ 2/162

)

= (333.0 ± 3.372
√

6791.23/8)

= (333.0 ± 98.25) = (234.75, 431.25) ;
For B : (−19.5 ± 98.25) = (−117.75, 78.75) ;
For C : (9.5 ± 98.25) = (−88.75, 107.75) ;
For D : (134.5 ± 98.25) = (36.25, 232.75) ;
For E : (181.0 ± 98.25) = (82.75, 279.25) .

At a somewhat higher overall significance level, the hypothesis of no interaction between A and C

would have been rejected. The AC interaction plot is shown in Fig. 13.4. This plot agrees with the

earlier observation that A should be set at its high level. Unless the cost is high, the plot suggests that

C should also be set at its high level. Factor B does not seem to affect the yield much and can be set

at its low (zero) level. As stated earlier, D and E should be at their high levels.

Fig. 13.4 AC interaction

plot for the mangold
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After an experiment of this type, it is good policy to run a confirmatory experiment verifying that

the selected levels are, indeed, a good combination. Here the recommendation is to use treatment

combination 10111. Certainly, in the main experiment, this treatment combination gave the highest

yield in Block III, but it cannot easily be compared with the other observations because of the large

block differences. A few more observations on this particular treatment combination would help to

verify that it is consistently a good choice.

13.6 Plans for Confounded 2 p Experiments

Suggestions for confounding schemes useful for constructing designs for 2p experiments in b = 2s

blocks of size k = 2p−s are given in Table 13.29 at the end of this chapter. These have been chosen to

allow all main effects to be estimable and as many two-factor interactions as possible. The first block

of each design can be obtained from the given relations on the factor levels, and the other blocks can

be obtained by adding (modulo 2) new treatment combinations to those in Block I. This process was

illustrated in Example 13.4.1, p. 446.

If one or more of the listed confounded contrasts is an important contrast in the experiment being

designed, the factors should be relabeled. For example, suppose that a design is required for a 26

experiment in 8 blocks of 8. The design listed in Table 13.29 confounds BCD, ABE , ACDE , ADF ,

ABCF , BDEF , and CEF (this is also the design of Table 13.10). Suppose that the experimenter wished

to estimate the contrasts ABC and BCD. The design, as listed, confounds BCD. However, if the exper-

imenter were to switch the labels B and E of the actual treatment factors, then the important contrasts

would be called ACE and CDE , both of which can be estimated in the listed design. Equivalently,

the experimenter could switch the labels B and E of the listed design, so as to confound CDE , ABE ,

ABCD, ADF , ACEF , BDEF , and BCF , leaving ABC and BCD unconfounded.

13.7 Multireplicate Designs

When the experiment is large enough that each treatment combination can be observed r > 1 times,

we have a choice of several different ways to design the experiment. If the block size can be chosen to

be as large as the number of treatment combinations, then a randomized block design (Chap. 10) can

be used.

If an incomplete block design is required, we could choose to use one of the standard incomplete

block designs described in Chap. 11, such as a balanced incomplete block design. Alternatively, we

could take a single-replicate design, confounding one or more interaction contrasts, and repeat the

design r times. Alternatively, again, we could piece together r different single-replicate designs, con-

founding different contrasts in each. The confounding of a contrast in some but not all replicates is

called partial confounding.

The choice between these three types of incomplete block designs involves tradeoffs concerning

what is to be estimated and how accurately. The analysis of a standard incomplete block design of

Chap. 11 requires that every contrast estimate be adjusted for blocks. Thus, while all contrasts are

estimable, their least squares estimators have higher variances than they would if they were unadjusted

for blocks—there is some loss of information on each contrast. If a balanced incomplete block design

is used, then there is the same loss of information on every treatment contrast.

A repeated single-replicate design, on the other hand, loses information completely on the con-

founded contrasts—they are not estimable and are said to be completely confounded—but all contrasts

orthogonal to these are unconfounded and can be estimated with no block adjustment and so with no

http://dx.doi.org/10.1007/978-3-319-52250-0_10
http://dx.doi.org/10.1007/978-3-319-52250-0_11
http://dx.doi.org/10.1007/978-3-319-52250-0_11
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loss of information. The estimator of any unconfounded contrast is the same as it would be in a com-

plete block design, and with the same variance formula. The use of smaller blocks should, however,

result in a smaller error variance σ 2.

The designs with partial confounding fall between these two extremes, allowing all contrasts to

be estimable but with different levels of adjustment and loss of information. Complete and partial

confounding are illustrated in Sects. 13.8–13.9 and are compared via an example in Sect. 13.10.

13.8 Complete Confounding: Repeated Single-Replicate Designs

If the number of treatment combinations v is divisible by the block size k, the v/k blocks of a single-

replicate design can be repeated r times to give an incomplete block design with b = rv/k blocks.

The contrasts that are confounded in the single-replicate design are also confounded in the r -replicate

design—they cannot be estimated and are said to be completely confounded. For all other contrasts,

the estimators and corresponding variance formulae are as in a complete block design—no block

adjustments are needed.

13.8.1 A Real Experiment—Decontamination Experiment

An experiment was described by M.K. Barnett and F.C. Mead, Jr. in the journal Applied Statistics in

1956 to explore the effect of four factors on the efficiency of a decontamination process for the removal

of radioactive isotopes from liquid waste. The four treatment factors were:

A: The amount of aluminum sulphate added to the liquid waste (two levels, 0.4 g and 2.5 g per

liter, coded 0, 1).

B: The amount of barium chloride added to the liquid waste (two levels, 0.4 g and 2.5 g per liter,

coded 0, 1).

C : The amount of carbon added to the liquid waste (two levels, 0.08 g and 0.4 g per liter, coded

0, 1).

D: Final pH of liquid waste (two levels, 6 and 10, coded 0, 1) achieved by adding sodium hydroxide

or hydrochloric acid.

The experimental units were portions of a typical laboratory waste of pH 8.3 and in which the

principal radioactivity was attributable to salts of radium, thorium, and actinium. The measurements

Table 13.13 Repeated single-replicate design for a 24 experiment in 2 × 2 blocks of size 8, confounding ABCD. Data

for the decontamination experiment are shown in parentheses

Block Treatment combinations (response)

I 1010 1111 0110 0000 1100 0101 0011 1001

(183) (350) (188) (881) (225) (298) (1039) (466)

II 0010 0001 0111 1000 1101 0100 1110 1011

(650) (1180) (238) (191) (420) (289) (135) (781)

III 0101 1001 1100 0000 1010 1111 0110 0011

(273) (890) (370) (834) (193) (389) (163) (1146)

IV 0001 1110 1000 0100 0111 1011 0010 1101

(1193) (156) (257) (178) (254) (775) (494) (429)

Source Barnett and Mead (1956). Copyright © 1956 Blackwell Publishers. Reprinted with permission
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taken after the experimental decontamination process were the counts per minute per milliliter of alpha

and beta particles. Here, we will only reproduce the data for the alpha particles (see Table 13.13).

Only 8 of the 16 treatment combinations could be examined per day. Four days were available for

the experiment, allowing each treatment combination to be measured twice during the course of the

experiment. The experimenters anticipated day-to-day variations in the observations and decided to

run a block design with b = 4 blocks of size k = 8. In fact, an unforeseen change of operators became

necessary at the end of the first day. Since a block design had been used, any shift in the observations

due to the operator change was absorbed into the block differences and did not affect the comparisons

of the treatment combinations.

The experimenters first selected a single-replicate design in b∗ = 2 blocks of size k = 8 that

confounded the 4-factor interaction contrast ABCD (which they thought unlikely to exist in this

experiment). By using this single-replicate design twice, they obtained a design with r = 2 obser-

vations per treatment combination and with b = 2b∗ = 4 blocks in which all contrasts except for

ABCD could be measured without adjustments for blocks. (The single-replicate design selected is that

listed in Table 13.29.) The treatment combinations were randomly ordered within each block, and the

final design is shown in Table 13.13.

The chosen model included all main effects and all 2-factor and 3-factor interactions. The

block×treatment interaction was assumed to be negligible. Thus, the model was

Yhi jkl = μ + θh + αi + β j + γk + δl

+ (αβ)i j + (αγ )ik + (αδ)il + (βγ ) jk + (βδ) jl + (γ δ)kl

+ (αβγ )i jk + (αβδ)i jl + (αγ δ)ikl + (βγ δ) jkl + ǫhi jkl ,

ǫhi jkl ∼ N (0, σ 2) and mutually independent,

h = 1, 2, 3, 4; i = 0, 1; j = 0, 1; k = 0, 1; l = 0, 1;
(h, i, j, k, l) in the design.

The analysis of variance table is shown in Table 13.14. There are b = 4 blocks in the design, but

ABCD is the only treatment contrast confounded. The sum of squares for ABCD is included in the

block sum of squares. The sums of squares for the other interactions and main effects can be obtained

from rules 4 or 12 in Sect. 7.3. For example, the sum of squares for testing the hypothesis of negligible

AC interaction is

ss(AC) =
∑

i

∑

k

y2
.i.k.

8
−

∑

i

y2
.i...

16
−

∑

k

y2
...k.

16
+ y2

.....

32

= 1

8
(51262 + 41722 + 32482 + 29622) − 1

16
(92982 + 62102)

− 1

16
(83742 + 71342) + 1

32
(155082)

= 13,944.5.

Alternatively, we can calculate the sum of squares for the AC contrast as follows. The contrast

coefficients, which are 1 if the levels of factors A and C are both high or both low, and −1 other-

wise, are

[1, 1, −1, −1, 1, 1, −1, −1, −1, −1, 1, 1, −1, −1, 1, 1 ] .

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 13.14 Analysis of variance for the decontamination alpha-particle experiment

Source of variation Degrees of freedom Sum of squares Ratio p-value

Blocks 3 28262.500 − −
A 1 297992.000 40.25 0.0001

B 1 1444150.125 195.07 0.0001

C 1 48050.000 6.49 0.0232

D 1 700336.125 94.60 0.0001

AB 1 570846.125 77.11 0.0001

AC 1 13944.500 1.88 0.1915

AD 1 22366.125 3.02 0.1041

BC 1 15.125 0.00 0.9646

BD 1 252050.000 34.05 0.0001

CD 1 24531.125 3.31 0.0902

ABC 1 38226.125 5.16 0.0394

ABD 1 144.500 0.02 0.8909

ACD 1 66.125 0.01 0.9260

BCD 1 5618.000 0.76 0.3984

Error 14 103645.000

Total 31 3550243.500

Then,

ss(AC) =

(∑
i

∑
j

∑
k

∑
l ci jkl y.i jkl

)2

(∑
i

∑
j

∑
k

∑
l c2

i jkl/r
) = (334)2

16/2
= 13,944.5.

The error sum of squares is obtained by subtracting the sums of squares for the main effects and

interactions from the total sum of squares, where the latter is

sstot =
∑

h

∑

i

∑

j

∑

k

∑

l

y2
hi jkl − G2

32
.

Similarly, the error degrees of freedom are obtained by subtraction.

There are fourteen hypothesis tests to be done. If each is done at a significance level 0.01, the overall

level is at most α = 0.14. At this level F1,14,.01 = 8.86, and the significant effects are the AB and

BD interactions (and the main effects of A, B, and D averaged over the levels of the other factors).

The hypotheses of negligible C main effect and ABC interaction would be rejected at a slightly higher

significance level.

Interaction plots of the two most important interactions (AB and BD) are shown in Fig. 13.5.

Figure 13.5(a) suggests that B should be set at its high level to achieve a lower radioactivity. The

interaction is caused by the fact that the benefit of setting B at its high level is more marked when A

is at its low level than at its high level. If B is at its high level, there is a slight preference for A to be

at its low level to achieve a lower radioactivity. On the other hand, the system is more stable when A

is at its high level, meaning that the radioactivity is not so sensitive to the level of B. So the choice for

the setting of A is not completely obvious. Figure 13.5(b) shows a similar picture. Again B should be

at its high level with a preference for D at its low level (which also produces the more stable system).
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Fig.13.5 Interaction plots

for the decontamination

alpha-particle experiment
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The main effect of C is not significant, but the data suggest that it should be set at its high level unless

this increases the cost substantially.

Thus, the results of the analysis of variance table suggest that suitable treatment combinations for

the decontamination process are 0110 or 1110. These are the same two treatment combinations that

would be selected from a perusal of the data in Table 13.13. The benefit of the investigation of main

effects and interactions is that it suggests directions for future experiments (raising the level of B

further while keeping D fairly low and perhaps raising A a little). It also allows the chemical analysts

to better understand the nature of the chemical system (see the original article of Barnett and Mead).

Finally, it helps to ensure that the treatment combination that appears to be the best from the data is

not just the result of error variability or a spurious observation (outlier).

13.9 Partial Confounding

Partial confounding is the term applied to a design that is formed from the combination of the blocks

from different single-replicate designs with different confounding schemes. A contrast that is con-

founded in some replicates but not in others is said to be partially confounded with blocks. A partially

confounded contrast can be estimated using only the data of those replicates in which it is unconfounded.

Thus, the variance of the contrast estimator is inversely proportional to the number of replicates in

which it is estimable.

For example, the design in Table 13.15 for a 23 experiment in 8 blocks of size 4 has four observations

on each treatment combination. It is made up of four single-replicate designs; the first confounds the

contrast from the ABC interaction, while the second confounds the AB contrast, the third confounds

AC , and the fourth BC . This means that the ABC contrast is estimable from the second, third, and fourth

single-replicate designs, but not the first, and the AB contrast is estimable from the first, third, and fourth

single-replicate designs, but not the second. Similarly, the AC and BC contrasts are estimable from

three of the four replicates. The main-effect contrasts A, B, and C are estimable from all four replicates.

Consequently, all factorial treatment contrasts can be estimated, but the variance associated with each

partially confounded contrast will be larger than that associated with each of the unconfounded contrasts

by a factor of four-thirds. The benefit of using a partially confounded design instead of a repeated single-

replicate design is that each treatment contrast is estimable, yet all totally unconfounded contrasts are

still estimated with the maximum possible precision.
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Table 13.15 Design and data (in parentheses) for the coil experiment

Confounded Block Treatment combination (response)

ABC I 000 (2208) 110 (2133) 101 (2459) 011 (3096)

II 100 (2196) 010 (2086) 001 (3356) 111 (2776)

AB III 000 (2004) 110 (2112) 001 (3073) 111 (2631)

IV 100 (2179) 010 (2073) 101 (3474) 011 (3360)

AC V 001 (2839) 100 (2189) 011 (3522) 110 (2095)

VI 000 (1916) 101 (2979) 010 (2151) 111 (2500)

BC VII 100 (2056) 000 (2010) 011 (3209) 111 (3066)

VIII 010 (1878) 110 (2156) 001 (3423) 101 (2524)

SourceFrom Fundamental Concepts in the Design of Experiments, Fourth Edition, by Charles R. Hicks. Copyright ©

1964, 1973, 1982, 1993 by Oxford University Press, Inc. Used by permission of Oxford University Press, Inc

Example 13.9.1 Coil experiment

C. R. Hicks, in his textbook Fundamental Concepts in the Design of Experiments, describes an ex-

periment to examine the variability of outside diameters of coils of wire. There were three treatment

factors of interest, as follows:

A: Two winding machines, coded 0, 1.

B: Two wire stocks, coded 0, 1.

C : Two positions on the coil, coded 0, 1.

Only four of the v = 8 treatment combinations could be measured at any one time. Consequently, the

experiment was divided into blocks of size k = 4. A total of n = 32 observations could be taken, and

a block design of b = 8 blocks of size k = 4 was needed.

It is easily verified that no balanced incomplete block design of this size exists (since r = 4 and

λ = 12/7). A cyclic design could have been used, but cyclic designs do not have orthogonal factorial

structure in general. A partially confounded design was selected, consisting of four single-replicate

designs, each confounding a different interaction (ABC , AB, AC , and BC). The design and responses

are shown in Table 13.15.

We use the standard model for 3 treatment factors and one block factor with no block×treatment

interaction.

Yhi jk = μ + θh + τi jk + ǫhi jk

= μ + θh + αi + β j + γk + (αβ)i j + (αγ )ik

+ (βγ ) jk + (αβγ )i jk + ǫhi jk ,

ǫhi jk ∼ N (0, σ 2) and mutually independent ,

h = 1, . . . , 8; i = 0, 1; j = 0, 1; k = 0, 1;
(h, i, j, k) in the design.

Since the main effect contrasts are not confounded in any part of the design, these can be estimated

using all of the data. In addition, these contrasts are orthogonal to block contrasts, so no block adjust-

ments are needed. The contrast for comparing the first two levels of factor B (averaged over the levels

of A and C), for example, is then

β∗
1 − β∗

0 , where β∗
j = β j + (αβ). j + (βγ ) j. + (αβγ ). j. ,
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and has least squares estimate

β̂∗
1 − β̂∗

0 = y..1. − y..0. = y..1.

16
− y..0.

16
= 2552.75 − 2555.31 = − 2.56.

To four decimal places, this estimate is −2.5625. Equivalently, in terms of the treatment combinations

the contrast is
∑

i

∑
j

∑
k ci jkτi jk , where the coefficients ci jk in standard order and divisor v/2 are

given by
1

4
[−1, −1, 1, 1, −1, −1, 1, 1 ] .

with least squares estimate
∑

i

∑
j

∑
k ci jk y.i jk = −2.5625. The variance associated with this contrast

is ∑
i

∑
j

∑
k c2

i jkσ
2

4
= 8σ 2

16 × 4
= σ 2

8
.

The test of the hypothesis H0 : {β∗
1 −β∗

0 = 0} against the alternative hypothesis HA : {β∗
1 −β∗

0 �= 0}
is similar to (4.3.15) (p. 77); that is,

reject H0 if
sscB

msE
= (y..1. − y..0.)

2

msE/8
> F1,df,α/m ,

where df is the error degrees of freedom obtained from the analysis of variance table, which is shown

in Table 13.16, m is the number of hypotheses to be tested, and sscB = 8(−2.5625)2 = 52.53. To test

the equivalent hypothesis H B
0 : {β∗

0 = β∗
1 } using the rules of Sect. 7.3, we obtain the same value of

ssB; that is,

ssB = acr
∑

j

y2
.. j. − abcr y2

.... = 52.53 .

The sum of squares for each of the other main effects can be calculated in a similar fashion. The sum

of squares for the interactions can be calculated similarly, except that only three of the four replicates

are used. For example, the BC interaction contrast can be estimated only from the first three replicates

(that is, from 24 observations, not 32). Thus, the contrast 1
2
[(βγ )∗00 − (βγ )∗01 − (βγ )∗10 + (βγ )∗11]

Table 13.16 Analysis of variance for the coil experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Blocks (adj) 7 303,414.14 43,344.88 -

Blocks (unadj) 7 439,777.72 - -

A 1 224,282.53 224,282.53 3.97 0.0627

B 1 52.53 52.53 0.00 0.9760

C 1 6,886,688.28 6,886,688.28 121.79 0.0001

AB (adj) 1 737.04 737.04 0.01 0.9104

AC (adj) 1 416,066.67 416,066.67 7.36 0.0148

BC (adj) 1 2,667.04 2,667.04 0.05 0.8307

ABC (adj) 1 70,742.04 70,742.04 1.25 0.2789

Error 17 961,283.11 56,546.07

Total 31 9,002,296.97

http://dx.doi.org/10.1007/978-3-319-52250-0_4
http://dx.doi.org/10.1007/978-3-319-52250-0_7
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(where (βγ )∗jk = (βγ ) jk + (αβγ ). jk) has least squares estimate

1

2

[
y..00 − y..01 − y..10 + y..11

]

= 1

2
[2080.86 − 3029.76 − 2099.38 + 3006.11] = − 21.085,

where only six observations yhi jk are used in the calculation of y.. jk for each combination of B and

C . (Use of 4 decimal places gives the more accurate value of −21.0833). In terms of the treatment

combination effects τi jk , the contrast coefficients ci jk in standard order and divisor v/2 are

1

4
[1, −1, −1, 1, 1, −1, −1, 1 ] ,

and the contrast estimate is ∑∑∑
ci jk(y.i jk) = −21.0833,

where only the three observations from the first three single-replicate designs are used in the calculation

of each y.i jk . The variance associated with this contrast is

∑
i

∑
j

∑
k c2

i jkσ
2

3
= 8σ 2

16 × 3
= σ 2

6
.

To test the hypothesis H BC
0 : [(βγ )∗00 − (βγ )∗01 − (βγ )∗10 + (βγ )∗11 = 0], we reject H BC

0 if

(
1
2

[
y..00 − y..01 − y..10 + y..11

])2

(4/(22 × 6)) × msE
= (−21.0833)2

msE/6
= 2667.04

56546.07
< F1,17,α/m .

The complete analysis of variance table is shown in Table 13.16. The adjusted mean square for

blocks, which is 43,344.88, is smaller than the mean square for error. Thus, blocking was not helpful

in this experiment. �

13.10 Comparing the Multireplicate Designs

For some block sizes, we have a choice of possible designs for a multireplicate factorial experiment.

For example, suppose that a design is required with blocks of size k = 4 for a factorial experiment

involving 3 factors, each having two levels (so v = 8). Practical considerations dictate that at most

b = 14 blocks can be used. The contrasts of interest are all of the main-effect and interaction contrasts

with coefficients ±1 as listed in Table 13.2 (p. 436). Three possible ways of designing the experiment

with 14 blocks are as follows.

Design Possibility 1

The first possibility is to use a balanced incomplete block design, since one exists with λ = 3 and

r = 7, b = 14, v = 8, k = 4. The design (before randomization) is given in Table 13.17, where

the blocks are shown as columns. The treatment labels 1–8 of the design are randomly assigned to

the v = 8 treatment combinations (000, 001, . . ., 111) to obtain a balanced incomplete block design

suitable for a factorial experiment.
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Table 13.17 A balanced incomplete block design with 8 treatment labels and 14 blocks of size 4

Blocks

I II III IV V VI VII VIII IX X XI XII XIII XIV

1 5 1 3 1 2 1 2 1 3 1 2 1 2

2 6 2 4 3 4 4 3 2 4 3 4 4 3

3 7 7 5 6 5 6 5 5 7 5 6 5 6

4 8 8 6 8 7 7 8 6 8 7 8 8 7

If we let the effect of treatment combination ijk be denoted by τi jk , then following Sect. 11.4.3,

the least squares estimator of a contrast ���ci jkτi jk is ���ci jk τ̂i jk = k
λv

���ci jk Qi jk , where

Qi jk = Ti jk − 1
k

∑
h nhi jk Bh , and Ti jk is the total of the observations on treatment combination ijk, Bh

is the total of the observations in the hth block, and nhi jk is 1 if treatment combination ijk is in block

h, and otherwise nhi jk is 0. Taking all contrast coefficients ci jk equal to +1 or −1, the variance of the

least squares estimator, ���ci jk τ̂i jk , is

Var

⎛
⎝∑

i

∑

j

∑

k

ci jk τ̂i jk

⎞
⎠ = k

λv

∑

i

∑

j

∑

k

c2
i jk σ 2 = 8σ 2

6
, (13.10.3)

and this is the same for all main-effect and interaction contrasts for a 23 experiment.

Design Possibility 2

For the same experiment, suppose that the 3-factor interaction ABC is expected to be negligible and

is of no interest. Then the balanced incomplete block design discussed above is not ideal, because

ABC contrast is measured with the same precision as the main-effect and 2-factor interaction contrasts.

Suppose, instead, we decide to confound the ABC contrast in each of seven replicates. Using the

equations

a1 + a2 + a3 = 0 or 1 (mod 2),

the following single-replicate design in two blocks would be obtained:

Block I: 000 011 101 110

Block II: 001 010 100 111

The design in b = 14 blocks is obtained by repeating these two blocks r = 7 times. Since ABC is

confounded in every replicate, it is not estimable—it cannot be measured. ABC is said to be completely

confounded. All other orthogonal contrasts (including the main-effect and 2-factor interaction contrasts)

are unconfounded, so can be estimated without adjusting for blocks.

Let ���ci jkτi jk be a contrast (with all coefficients ±1) measuring a 2-factor interaction or a main

effect. Then its least squares estimator is ���ci jkY .i jk , where the average is taken over the 7 replicates

or repeated pairs of blocks. The corresponding variance is

Var
(
���ci jk τ̂i jk

)
= Var

(
���ci jkY .i jk

)
= 8σ 2

7
. (13.10.4)

http://dx.doi.org/10.1007/978-3-319-52250-0_11
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Table 13.18 Partial confounding of ABC , AB, AC , BC contrasts in a design with 14 blocks of size 4 for 3 factors at

two levels each

Replicates Confounded Blocks Treatment combinations

I–IV ABC I, III, V, VII 000 011 101 110

II, IV, VI, VIII 001 010 100 111

V AB IX 000 001 110 111

X 100 101 010 011

VI AC XI 000 010 101 111

XII 001 011 100 110

VII BC XIII 000 011 100 111

XIV 001 010 101 110

Comparing (13.10.4) with (13.10.3), we see that the effect of losing all of the information on the ABC

contrast is to reduce the variance of all other factorial contrasts from 8σ 2/6 to 8σ 2/7.

Design Possibility 3

Instead of repeating the same design seven times as was done above, we could try to spread the loss of

information due to confounding across several of the interaction contrasts by using partial confounding.

Suppose that we take four copies of the two blocks that confound ABC , together with one pair of blocks

that confounds AB, one pair that confounds AC , and one pair that confounds BC . This seven-replicate

design is shown in Table 13.18.

The ABC contrast is confounded in replicates I–IV, but can be estimated (without block adjustments)

from replicates V–VII (that is, from Blocks IX–XIV, or three pairs of blocks). The variance of the ABC

contrast estimator is then 8σ 2/3, compared with 8σ 2/6 in the balanced incomplete block design—it

is completely confounded in the second design.

Each 2-factor interaction contrast can be estimated without block adjustments from the six replicates,

or pairs of blocks, in which it is not confounded. The variances of their least squares estimators are

then 8σ 2/6, the same as in the balanced incomplete block design, but worse than the value 8σ 2/7 for

the design with ABC completely confounded.

The main effects can be estimated from all seven replicates. The variances of their contrast estimators

are all 8σ 2/7, the same as for the second design, but better than the value of 8σ 2/6 for the balanced

incomplete block design.

Summary

A summary of the variances of the least squares estimators of the factorial contrasts is given in Ta-

ble 13.19. No one design is the best for all seven factorial effects. The choice of design would depend

upon the importance of estimating the ABC contrast relative to the 2-factor and main-effect contrasts.

Table 13.19 Variances of contrast estimators ���ci jkτi jk (with all coefficients ±1) measuring a 2-factor interaction

or a main effect for three design possibilities for v = 8, r = 7, b = 14, k = 4

Contrast Design 1 Design 2 Design 3

BIBD Complete Confounding of ABC Partial Confounding of ABC , AB, AC , BC

ABC 8σ 2

6
not estimable 8σ 2

3

AB, AC , BC 8σ 2

6
8σ 2

7
8σ 2

6

A, B, C 8σ 2

6
8σ 2

7
8σ 2

7
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We have not exhausted all the possible designs that can be obtained by partial confounding. For

example, one could confound the two-factor interactions in two pairs of blocks and the three-factor

interaction in one pair of blocks, or alternatively, one could confound each of the seven factorial

contrasts in turn in one pair of blocks. (This latter option gives design possibility 1.) In every case, the

smaller contrast variances will coincide with the contrasts that are confounded less often, the contrast

variance being 8σ 2/r if the contrast is unconfounded in r replicates.

13.11 Using SAS Software

Analyzing factorial experiments with confounding using the SAS software is straightforward for the

types of designs discussed in this chapter. The SAS statements required for the analysis are the same

as those outlined in Chaps. 6, 7, and 10. Using the GLM procedure, the blocking factor is listed in the

MODEL statement first, so that the Type I sums of squares for factorial effects are appropriately adjusted

for blocks.

Any effect that is completely confounded—including effects confounded in a single replicate

design—should not be included in the MODEL statement. If included after the blocking factor, a

completely confounded effect would show zero degrees of freedom under the Type I and Type III sums

of squares. The corresponding degree of freedom would already be accounted for under block effects.

Partially confounded effects, however, should be included in the model statement as illustrated in the

following example.

Table 13.20 SAS program for analysis of an experiment with partial confounding—the coil experiment

DATA COIL;

INPUT BLOCK A B C Y;

LINES;

1 0 0 0 2208

1 1 1 0 2133

1 1 0 1 2459

1 0 1 1 3096

2 1 0 0 2196

: : : : :

8 1 1 0 2156

8 0 0 1 3423

8 1 0 1 2524

;

PROC GLM;

CLASS BLOCK A B C;

MODEL Y = BLOCK A B C A*B A*C B*C A*B*C;

ESTIMATE ’A’ A -1 1;

ESTIMATE ’B’ B -1 1;

ESTIMATE ’C’ C -1 1;

ESTIMATE ’AB’ A*B 1 -1 -1 1 / DIVISOR=2;

ESTIMATE ’AC’ A*C 1 -1 -1 1 / DIVISOR=2;

ESTIMATE ’BC’ B*C 1 -1 -1 1 / DIVISOR=2;

ESTIMATE ’ABC’ A*B*C -1 1 1 -1 1 -1 -1 1 / DIVISOR=4;

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_7
http://dx.doi.org/10.1007/978-3-319-52250-0_10
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Fig. 13.6 SAS program

partial output illustrating

partial confounding—the

coil experiment

Example 13.11.1 Partial confounding—Coil experiment, continued

Table 13.20 contains a SAS program for analysis of the coil experiment data. Corresponding output is

given in Fig. 13.6. The coil experiment was a four-replicate 23 experiment with partial confounding—

each of the four interaction effects was confounded in one of the four replicates. In the GLM procedure,

the blocking factor is entered into the MODEL statement first. As a result, the Type I sum of squares

for blocks is unadjusted for treatment effects, whereas the Type I sums of squares for each treatment

interaction effect is adjusted for block effects. The Type III sum of squares for blocks is adjusted for

treatment effects, so can be used to assess the usefulness of blocking in this experiment.

The divisors used in the ESTIMATE statements of the GLM procedure cause use of divisor v/2 = 4

for the contrast coefficients ci jk for each contrast. Thus, all contrasts would have been estimated

with the same variance had there been no partial confounding. Because each interaction contrast

is confounded in one of the four replicates, the variance of each interaction contrast estimator

is larger than each main effect contrast estimator by a factor of four-thirds (i.e. 97.0792/84.0732

= 1.333). �
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13.12 Using R Software

Analyzing factorial experiments with confounding using the R software is straightforward for the types

of designs discussed in this chapter. The R statements required for the analysis are the same as those

outlined in Chaps. 6, 7, and 10. Using the linear models function lm, the blocking factor is entered into

the model first, so that the Type I sums of squares for factorial effects are appropriately adjusted for

blocks.

Any effect that is completely confounded—including effects confounded in a single replicate

design—should not be included in the model. If included after the blocking factor, a completely

confounded effect would show zero degrees of freedom under the Type I and Type III sums of squares.

The corresponding degree of freedom would already be accounted for under block effects. Partially

confounded effects, however, should be included in the model statement as illustrated in the following

example.

Table 13.21 R program for analysis of an experiment with partial confounding—the coil experiment

coil.data = read.table("data/coil.txt", header=T)

head(coil.data, 3)

# Create factor variables

coil.data = within(coil.data,

{fBlock = factor(Block); fA = factor(A);

fB = factor(B); fC = factor(C) })

# Analysis of variance

options(contrasts = c("contr.sum", "contr.poly"))

model1 = lm(y ˜ fBlock + fA*fB*fC, data=coil.data)

anova(model1)

drop1(model1, ˜., test="F")

# Contrast estimates, confidence intervals, and tests

library(lsmeans)

lsmA = lsmeans(model1, ˜ fA)

summary(contrast(lsmA, list(A=c(-1, 1))), infer=c(T,T))

lsmB = lsmeans(model1, ˜ fB)

summary(contrast(lsmB, list(B=c(-1, 1))), infer=c(T,T))

lsmC = lsmeans(model1, ˜ fC)

summary(contrast(lsmC, list(C=c(-1, 1))), infer=c(T,T))

lsmAB = lsmeans(model1, ˜ fB:fA)

summary(contrast(lsmAB, list(AB=c(1,-1,-1, 1)/2)), infer=c(T,T))

lsmAC = lsmeans(model1, ˜ fC:fA)

summary(contrast(lsmAC, list(AC=c(1,-1,-1, 1)/2)), infer=c(T,T))

lsmBC = lsmeans(model1, ˜ fC:fB)

summary(contrast(lsmBC, list(BC=c(1,-1,-1, 1)/2)), infer=c(T,T))

lsmABC = lsmeans(model1, ˜ fC:fB:fA)

summary(contrast(lsmABC, list(ABC=c(-1,1,1,-1,1,-1,-1, 1)/4)),

infer=c(T,T))

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_7
http://dx.doi.org/10.1007/978-3-319-52250-0_10
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Table 13.22 R program partial output illustrating partial confounding—the coil experiment

> model1 = lm(y ˜ fBlock + fA*fB*fC, data=coil.data)

> anova(model1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

fBlock 7 439778 62825 1.11 0.400

fA 1 224283 224283 3.97 0.063

fB 1 53 53 0.00 0.976

fC 1 6886688 6886688 121.79 3.6e-09

fA:fB 1 737 737 0.01 0.910

fA:fC 1 416067 416067 7.36 0.015

fB:fC 1 2667 2667 0.05 0.831

fA:fB:fC 1 70742 70742 1.25 0.279

Residuals 17 961283 56546

> # Contrast estimates

> library(lsmeans)

> lsmB = lsmeans(model1, ˜ fB)

> summary(contrast(lsmB, list(B=c(-1, 1))), infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value

B -2.5625 84.073 17 -179.94 174.82 -0.03 0.9760

Results are averaged over the levels of: fBlock, fA, fC

Confidence level used: 0.95

> lsmBC = lsmeans(model1, ˜ fC:fB)

> summary(contrast(lsmBC, list(BC=c(1,-1,-1, 1)/2)), infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value

BC -21.083 97.079 17 -225.9 183.74 -0.217 0.8307

Results are averaged over the levels of: fBlock, fA

Confidence level used: 0.95

> lsmABC = lsmeans(model1, ˜ fC:fB:fA)

> summary(contrast(lsmABC, list(ABC=c(-1,1,1,-1,1,-1,-1, 1)/4)), infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value

ABC -108.58 97.079 17 -313.4 96.236 -1.119 0.2789

Results are averaged over the levels of: fBlock

Confidence level used: 0.95

Example 13.12.1 Partial confounding—Coil experiment, continued

Table 13.21 contains an R program for analysis of the coil experiment data. Some of the corresponding

output is given in Table 13.22. The coil experiment was a four-replicate 23 experiment with partial

confounding—each of the four interaction effects was confounded in one of the four replicates. In the

second block of code in Table 13.21, the lm function fits the standard model involving block effects

and factorial effects, saving the results as model1. Subsequently, the functions anova and drop1

generate the type 1 and type 3 analysis of variance tables, respectively, the first of which is shown in

the top of Table 13.22. The blocking factor is entered into the model first. As a result, the type 1 sum

of squares for blocks is unadjusted for treatment effects, whereas the Type I sums of squares for each
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Table 13.23 Projectile experiment data, confounding ABCD

Day 1 Day 2

Run TC y1i jkl Run TC y2i jkl

1 0000 97 13 0001 75

7 0011 26 11 0010 39

5 0101 53 9 0100 68

3 0110 15 15 0111 −16

6 1001 145 10 1000 151

4 1010 100 16 1011 97

2 1100 150 14 1101 141

8 1111 54 12 1110 66

Source Johnson and Leone (1977). Copyright © 1977 Johnson and Leone. Reprinted with permission

treatment interaction effect is adjusted for block effects. The Type III sum of squares for blocks (not

shown) is adjusted for treatment effects, so can be used to assess the usefulness of blocking in this

experiment.

In the third block of code, for each factorial effect contrast, the summary and contrast functions

of lsmeans are coupled to compute the contrast estimate, standard error, t-test, and 95% confidence

interval. Since each main effect contrast is averaged over the four combinations of two other factors,

specifying a pair of coefficients ±1 yields contrast coefficients ci jk with divisor v/2 = 4. Likewise,

each two-factor interaction contrast is averaged over the two levels of the third factor, so specifying

four coefficients ±1/2 again yields contrast coefficients ci jk with divisor v/2 = 4. The three factor

interaction contrast coefficients ci jk have divisor v/2 = 4 as directly specified. Output for the main

effect of B, the BC interaction, and the ABC interaction contrasts are shown in the bottom of Table 13.22.

Since all contrasts considered here have contrast coefficients ci jk = ±1/4, all contrasts would have

been estimated with the same variance had there been no partial confounding. Because each interaction

contrast is confounded in one of the four replicates, the variance of each interaction contrast estimator

is larger than that of each main effect contrast estimator by a factor of four-thirds. Correspondingly,

the squares of the standard errors are in this ratio. �

Exercises

1. Construct a single-replicate 23 design confounding AB with blocks. In other words, list the treat-

ment combinations block by block.

2. Construct a single replicate 25 design confounding ABC and CDE . Determine the other effect that

is confounded.

3. Projectile experiment

N.L. Johnson and F.C. Leone, in their 1977 book Statistics and Experimental Design in Engineering

and the Physical Sciences, described a single-replicate 24 experiment concerning the performance

of a new rifle under test. Under study were the effects on projectile velocity of the factors charge

weight (A), projectile weight (B), propellant web (C), and weapon (D), where two rifles were

used. The design included two blocks each of size eight, corresponding to the two days on which

data were collected, confounding ABCD. The coded velocity data are given in Table 13.23.
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(a) Fit a model including block effects, treatment main effects, and 2-factor interactions. Use

residual plots to check the standard model assumptions.

(b) Conduct the analysis of variance, and discuss the results.

(c) Construct simultaneous confidence intervals for any interesting treatment contrasts using an

appropriate method of multiple comparisons.

(d) Reanalyze the data using the Voss–Wang method, including all estimable treatment effects in

the analysis.

4. Field experiment, continued

(a) For the field experiment of Example 13.3.1, p. 437, verify that the sum of squares and the

contrast estimate for BD are as shown in Table 13.5, p. 438.

(b) Draw the BD interaction plot. Does this plot also suggest that B and D should be at their low

levels?

(c) Suppose that the experimenters had expected all of the 3-factor interactions to be negligible

and had omitted the corresponding terms from the model (instead of those involving AD).

Reanalyze the experiment accordingly. What would have been concluded?

(d) Apply the Voss–Wang method to analyze the data of the field experiment. Relevant information

is given in Table 13.5, p. 438.

5. Suggest a confounding scheme for a 26 experiment in 8 blocks of 8, assuming that all 2-factor

interactions are to be estimated, as are the 3-factor interactions involving both A and F . List all

effects confounded. List the treatment combinations in the design block by block.

6. Suggest a confounding scheme for a 28 experiment in 16 blocks of 16, assuming that all

2-factor and 3-factor interactions are to be estimated. List all effects confounded. List the treatment

combinations in Block I and in two other blocks.

7. Mangold experiment, continued

(a) For the mangold experiment of Sect. 13.5, verify that the sum of squares and the contrast

estimate for CD are as shown in Table 13.12, p. 449.

(b) Draw the CD interaction plot. Does this plot agree with the factor levels suggested in Sect. 13.5

for increasing the yield?

(c) Check that the assumption of normality of the error variables is satisfied. Also check that the

variances of the errors appear to be equal for each level of the four factors.

(d) Draw a half-normal probability plot of all of the contrast estimates (including the higher-order

interactions). Does it appear that the experimenters made the correct assumptions of negligible

higher-order interactions?

8. Decontamination experiment—Beta particles

An experiment was described by M. K. Barnett and F. C. Mead, Jr. in the journal Applied Statistics

in 1956 to explore the effect of four factors on the efficiency of a decontamination process for the

removal of radioactive isotopes from liquid waste. The measurements taken after the decontamina-

tion process were the counts per minute per milliliter of alpha and beta particles. Data for the alpha

particles and further description of the experiment were given in Sect. 13.8.1, p. 452. We consider

here part of the data for the beta particles, shown in Table 13.24. The four treatment factors were:
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Table 13.24 Randomized design for a 24 experiment in 2 blocks of size 8, confounding ABCD. Data for the deconta-

mination beta-particle experiment are shown in parentheses.

Block Treatment combinations (response)

I 1010 1111 0110 0000 1100 0101 0011 1001

(716) (686) (498) (1437) (527) (579) (1433) (906)

II 0010 0001 0111 1000 1101 0100 1110 1011

(1024) (1364) (475) (574) (664) (579) (507) (1130)

Source Barnett and Mead (1956). Copyright © 1956 Blackwell Publishers. Reprinted with permission

A : 0.4 g and 2.5 g per liter of aluminum sulphate (coded 0, 1);
B : 0.4 g and 2.5 g per liter of barium chloride (coded 0, 1);
C : 0.08 g and 0.4 g per liter of carbon (coded 0, 1);
D : Final pH of liquid waste (6 and 10, coded 0, 1).

The experimenters selected a design in b = 2 blocks of k = 8 that confounded the four-factor

interaction contrast ABCD. The fitted model included all main-effects and all 2-factor and 3-factor

interactions. The block×treatment interaction was assumed to be negligible.

(a) Use a half-normal probability plot to identify the important contrasts.

(b) Use the method of Voss–Wang to check your selection in part (a).

(c) Draw an interaction plot of any interaction that appears to be nonnegligible by either analysis.

(d) Looking at the results of your analysis, which settings of the factors would you recommend for

reducing the beta particle counts?

(e) Suppose that the experimenters had believed before the experiment that the three-factor inter-

actions were all negligible. What would the analysis of variance table have looked like? Would

your recommendations have been any different?

9. Penicillin experiment

An experiment is described in Example 9.2 of the book Design and Analysis of Industrial

Experiments edited by O. L. Davies that investigates the effects of various factors on the yield

of penicillin in surface culture experiments. The five factors of interest were added to the nu-

trient medium, which was inoculated with a spore suspension of P. Chrysogenum. The spores

rise to the surface, causing the growth of mycelium accompanied by the formation of peni-

cillin. The factors and their levels were corn steep liquor (factor A, 2% and 3% strength), lac-

tose (factor B, 2% and 3% strength), precursor (factor C , 0% and 0.05%), sodium nitrate (factor

D, 0% and 0.3%), and glucose (factor E , 0% and 0.5%). Only 16 of the 32 treatment com-

binations could be carried out at one time, and the experimenters decided to observe 16 treat-

ment combinations in one week and the remaining 16 in the following week. Large week-to-

week variations were known to exist, and therefore the experiment was designed as a block

design with two blocks, confounding the 5-factor interaction ABCDE . The observed yields of

penicillin are shown in Table 13.25. Prior to the experiment, it was believed that all that all

3- and 4-factor interactions would be negligible, and also that the CE interaction would be

important.

(a) Analyze the data, assuming that all 3- and 4-factor interactions are negligible. Do not forget to

check the assumptions on the model.



468 13 Confounded Two-Level Factorial Experiments

Table 13.25 Data for the penicillin experiment

Block I Block II

Treatment combination Yield Treatment combination Yield

00000 142 00001 106

00011 101 00010 148

00101 113 00100 185

00110 200 00111 130

01001 88 01000 129

01010 146 01011 140

01100 200 01101 166

01111 145 01110 215

10001 106 10000 114

10010 108 10011 114

10100 162 10101 88

10111 83 10110 164

11000 109 11001 98

11011 72 11010 195

11101 79 11100 172

11110 118 11111 110

Source Data adapted from The Design and Analysis of Industrial Experiments Second edition, 1979. Editor O. L. Davies.

Published by Longman Group Ltd

(b) The experimenters decided to use logarithms of the data. Does your assumption check in part (a)

confirm that this should be done? If so, reanalyze the data and state your conclusions.

(c) Using the logarithms of the data, draw a half-normal probability plot of the contrast estimates

without using any knowledge that the higher-order interactions are likely to be negligible. Do

your conclusions remain the same? Which analysis do you prefer? Why?

10. Peas experiment

The following experiment was run at Biggelswade, in England, and reported by F. Yates in his 1935

paper Complex Experiments. The three treatment factors were the standard fertilizers, nitrogen,

phosphate, and potassium (factors N , P , and K ) each at two levels. The experimental area was

divided into b = 6 blocks of 1/70 of an acre. Each block was large enough for four plots on

which a certain variety of pea was sown, and the fertilizer combinations shown in Table 13.26 were

added. The design consists of three identical single-replicate designs each of which confounds the

3-factor interaction NPK . Each block has been separately randomized.

(a) Estimate the treatment contrasts for all main effects and interactions.

(b) Calculate the analysis of variance table for this experiment and test all relevant hypotheses.

State the overall significance level.

(c) Draw interaction plots for any important interactions. Give a set of 95% confidence intervals

for the main-effect contrasts, if appropriate.

(d) State your overall recommendations about the fertilizers in this experiment. Would you recom-

mend a followup experiment? If so, what would you investigate?

11. Field experiment, continued

The field experiment was described in Example 13.3.1, p. 437. There were four treatment factors
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Table 13.26 Data for the peas experiment

Block Treatment combinations Block Treatment combinations

(Yield) (Yield)

I 011 (49.5) 000 (46.8) II 100 (62.0) 001 (45.5)

110 (62.8) 101 (57.0) 111 (48.8) 010 (44.2)

III 100 (59.8) 001 (55.5) IV 110 (52.0) 101 (49.8)

111 (58.5) 010 (56.0) 000 (51.5) 011 (48.8)

V 010 (62.8) 100 (69.5) VI 101 (57.2) 011 (53.2)

111 (55.8) 001 (55.0) 110 (59.0) 000 (56.0)

Source Yates (1935). Copyright © 1935 Blackwell Publishers. Reprinted with permission

Table 13.27 Data for the field experiment, by block and treatment combination (TC)

Block I Block II Block III Block IV

TC y1i jkl TC y2i jkl TC y3i jkl TC y4i jkl

0000 58 0001 55 0000 57 0001 50

0011 51 0010 45 0011 56 0010 39

0101 44 0100 42 0101 43 0100 47

0110 50 0111 36 0110 39 0111 43

1001 43 1000 53 1001 52 1000 42

1010 50 1011 55 1010 52 1011 44

1100 41 1101 41 1100 42 1101 34

1111 44 1110 48 1111 54 1110 52

Source Experimental Designs, Second Edition, by W.G. Cochran and G.M. Cox, Copyright © 1957, John Wiley & Sons,

New York. Adapted by permission of John Wiley & Sons, Inc

(A, B, C , and D) at two levels each, and the v = 16 treatment combinations were observed twice.

Each of the r = 2 sets of treatment combinations were divided into blocks of size 8. The first two

blocks, which confounded the ABCD interaction, were shown in Table 13.4, p. 437. The complete

design, which is shown in Table 13.27, consisted of two such single-replicate designs.

(a) Calculate the analysis of variance table for this experiment. Now that r = 2, there is an estimate

for error variability. Test any hypotheses of interest. Are the results similar to those obtained

from the first two blocks only?

(b) Draw any interaction plots of interest. If the yield is to be increased, what recommendations

would you make about the levels of the factors?

12. Construct a four-replicate 23 design in eight blocks of size four, partially confounding each

interaction effect. Compare the variance of each interaction contrast with that of each main effect,

using divisor v/2 = 4 for each contrast.

13. Catalytic reaction experiment

J.R. Bainbridge, in his 1951 article in the journal Industrial and Engineering Chemistry, described

a factorial experiment conducted at a small plant carrying out a catalytic gaseous synthesis reaction

to remove the product as a liquid solution. A 2-replicate 23 experiment was conducted to study

the effects of converter reaction temperature (factor A), throughput rate through the converter

(factor B), and the concentration of the active ingredient in the makeup gas (factor C) on each of

several response variables, including the strength of the product solution (yhi jk). The design was

composed of four blocks of size four, with the ABC interaction completely confounded. The design
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Table 13.28 Data for the catalytic reaction experiment

Run Block TC yhi jk Run Block TC yhi jk

1 1 011 89.5 9 3 010 86.2

2 1 101 84.2 10 3 100 81.8

3 1 110 85.2 11 3 001 90.4

4 1 000 89.9 12 3 111 83.6

5 2 010 85.1 13 4 110 75.3

6 2 111 83.5 14 4 000 84.6

7 2 001 90.8 15 4 011 86.7

8 2 100 81.8 16 4 101 82.2

Source Reprinted with permission from Bainbridge (1951). Copyright c© 1951 American Chemical Society

and data are provided in Table 13.28, including the run order. (The observations in Table 13.28 are

“uncoded,” each value being 80 plus one-tenth the coded value given by Bainbridge.)

(a) Based on the run order, discuss how the design was probably randomized.

(b) Fit an appropriate model, and use residual plots to check the standard model assumptions.

(c) Conduct the analysis of variance, and discuss the results.

(d) Using a simultaneous confidence level of 95% for all six factorial effects, construct confidence

intervals for those effects found to be significant in the analysis of variance.

14. Catalytic reaction experiment, continued

In the experiment described in Exercise 13, the covariate “makeup gas purity” was measured. The

covariate values were 17, 12, 10, 10, 13, 14, 10, 16, 12, 13, 13, 11, 16, 11, 12, and 11, corresponding

to runs 1–16, respectively. Repeat Exercise 13, but for an analysis of covariance.

15. Design of a follow-up experiment

An experiment was run in 2007 by Joanne Sklodowski, Josh Svenson, Adam Dallas, Tim Degenero

and Paul Cotellesso to examine the compressive strength of various mortar mixes. They examined

the effects of four factors: Amount of water (Factor A, 0.75lb and 0.85lb), Sand type (Factor B, play

sand and medium grain sand), Temperature of water (Factor C , 58 and 96 ◦C), Cure time (Factor

D, 4 and 6 days). The type and age of cement and the mixing time were held fixed throughout the

experiment.

The ingredients were mixed and poured into a cylindrical mold. After the allotted curing time,

the cylinder was crushed on a compression machine. The maximum pressure exerted before the

cylinder failed was recorded in pounds per square inch (psi).

(a) The analysis of the experiment showed large effects of BCD, B, C , AB. Design a follow-up

experiment to examine the interactions AB, BC , BD, CD and BCD, as well as all main effects.

You can only take r = 1 observation on each treatment combination and you need to run the

experiment in 4 blocks of 4. Write out two of the four blocks of your design and state how to

find the other two.

(b) Write down a model for this experiment. Write out the “Degrees of Freedom” columns of the

analysis of variance table.
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16. Design of an experiment

(a) Design an experiment with five factors A, B, C, D, E , each having two levels, in 4 blocks of

8 and r = 1 observation per treatment combination. Make sure that you can estimate all main

effects, all two-factor interactions, as well as all three-factor interactions that involve both D

and E .

(b) Write out the 8 treatment combinations in Block I, and indicate how to find the treatment

combinations in the other blocks. Illustrate this with two treatment combinations in the second

block.

(c) Write out the degrees of freedom column for the analysis of variance table corresponding to

the model that you would fit.
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Table 13.29 Confounding schemes for 2p experiments in b = 2s blocks of size k = 2p−s . For each design, s

independent generators are underlined, and s corresponding equations are given. To obtain Block I of a design, list all k

combinations of the first ai ’s shown, then use the equations modulo 2 to complete each treatment combination

2p b k Confounded Contrasts Block I

23 2 4 ABC a1, a2

a3 = a1 + a2

24 2 8 ABCD a1, a2, a3

a4 = a1 + a2 + a3

24 4 4 AC, ABD, BCD a1, a2

a3 = a1

a4 = a1 + a2

25 2 16 ABCDE a1, a2, a3, a4

a5 = a1 + a2 + a3 + a4

25 4 8 ABCD, ABE, CDE a1, a2, a3

a4 = a1 + a2 + a3

a5 = a1 + a2

25 8 4 AC, BD, ABCD, a1, a2

ABE, BCE, ADE, CDE a3 = a1

a4 = a2

a5 = a1 + a2

26 2 32 ABCDEF a1, a2, a3, a4, a5

a6 = a1 + a2 + a3 + a4 + a5

26 4 16 ABCD, CDEF, ABEF a1, a2, a3, a5

a4 = a1 + a2 + a3

a6 = a3 + a4 + a5

26 8 8 BCD, ABE, ACDE , a1, a2, a3

ABCF, ADF, CEF, BDEF a4 = a2 + a3

a5 = a1 + a2

a6 = a1 + a2 + a3

27 4 32 ABCDE, ABFG, CDEFG a1, a2, a3, a4, a6

a5 = a1 + a2 + a3 + a4

a7 = a1 + a2 + a6

27 8 16 ABCD, CDEF, ABEF , a1, a2, a3, a5

ACEG, BDEG, ADFG, BCFG a4 = a1 + a2 + a3

a6 = a3 + a4 + a5

a7 = a1 + a3 + a5

27 16 8 ABC, CDE, ABDE, a1, a2, a4

BDF, ACDF, BCEF, AEF, a3 = a1 + a2

ADG, BCDG, ACEG, BEG, a5 = a3 + a4

ABFG, CFG, ABCDEFG, DEFG a6 = a2 + a4

a7 = a1 + a4



14Confounding in General Factorial
Experiments

14.1 Introduction

In Chap. 13, incomplete block designs for 2p factorial experiments were obtained by confounding one

or more interaction contrasts with block contrasts. In this chapter, we extend the idea of confounding

to encompass experiments in which some or all factors have more than two levels. We will code the

levels of an m-level factor as 0, 1, . . . , m − 1.

In Sect. 14.2, we consider single-replicate 3p experiments arranged in b = 3s blocks of size k = 3p−s.

The techniques used in designing these types of experiment can be adapted for mp experiments in ms

blocks of size mp−s where m is a prime number.

Pseudofactors are introduced in Sect. 14.3 to facilitate confounding in symmetric 4p experiments

and asymmetric 2p4q experiments. Then, in Sect. 14.4, we consider asymmetric experiments involving

factors or pseudofactors at both two and three levels, allowing us to look at more complicated situations

where the treatment factors have a mixture of 2, 3, 4, and 6 levels.

Analysis of a two-replicate 33 experiment with partial confounding is illustrated using the SAS and

R software packages in Sects. 14.5 and 14.6, respectively.

14.2 Confounding with Factors at Three Levels

14.2.1 Contrasts

In a factorial experiment where all treatment factors have 3 levels, each main effect has 2 degrees of

freedom associated with it, each two-factor interaction has 2×2 = 4 degrees of freedom, etc. (see rule

3 of Sect. 7.3). Therefore, we can find 2 orthogonal contrasts to measure each main effect, 4 orthogonal

contrasts to measure each two-factor interaction, and so on.

In a 32 experiment, for example, two orthogonal contrasts measuring the main effect of each of

factors A and B are the linear and quadratic trend contrasts. Similarly, four orthogonal trend contrasts

ALBL, ALBQ, AQBL, and AQBQ (see Sect. 6.3) measuring the interaction are reproduced in Table 14.1.

A different set of four orthogonal contrasts, labeled in pairs as (AB; A2B2) and (AB2; A2B), is also

shown in Table 14.1. Although this second set of contrasts is less useful than the set of trend contrasts

in measuring details of the interaction for quantitative factors, it will prove extremely useful for con-

founding purposes. The reader is asked to verify that any contrasts that measure the main effects of A

and B are orthogonal to all the contrasts in Table 14.1 measuring the interaction.
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Table 14.1 Sets of orthogonal contrasts measuring the interaction in a 32 experiment

TC ALBL ALBQ AQBL AQBQ (AB; A2B2) (AB2; A2B)

00 1 -1 -1 1 -1 1 -1 1

01 0 2 0 -2 0 -2 1 1

02 -1 -1 1 1 1 1 0 -2

10 0 0 2 -2 0 -2 0 -2

11 0 0 0 4 1 1 -1 1

12 0 0 -2 -2 -1 1 1 1

20 -1 1 -1 1 1 1 1 1

21 0 -2 0 -2 -1 1 0 -2

22 1 1 1 1 0 -2 -1 1

Table 14.2 Groups of

treatment combinations

corresponding to

orthogonal interaction

contrasts in a 32

experiment

(AB; A2B2) (AB2; A2B)

00∗ 01† 02+ 00∗ 01† 02+

10† 11+ 12∗ 10+ 11∗ 12†

20+ 21∗ 22† 20† 21+ 22∗

Notice that the pair of contrasts labeled (AB; A2B2) are two orthogonal contrasts that compare the

three groups of treatment combinations (00, 12, 21) and (01, 10, 22) and (02, 11, 20). Any linear

combination of this pair of contrasts is also a contrast between these three groups of treatment combi-

nations. We have illustrated these groups of treatment combinations in the left-hand side of Table 14.2,

where treatment combinations with the same superscript are in the same group. Notice that each group

contains one treatment combination from each row and each column, making sure that each level of

each factor is represented once in each group.

Similarly, the pair of contrasts labeled (AB2; A2B) comprise two orthogonal contrasts that compare

the three groups of treatment combinations (00, 11, 22) and (01, 12, 20) and (02, 10, 21). Any linear

combination of this pair of contrasts is also a contrast between these three groups of treatment combi-

nations. The groups are illustrated in the right-hand side of Table 14.2 and also have the property that

each group contains one treatment combination from each row and each column.

The reason for the labeling (AB; A2B2) and (AB2; A2B) is to match the contrasts with the equation

method of confounding in Sect. 14.2.3. The contrast names themselves have little meaning, except to

acknowledge that each contrast belongs to the AB interaction and, as will be seen, each pair corresponds

to a set of equations that partitions the treatment combinations into the three groups represented in

Table 14.2.

Many texts list only one of the two labels in each pair, since each is the square of the other. For

example, when the exponents are reduced modulo 3, then A2B = (AB2)2. The convention is then to list

AB2 rather than A2B, for example, since the leading exponent is one. However, we will list both labels

to aid in identifying a complete set of confounded contrasts in designs with more than three blocks.

14.2.2 Confounding Using Contrasts

In this section we consider the division of treatment combinations into blocks by deliberately con-

founding negligible contrasts, as in Sect. 13.3.2 for 2p experiments. For 3p experiments, we look at

designs with 3s blocks of size 3p−s, starting with 3 blocks of size 3p−1. For a design with b = 3 blocks,

http://dx.doi.org/10.1007/978-3-319-52250-0_13
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two degrees of freedom are used to measure the block differences. Therefore, in a single-replicate

design, we must confound a pair of treatment contrasts.

As a simple example, we start with an experiment with two factors A and B in which the interaction

is known to be negligible. We will attempt to use two of the interaction contrasts shown in Table 14.1

to divide the treatment combinations into 3 blocks. A pair of trend contrasts, such as ALBQ and AQBQ

cannot be used to give blocks of equal size, since the values of the coefficients do not fall into 3

groups of 3. However, the pair of contrasts labeled (AB; A2B2) have three pairs of coefficients (−1, 1),

(0,−2), and (1, 1) each of which appear three times. If we use these as a guide to dividing the treatment

combinations into blocks, we obtain the design in Table 14.3.

Any contrast that is orthogonal to the two confounded contrasts can be estimated without requiring

block adjustments. Estimable contrasts include all contrasts measuring the main effects of A and B

and the remaining two interaction contrasts labeled (A2B; AB2) and linear combinations of these. The

trend contrasts in Table 14.1 are not orthogonal to any of the AB, A2B2, AB2, A2B contrasts, so they do

not fall into either the confounded or the estimable category. They are partly confounded. In general,

interaction trend contrasts can be estimated completely only when no contrasts from the interaction

are confounded.

In the present example, the interaction has four degrees of freedom. Two are used to measure blocks.

The other two correspond to two estimable contrasts, which are negligible and provide two degrees of

freedom to measure σ 2.

If the contrasts labeled (A2B; AB2) in Table 14.1 were used instead of the contrasts labeled (AB;

A2B2) to provide three blocks, the design of Table 14.4 would result. This has the same properties as the

design in Table 14.3 in that all main-effect contrasts are estimable and there are two estimable contrasts

(AB; A2B2) remaining in the interaction. Neither design is better than the other, and a choice can be

made at random. Block design randomization should be carried out before the design is used.

As we saw in 2p experiments, there is a correspondence between the contrasts used for confounding,

the contrast names, and the equation method of confounding. In the next section we show how to obtain

the design of Table 14.3 by the equation method.

14.2.3 Confounding Using Equations

3p Experiments in Three Blocks

The design in Table 14.3, which was obtained by confounding the two interaction contrasts labeled

(AB; A2B2) in Table 14.1, can be obtained by an equation method similar to that of Sect. 13.4. Notice

that in Block I the digits of the three treatment combinations add to 0 or 3. In Block II they add to 1 or

Table 14.3 32 experiment

in 3 blocks of 3,

confounding (AB; A2B2)

Block Contrast coefficients Treatment combinations

I (−1, 1 ) 00 12 21

II ( 0,−2 ) 01 10 22

III ( 1, 1 ) 02 11 20

Table 14.4 32 experiment

in 3 blocks of 3,

confounding (A2B; AB2)

Block Contrast coefficients Treatment combinations

I (−1, 1 ) 00 11 22

II ( 1, 1 ) 01 12 20

III ( 0,−2 ) 02 10 21

http://dx.doi.org/10.1007/978-3-319-52250-0_13


476 14 Confounding in General Factorial Experiments

4, and in Block III they add to 2. Now that both factors have three levels, we work modulo 3, which

means that we subtract 3 from the sum of the digits until we obtain one of 0, 1, or 2, or equivalently,

we take the remainder on division by 3. Writing the treatment combinations as a1a2, the blocks can be

defined by the confounding equations

Block I: Treatment combinations with L = a1 + a2 = 0 (mod 3) ,

Block II: Treatment combinations with L = a1 + a2 = 1 (mod 3) ,

Block III: Treatment combinations with L = a1 + a2 = 2 (mod 3) .

Equivalently, the same three blocks can be obtained if the equations are multiplied by 2; that is,

Block I: Treatment combinations with 2L = 2a1 + 2a2 = 0 (mod 3) ,

Block II: Treatment combinations with 2L = 2a1 + 2a2 = 2 (mod 3) ,

Block III: Treatment combinations with 2L = 2a1 + 2a2 = 1 (mod 3) .

Thus, if the contrasts labeled (AB; A2B2) in Table 14.1 are confounded with blocks, the treatment

combinations in the three blocks satisfy both

L = a1 + a2 = 0, 1, or 2 (mod 3),

and

2L = 2a1 + 2a2 = 0, 2, or 1 (mod 3).

Alternatively, if the contrasts labeled (AB2; A2B) are to be confounded, the equations

L = a1 + 2a2 = 0, 1, or 2 (mod 3)

and, multiplying by 2,

2L = 2a1 + a2 = 0, 2, or 1 (mod 3)

will produce the design in Table 14.4. Notice that the coefficients in the confounding equations corre-

spond to the exponents in the contrast names. A set of equations defines the same set of blocks when it

is multiplied by 2. Therefore, the confounded contrast names always come in pairs—one name being

the square of the other—(AB2)2 = A2B4 = A2B, reducing exponents (mod 3).

In general, in a 3p experiment, if the equations

L = z1a1 + z2a2 + · · · + zpap = 0, 1, or 2 (mod 3)

are used to produce three blocks, two contrasts will be confounded that can be labeled (Az1Bz2 · · · Pzp ;

A2z1B2z2 · · · P2zp ), where zi is 1 or 2 if the factor is present in the interaction, and 0 if it is not, and

where the exponent is reduced modulo 3. For example, in a 35 experiment, the equations

L = a1 + 2a2 + a4 = 0, 1, or 2 (mod 3)

will give 3 blocks of size 34 confounding AB2D and A2B4D2 = A2BD2, which represent two contrasts

from the three-factor interaction ABD. It is rarely of importance to identify exactly what the contrasts

look like (they are any pair of orthogonal contrasts between the groups of treatment combinations in the
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three blocks). What is important is the knowledge that the confounded contrasts belong to a particular

interaction and, therefore, that all other main-effect and interaction contrasts are estimable.

3p Experiments in Nine Blocks

The equation method of confounding can be used to produce b = 9 = 32 blocks of size 3p−2

in a 3p experiment by selecting two pairs of contrasts to be confounded. If the pair (Az1Bz2 · · · Pzp ;

A2z1B2z2 · · · P2zp ) is chosen for confounding together with the pair (Ay1By2 · · · Pyp ; A2y1B2y2 · · ·
P2yp), the b = 9 blocks are produced from the nine possible pairs of values of the two equations

L1 = z1a1 + z2a2 + · · · + zpap = 0, 1, or 2 (mod 3),

L2 = y1a1 + y2a2 + · · · + ypap = 0, 1, or 2 (mod 3).

The b − 1 = 8 confounded contrasts are the two pairs originally chosen, together with all possible

products. This is most conveniently set out as a table. The selected pairs of contrasts are written in the

first row and first column. The table is then filled out by multiplication, and the exponents are reduced

modulo 3, as follows:

Ay1By2 · · · Pyp A2y1B2y2 · · · P2yp

Az1Bz2 · · · Pzp Az1+y1Bz2+y2 · · · Pzp+yp Az1+2y1Bz2+2y2 · · · Pzp+2yp

A2z1B2z2 · · · P2zp A2z1+y1B2z2+y2 · · · P2zp+yp A2z1+2y1B2z2+2y2 · · · P2zp+2yp

If b = 3s blocks of size 3p−s are required, then s independent pairs of contrast names need to be

chosen for confounding. All possible products determine the entire set of b − 1 = 3s − 1 confounded

contrasts.

Example 14.2.1 34 experiment in 9 blocks of size 9

Suppose that a 34 experiment, with factors A, B, C, D, is to be run in b = 9 blocks of size 9. Further,

suppose that the only interactions thought to be important are the 2-factor interactions and, therefore,

these should not be confounded. Now b = 32 blocks are required, so 2 pairs of contrasts should be

chosen for confounding. The ABCD interaction has 16 degrees of freedom, so we can find 16 orthogonal

contrasts and label them in pairs as

(ABCD; A2B2C2D2), (AB2CD; A2BC2D2),

(ABCD2; A2B2C2D), (AB2CD2; A2BC2D),

(ABC2D; A2B2CD2), (AB2C2D; A2BCD2),

(ABC2D2; A2B2CD), (AB2C2D2; A2BCD).

Selecting two pairs of contrasts from the 4-factor interaction for confounding contrasts is not a good

choice. For example, if (ABCD2; A2B2C2D) and (ABCD; A2B2C2D2) were chosen, the set of eight

confounded degrees of freedom would be

ABCD2 A2B2C2D

ABCD A2B2C2 D2

A2B2C2D2 D ABC
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Table 14.5 34 experiment in 32 blocks of 9; confounding (ABD; A2B2D2), (BCD2; B2C2D), (AB2C; A2BC2), and (AC2D2;

A2CD)

Block L1, L2 Treatment combinations

I 0,0 0000 0112 0221 1022 1101 1210 2011 2120 2202

II 1,2 0001 0110 0222 1020 1102 1211 2012 2121 2200

III 2,1 0002 0111 0220 1021 1100 1212 2010 2122 2201

IV 0,1 0010 0122 0201 1002 1111 1220 2021 2100 2212

V 1,0 0011 0120 0202 1000 1112 1221 2022 2101 2210

VI 2,2 0012 0121 0200 1001 1110 1222 2020 2102 2211

VII 1,1 0100 0212 0021 1122 1201 1010 2111 2220 2002

VIII 2,0 0101 0210 0022 1120 1202 1011 2112 2221 2000

IX 0,2 0102 0211 0020 1121 1200 1012 2110 2222 2001

and we can see that two orthogonal contrasts in the main-effect D would also be confounded. All

possible selections of two pairs of contrasts from the ABCD interaction will confound either a main

effect or a two-factor interaction. However, in this example, the three-factor interactions are also thought

to be negligible, so one possible choice is to confound (ABD; A2B2D2) together with (BCD2; B2C2D).

This gives the following set of eight confounded degrees of freedom.

BCD2 B2C2D

ABD AB2C AC2D2

A2B2D2 A2CD A2BC

Thus, each 3-factor interaction (which has 8 degrees of freedom) has two orthogonal contrasts con-

founded with blocks and six estimable contrasts, which are assumed to be negligible. This means that

there are 24 degrees of freedom from the 3-factor interactions and a further 16 degrees of freedom from

the ABCD interaction available for estimating σ 2. The design is obtained by using the linear functions

L1 and L2, corresponding to the selected confounded contrasts ABD and BCD2 as follows. For each

treatment combination, compute the values of L1 and L2 modulo 3:

L1 = a1 + a2 + a4 = 0, 1, or 2 (mod 3).

L2 = a2 + a3 + 2a4 = 0, 1, or 2 (mod 3).

The design is given in Table 14.5, and it can be verified that the nine blocks are obtained from the nine

possible pairs of values of L1 and L2. �

14.2.4 A Real Experiment—Dye Experiment

An experiment is described in the book Design and Analysis of Industrial Experiments, edited by O. L.

Davies, that investigates three reactants (the base material and two inorganic materials, called here M

and N) in the manufacture of a cotton dyestuff. The three factors of interest in the experiment were the

concentration of M in the free water in the reaction mixture (factor A at three equally spaced levels),

the volume of free water in the reaction mixture (factor B at three equally spaced levels), and the

concentration of N in the free water in the reaction mixture (factor C at three equally spaced levels).
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Table 14.6 Data for dye experiment

Block I Block II Block III

TC Volume TC Volume TC Volume

000 74 020 69 010 13

021 130 011 46 001 112

012 56 002 71 022 125

110 110 100 211 120 199

101 166 121 220 111 218

122 227 112 216 102 201

220 195 210 147 200 74

211 146 201 47 221 198

202 90 222 164 212 102

Source Data adapted from The Design and Analysis of Industrial Experiments, Second edition, 1979. Editor O. L. Davies.

Published by Longman Group Limited.

Although it was possible to control the conditions in the laboratory fairly accurately, the experi-

menters divided the treatment combinations into blocks of size 9. This was done as a safeguard against

time trends, because the time required to complete the investigation was reasonably long. The exper-

iment involved r = 2 replications of each treatment combination, but here we will analyze only the

first replicate.

The observations were the volumes of dyestuff resulting from the chemical reactions and are shown

in Table 14.6. Looking at the treatment combinations (TC) listed in Block I, we can see that they all

satisfy the confounding equation a1 + 2a2 + 2a3 = 0 (mod 3). Consequently, the experimenters have

confounded two contrasts from the 3-factor interaction, which we can label as (AB2C2; A2BC). Since

there are only three blocks, these are the only two contrasts confounded. If the 3-factor interaction can

be assumed to be negligible, the remaining six degrees of freedom can be used to measure the error

variability. The analysis of variance table is shown in Table 14.7. The sum of squares for testing that

the main effect of A (averaged over the levels of the other factors) can be calculated either by using

the formulae of Chap. 7 or by adding together the sums of squares for two orthogonal contrasts. For

example, rule 4 of Sect. 7.3 gives

ssA = 9

3
∑

i=1

y2
.i.. − 27 y2

....

= 9(5980.44 + 38,590.42 + 16,698.38) − 27(18,045.44)

= 64,196.222.

Two orthogonal contrasts for A are the linear and quadratic contrasts. From Table A.2, the coefficients for

the (nonnormalized) linear contrast are (−1, 0, 1), and those for the quadratic contrast are (1,−2, 1).

The least squares estimates for these two contrasts are

ÂL = (−y.0.. + y.2..) = 51.889

and

ÂQ = (y.0.. − 2y.1.. + y.2..) = −186.333.

http://dx.doi.org/10.1007/978-3-319-52250-0_7
http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 14.7 Analysis of variance for the dye experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-values

Block 2 182.00

A 2 64,196.22 32,098.11 26.60 0.0010

AL 1 12,116.06 12,116.06 10.04 0.0194

AQ 1 52,080.17 52,080.17 43.16 0.0006

B 2 16,857.56 8,428.78 6.98 0.0271

BL 1 12,853.39 12,853.39 10.65 0.0172

BQ 1 4,004.17 4,004.17 3.32 0.1184

C 2 2,334.89 1,167.44 0.97 0.4324

CL 1 1,422.22 1,422.22 1.18 0.3193

CQ 1 912.67 912.67 0.76 0.4179

AB 4 12,512.89 3,128.22 2.59 0.1428

AC 4 4,044.89 1,011.22 0.84 0.5481

BC 4 2,698.89 674.72 0.56 0.7015

Error 6 7,240.67 1,206.78

Total 26 110, 068.00

To normalize the contrasts, one would divide ÂL by

√

�c2
i /(rbc) = √

2/9 and divide ÂQ by
√

�c2
i /(rbc) = √

6/9.

The sum of squares for testing the hypothesis that the linear contrast for A is negligible is the square

of the normalized contrast estimate,

ss(AL) = (−y.0.. + y.2..)
2

2/9
= (51.889)2

2/9
= 12,116.06;

the sum of squares for testing the hypothesis that the quadratic contrast for A is negligible is

ss(AQ) = (y.0.. − 2y.1.. + y.2..)
2

6/9
= (−186.333)2

6/9
= 52,080.17;

and we see that

ss(AL) + ss(AQ) = 12,116.06 + 52,080.17 = 64,196.23 = ssA.

The other sums of squares in Table 14.7 can be obtained in a similar way.

For testing the hypotheses that the three main effects and the three 2-factor interactions are negligible

at individual significance levels α∗ = 0.01 (an overall level significance level of α ≤ 0.06), we would

compare the ratios in the analysis of variance table (Table 14.7) with the critical values from the

F-distribution (F2,6,0.01 = 10.9 for the main effects and F4,6,0.01 = 9.15 for the 2-factor interactions),

and we would reject only the hypothesis that the main effect of A is negligible. Plots for the average

response due to A and B are shown in Fig. 14.1. We can see from the plot of the A average responses

that, as the levels of the concentration of inorganic material M in the free water increase, the volumes

of dyestuff first increase and then begin to decrease. We might expect to see both a significant linear

trend and a significant quadratic trend. Testing the two hypotheses that the linear trend in A is negligible
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Fig. 14.1 Main-effect

plots for the dye

experiment
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and the quadratic trend in A is negligible, each at level 0.005 (to give an overall significance level of

α∗ ≤ 0.01), we have

ss(AL)/msE = 10.04 < F1,6,0.005 = 18.6

and

ss(AQ)/msE = 43.16 > F1,6,0.005 = 18.6,

and we conclude that there is a quadratic trend in the levels of A, and that the turning point is towards the

center of the range of levels investigated (otherwise, the linear trend would also have been significantly

different from zero). Since the objective of the experiment was to boost the volume of dyestuff produced,

the results of the experiment suggest that further investigation around the second concentration of

inorganic material M might be wise. Although the hypothesis of no effect of B was not rejected,

Fig. 14.1 suggests that further experimentation with higher volumes of free water in the reaction

mixture is worth consideration.

The above method of testing these two hypotheses uses Bonferroni’s method of combining signif-

icance levels. An alternative method is to use Scheffé’s method of multiple comparisons and test the

two hypotheses simultaneously at level 0.01. Since

ss(AL)/msE = 10.04 < 2F2,6,0.01 = 21.8

and

ss(AQ)/msE = 43.16 > 2F2,6,0.01 = 21.8,

we arrive at the same conclusion. The more powerful method here is the first since

F1,6,0.005 < 2F2,6,0.01 .

14.2.5 Plans for Confounded 3p Experiments

At the end of the chapter, Table 14.20 gives suggested confounding schemes for 3p experiments in

blocks of size 3, 9, or 27. As illustrated in Sect. 13.6, if the design in the table confounds important

contrasts in the experiment, then a relabeling of treatment factors should be attempted.

http://dx.doi.org/10.1007/978-3-319-52250-0_13
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14.3 Designing Using Pseudofactors

14.3.1 Confounding in 4p Experiments

A treatment factor F with four levels coded 0, 1, 2, 3 can be represented by two factors F1 and F2 each

having two levels coded 0, 1. The levels of F1 and F2 taken together correspond to the levels of the

original factor F. One possible correspondence is given below:

F F1 F2

0 0 0

1 0 1

2 1 0

3 1 1

The factors F1 and F2 are called pseudofactors. All factors in a 4p experiment can be represented by

pseudofactors. Thus, a 4p experiment in 4s blocks of size 4p−s can be represented as a 22p experiment in

22s blocks of size 22(p−s). The techniques of confounding in a 22p experiment as discussed in Chap. 13

can therefore be used. The only difference is that an interaction of pseudofactors of the form F1G1G2,

say, does not represent a 3-factor interaction. It represents one of nine orthogonal contrasts measuring

the two-factor interaction, FG. Similarly, F1F2 does not represent a contrast in a two-factor interaction.

It represents one of three orthogonal contrasts measuring the main effect of factor F.

Example 14.3.1 42 experiment in 4 blocks of size 4

Consider a 42 experiment with two factors F and G to be run in 4 blocks of size 4. The main effects

are to be estimated, but the interaction is thought to be negligible. If F and G are represented by

pseudofactors F1, F2, G1, G2 having two levels each, we can consult Table 13.29 hoping to find a

suitable 24 experiment in 4 blocks of size 4.

In Table 13.29, we find a design that confounds AC, ABD, and BCD. If we make the correspondence

F1 = A, F2 = B, G1 = C, G2 = D, then the design confounds F1G1, F1F2G2, F2G1G2, all three of

which belong to the interaction of F and G. All main-effect contrasts of F and G are orthogonal to

all interaction contrasts and can therefore be estimated without adjustment for blocks. The design is

shown in Table 14.8, with blocks corresponding to combinations of values of L1 = a1 + a3 (mod 2)

and L2 = a1 + a2 + a4 (mod 2).

If we make a different correspondence, say F1 = A, F2 = D, G1 = B, G2 = C, then a slightly

different design is obtained, this time confounding F1G2, F1F2G1, and F2G1G2, which again belong to

the interaction of F and G. There is no particular reason to prefer one design over the other. However,

a third correspondence, F1 = A, F2 = C, G1 = B, G2 = D, would not be good, since it confounds

F1F2, F1G1G2, F2G1G2, and this includes one degree of freedom F1F2 from the main effect of F. �

Table 14.8 42 experiment in 4 blocks of 4, confounding three degrees of freedom (F1G1, F1F2G2, F2G1G2) from FG

Block L1, L2 Pseudofactors F1, F2, G1, G2 Factors F, G

I 0,0 0000 0101 1011 1110 00 11 23 32

II 0,1 0001 0100 1010 1111 01 10 22 33

III 1,0 0010 0111 1001 1100 02 13 21 30

IV 1,1 0011 0110 1000 1101 03 12 20 31

http://dx.doi.org/10.1007/978-3-319-52250-0_13
http://dx.doi.org/10.1007/978-3-319-52250-0_13
http://dx.doi.org/10.1007/978-3-319-52250-0_13
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Since two-level pseudofactors are being used, block sizes need only be a power of two, not neces-

sarily a power of four.

14.3.2 Confounding in 2p
× 4q Experiments

Since factors with 4 levels can be written in terms of pseudofactors having 2 levels each, a 2p × 4q

experiment can be written in terms of pseudofactors as a 2(p+2q) experiment, and no new techniques

are needed.

Example 14.3.2 23 × 4 experiment in 4 blocks of size 8

Suppose that a 23 × 4 experiment with factors F, G, H, and J is to be run in 4 blocks of size 8. This

could be designed using pseudofactors by selecting a design for a 25 experiment in 4 blocks from

Table 13.29. A design is shown that confounds ABE, CDE, and ABCD. If we let the combination of

levels of A and C represent the levels of the 4-level factor J1J2 = J with the representation 00 = 0,

01 = 1, 10 = 2, 11 = 3, and let the levels of B, D, and E respectively represent the levels of F,

G, and H, we obtain the design of Table 14.9, that confounds one contrast from each of the 3-factor

interactions FHJ , GHJ , and FGJ . All main effects and 2-factor interactions can be estimated. There

are 10 degrees of freedom available for estimating σ 2. These come from the two unconfounded degrees

of freedom from each of FHJ , GHJ , and FGJ and the one degree of freedom from FGH and the three

from FGHJ . �

14.4 Designing Confounded Asymmetric Experiments

A factorial experiment is called an asymmetric experiment when the treatment factors do not all have

the same number of levels. For example, 22 × 42, 25 × 3, 22 × 32 × 42, and 3 × 6 experiments are all

asymmetric experiments. We have already discussed the design of asymmetric 2p × 4q experiments

in Sect. 14.3.2. We used pseudofactors for the factors with four levels, thus allowing the symmetric

designs for 2p+2q experiments to be used. We can use this idea only when the numbers of levels of

all factors are powers of the same prime number. For all of the other examples mentioned above, the

use of pseudofactors would transform the experiment into a 2p × 3q experiment. Consequently, we

concentrate on this type of situation in this section.

Since 2 and 3 are relatively prime, the only type of design that can be constructed using the equation

method will confound contrasts within the two symmetric parts of the experiment. Consequently, to

obtain a design for a 2p × 3q experiment in 2s × 3t blocks of size 2p−s × 3q−t , we combine a design

for a 2p experiment in 2s blocks with a design for a 3q experiment in 3t blocks, using the idea of

Table 14.9 23 × 4 experiment in 4 blocks of 8, using pseudofactors and confounding one degree of freedom from

interactions FGJ , GHJ , and FHJ

Blocks Treatment combinations (Factors F, G, H , J)

I 0000 1002 0101 1103 0013 1011 0112 1110

II 0010 1012 0111 1113 0003 1001 0102 1100

III 0100 1102 0001 1003 0113 1110 0012 1010

IV 0110 1112 0011 1013 0103 1101 0002 1000

http://dx.doi.org/10.1007/978-3-319-52250-0_13
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a crossed array as illustrated in the following example. The total number of blocks created in the

combined design is always the product of the numbers of blocks in the original two designs. Likewise,

the block sizes in the combined design are products of the block sizes in the original two designs. The

confounded contrasts in the combined design are those confounded in the separate designs together

with those indicated by all possible products of contrast names.

Example 14.4.1 22 × 32 experiment in 6 blocks of size 6

Suppose that a 22 ×32 experiment is to be run in 6 blocks of size 6. We label the two 2-level factors as A

and B and the two 3-level factors as C and D. Since the design must confound within the two symmetric

parts of the experiment, one contrast from A, B, or AB must be confounded to divide the 22 treatment

combinations into two blocks, and one pair of contrasts from C, D, or CD must be confounded to divide

the 32 treatment combinations into three blocks. The confounded contrasts in the combined design are

those confounded in the separate designs together with their products.

For example, we could combine the two designs in Table 14.10. The design labeled d1 is for a

22 experiment in two blocks of size 2 confounding AB, with treatment combinations (TC) grouped

into blocks determined by the two values of L1 = a1 + a2 (mod 2). The design labeled d2 is for a

32 experiment in three blocks of size 3 confounding the pair of contrasts (CD2; C2D), with blocks

determined by the three values of L2 = a3 + 2a4 (mod 3). The combined array in Table 14.11 divides

the treatment combinations into blocks according to the six combinations of values of L1 and L2.

A quick way to obtain the design with six blocks is to combine each of the 2 blocks of d1 with each

of the 3 blocks of d2. For example, to combine the first blocks of d1 and d2, each of the combinations

00 and 11 in block I1 of d1 is combined with each of the combinations 00, 11, and 22 in block I2 of

d2 to give the treatment combinations 0000, 1100, 0011, 1111, 0022, 1122 in the first block of the

combined design. The other blocks of the combined design are obtained in a similar way.

The b − 1 = 5 confounded contrasts are those corresponding to the original confounding schemes,

namely the contrast AB and the pair of contrasts represented by (CD2; C2D), together with the pair of

contrasts represented by the products of these labels—namely (ABCD2; ABC2D). �

Table 14.10 Design d1 for a 22 experiment confounding AB and design d2 for a 32 experiment confounding (CD2;

C2D)

Design L1 Block TC Design L2 Block TC

d1 0 I1 00 11 d2 0 I2 00 11 22

1 II1 01 10 1 II2 02 10 21

2 III2 01 12 20

Table 14.11 22 × 32 experiment in 6 blocks of 6, confounding AB, (CD2; C2D), (ABCD2; ABC2D)

L1, L2 Block combinations Treatment combinations

0,0 I1, I2 → I 0000 0011 0022 1100 1111 1122

0,1 I1, II2 → II 0002 0010 0021 1102 1110 1121

0,2 I1, III2 → III 0001 0012 0020 1101 1112 1120

1,0 II1, I2 → IV 0100 0111 0122 1000 1011 1022

1,1 II1, II2 → V 0102 0110 0121 1002 1010 1021

1,2 II1, III2 → VI 0101 0112 0120 1001 1012 1020
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Example 14.4.2 4 × 6 × 3 experiment in 6 blocks of size 12

Suppose that a 4 × 6 × 3 experiment with factors F, G, H is to be run in 6 blocks of size 12. If

we use the pseudofactor labels F1, F2, G1, G2, and H, then the factors F1, F2, and G1 are in the 23

pseudofactor experiment and G2 and H are in the 32 pseudofactor experiment. In the 23 experiment,

we confound F1F2G1 to give the two blocks of the design d1 of Table 14.12, and in the 32 experiment,

we confound the pair of contrasts (G2H; G2
2H2) to give the three blocks of the design d2. Combining

each treatment combination in design d1 with those in d2 gives the design in Table 14.13, which has

b = 6 blocks of size 12. The b−1 = 5 confounded degrees of freedom correspond to the original three

confounded contrasts together with their products, that is, F1F2G1, (G2H; G2
2H2), and (F1F2G1G2H;

F1F2G1G
2
2H2).

Translating back to the original factors, we can see that one degree of freedom from the interaction

FG is confounded, together with two degrees of freedom from each of GH and FGH. This means that

all contrasts from the three main effects and also from the interaction FH can be estimated.

If we take the mapping of pseudofactor levels to factor levels as follows, then the design of

Table 14.13 is as shown in Table 14.14:

Table 14.12 Design d1 for a 23 experiment confounding F1F2G1 and design d2 for a 32 experiment confounding

(G2H; G2
2H2)

Design Block Treatment combinations Design Block Treatment combinations

d1 I1 000 011 101 110 d2 I2 00 12 21

II1 001 010 100 111 II2 01 10 22

III2 02 11 20

Table 14.13 4 ×6×3 experiment in 6 blocks of size 12 using psuedofactors, confounding one degree of freedom from

FG and two degrees of freedom from each of GH and FGH

Block combinations Pseudofactor combinations

I1, I2 → I 00000 00012 00021 01100 01112 01121

10100 10112 10121 11000 11012 11021

I1, II2 → II 00001 00010 00022 01101 01110 01122

10101 10110 10122 11001 11010 11022

I1, III2 → III 00002 00011 00020 01102 01111 01123

10102 10111 10120 11002 11011 11020

II1, I2 → IV 00100 00112 00121 01000 01012 01021

10000 10012 10021 11100 11112 11121

II1, II2 → V 00101 00110 00122 01001 01010 01022

10001 10010 10022 11101 11110 11122

II1, III2 → VI 00102 00111 00120 01002 01011 01023

10002 10011 10020 11102 11111 11120
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Table 14.14 4×6×3 experiment in 6 blocks of size 12, confounding one degree of freedom from FG and two degrees

of freedom from each of GH and FGH

Block Treatment combinations

I 000 012 021 130 142 151 230 242 251 300 312 321

II 001 010 022 131 140 152 231 240 252 301 310 322

III 002 011 020 132 141 150 232 241 250 302 311 320

IV 030 042 051 100 112 121 200 212 221 330 342 351

V 031 040 052 101 110 122 201 210 222 331 340 352

VI 032 041 050 102 111 120 202 211 220 332 341 350

F F1 F2

0 0 0

1 0 1

2 1 0

3 1 1

G G1 G2

0 0 0

1 0 1

2 0 2

3 1 0

4 1 1

5 1 2

�

14.5 Using SAS Software

In this section we illustrate the use of the SAS software in analyzing a two-replicate factorial experiment

with partial confounding. This we do via an example. The analysis is straightforward, as was illustrated

in the previous chapter. Along with the correct analysis, we also fit an incorrect model—one without

block effects—to illustrate the effect of partial confounding on the analysis.

Example 14.5.1 Dye experiment, continued

The dye experiment was described in Sect. 14.2.4, where part of the data was analyzed as though it

came from a single-replicate confounded experiment. In fact, in the original experiment, the design was

a partially confounded design made up of two single-replicate 33 designs with different confounding

schemes. The three factors of interest in the experiment were the concentration of inorganic material

M in the free water in the reaction mixture (factor A at three equally spaced levels), the volume of

free water in the reaction mixture (factor B at three equally spaced levels), and the concentration

of inorganic material N in the free water in the reaction mixture (factor C at three equally spaced

levels). The observations were the volumes of dyestuff resulting from the chemical reactions and are

shown in Table 14.15 together with the design (prior to randomization). The contrasts (AB2C2; A2BC)

are confounded in the first set of three blocks and estimable in the second set, whereas the contrasts

(ABC2; A2B2C) are confounded in the second set of three blocks and estimable in the first set.

Since no contrast is completely confounded, no terms need be omitted from the model. Table 14.16

shows the SAS input statements for analyzing this experiment with partial confounding. The statements

are exactly as they would be for a replicated experiment with three factors and no confounding. A second

run of PROC GLM with no block parameter in the model is included for illustration purposes to show

the effect of the partial confounding.
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Table 14.15 Data for the dye experiment

Block I Block II Block III

TC Volume TC Volume TC Volume

000 74 020 69 010 13

021 130 011 46 001 112

012 56 002 71 022 125

110 110 100 211 120 199

101 166 121 220 111 218

122 227 112 216 102 201

220 195 210 147 200 74

211 146 201 47 221 198

202 90 222 164 212 102

Block IV Block V Block VI

TC Volume TC Volume TC Volume

000 85 010 12 020 115

011 52 021 107 001 148

022 70 002 75 012 47

120 164 100 184 110 145

101 288 111 204 121 142

112 239 122 265 102 216

210 104 220 183 200 75

221 165 201 65 211 124

202 60 212 70 222 114

Source Data adapted from The Design and Analysis of Industrial Experiments. Second edition, 1979. Editor O. L. Davies

published by Longman Group Ltd.

Table 14.16 SAS program for the dye experiment

DATA DYE; INPUT BLK A B C Y;

LINES;

1 0 0 0 74

1 0 2 1 130

1 0 1 2 56

1 1 1 0 110

: : : : :

6 2 2 2 114

* Analysis of variance -- correct, with block effect; PROC GLM;

CLASS BLK A B C ;

MODEL Y = BLK A B C A*B A*C B*C A*B*C ;

* Analysis of variance -- without block effect, for comparison;

PROC GLM;

CLASS A B C;

MODEL Y = A B C A*B A*C B*C A*B*C;
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Fig. 14.2 Correct analysis

of variance for the dye

experiment

Fig. 14.3 Incorrect

analysis of variance,

omitting the blocking

factor to show the effect of

partial confounding

All contrasts from the main-effects and 2-factor interactions are orthogonal to the block contrasts

and can be estimated without adjustment for blocks. Consequently, the sums of squares for these terms

are the same whether or not the block parameter is in the model. This can be verified by comparing

the Type III sums of squares for the two runs of PROC GLM shown in Figs. 14.2 and 14.3. Comparing

these two analysis of variance tables, we can see that inclusion of the block parameter in the model

changes the sum of squares for the three-factor interaction, since the three-factor interaction is partially

confounded with blocks. The degrees of freedom for the three-factor interaction remain at 8, as all 8

orthogonal contrasts can be estimated from some portion of the data.
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The analysis of variance table (Fig. 14.2) provides no evidence that certain contrasts are partially

confounded. However, partially confounded contrasts are estimated with larger variance due to the

adjustment for blocks. As a result, for the corresponding effects, confidence intervals are wider and

tests are less powerful. �

14.6 Using R Software

In this section we illustrate the use of the R software in analyzing a two-replicate factorial experiment

with partial confounding. This we do via an example. The analysis is straightforward, as was illustrated

in the previous chapter. Along with the correct analysis, we also fit an incorrect model—one without

block effects—to illustrate the effect of partial confounding on the analysis.

Example 14.6.1 Dye experiment, continued

The dye experiment was described in Sect. 14.2.4, where part of the data was analyzed as though it

came from a single-replicate confounded experiment. In fact, in the original experiment, the design was

a partially confounded design made up of two single-replicate 33 designs with different confounding

schemes. The three factors of interest in the experiment were the concentration of inorganic material

M in the free water in the reaction mixture (factor A at three equally spaced levels), the volume of

free water in the reaction mixture (factor B at three equally spaced levels), and the concentration of

inorganic material N in the free water in the reaction mixture (factor C at three equally spaced levels).

The observations were the volumes of dyestuff resulting from the chemical reactions and are shown in

Table 14.15 (p. 487) together with the design (prior to randomization). The contrasts (AB2C2; A2BC)

are confounded in the first set of three blocks and estimable in the second set, whereas the contrasts

(ABC2; A2B2C) are confounded in the second set of three blocks and estimable in the first set.

Since no contrast is completely confounded, no terms need be omitted from the model. Table 14.17

shows the R commands and output for analyzing this experiment with partial confounding. The state-

ments are exactly as they would be for a replicated experiment with three factors and no confounding.

A second call of the linear models function lm with no blocking factor in the model is included for

illustration purposes to show the effect of the partial confounding.

All contrasts from the main-effects and 2-factor interactions are orthogonal to the block contrasts

and can be estimated without adjustment for blocks. Consequently, the sums of squares for these terms

are the same whether or not the block parameter is in the model. This can be verified by comparing

the Type I sums of squares for the two models fit in Table 14.17—the first model with block effects

entered first, so for which factorial effects are adjusted for block effects, and the second model without

block effects. Inclusion of the block parameter in the model changes the sum of squares for the three-

factor interaction, since the three-factor interaction is partially confounded with blocks. The degrees

of freedom for the three-factor interaction remain at 8, as all 8 orthogonal contrasts can be estimated

from some portion of the data.

The analysis of variance table (the first in Table 14.17) provides no evidence that certain contrasts

are partially confounded. However, partially confounded contrasts are estimated with larger variance

due to the adjustment for blocks. As a result, for the corresponding effects, confidence intervals (not

shown) are wider and tests are less powerful. �
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Table 14.17 R program and output for the dye experiment

> dye.data = read.table("data/dye.txt", header=T)

> head(dye.data, 3)

Blk A B C y

1 1 0 0 0 74

2 1 0 2 1 130

3 1 0 1 2 56

> # Create factor variables

> dye.data = within(dye.data,

+ {fBlk = factor(Blk); fA = factor(A);

+ fB = factor(B); fC = factor(C) })

> # Analysis of variance

> model1 = lm(y ˜ fBlk + fA*fB*fC, data=dye.data)

> anova(model1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

fBlk 5 979 196 0.23 0.94703

fA 2 141000 70500 81.58 6.7e-11

fB 2 19448 9724 11.25 0.00043

fC 2 4934 2467 2.86 0.07899

fA:fB 4 27923 6981 8.08 0.00036

fA:fC 4 13044 3261 3.77 0.01749

fB:fC 4 2913 728 0.84 0.51300

fA:fB:fC 8 10795 1349 1.56 0.19353

Residuals 22 19011 864

> # ANOVA without block effects for comparison

> model1 = lm(y ˜ fA*fB*fC, data=dye.data)

> anova(model1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

fA 2 141000 70500 90.48 1.1e-12

fB 2 19448 9724 12.48 0.00015

fC 2 4934 2467 3.17 0.05816

fA:fB 4 27923 6981 8.96 9.7e-05

fA:fC 4 13044 3261 4.18 0.00915

fB:fC 4 2913 728 0.93 0.45877

fA:fB:fC 8 9746 1218 1.56 0.18257

Residuals 27 21039 779
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Exercises

1. Suggest a confounding scheme for a 35 experiment in 9 blocks of size 27 if all 2-factor interactions

and the 3-factor interaction ABE are to estimated.

2. Suggest a confounding scheme for a 35 experiment in 27 blocks of size 9 if all 2-factor interactions

and the 3-factor interaction ABE are to be estimated.

3. Dye experiment, continued

(a) For the dye experiment of Sect. 14.2.4, check that the variances of the errors appear to be equal

for the different levels of the three factors. Check also that the assumption of normality of the

error variables is reasonable.

(b) Calculate the normalized contrast estimate for Linear A × Linear B, using the method outlined

in Sect. 14.2.4.

(c) Compute the sum of squares for testing the hypothesis that the Linear A × Linear B contrast

is negligible, using the method outlined in Sect. 14.2.4.

(d) Test the hypothesis that the Linear A × Linear B contrast is negligible, using an individual

significance level of 0.01.

(e) Draw an interaction plot for AC and verify that the interaction appears to be negligible.

(f) Assuming that the contrasts were preplanned, calculate confidence intervals for the pairwise

differences in yields due to the three different levels of each of A, B and C. State your overall

confidence level.

4. Dye experiment, continued

The experimenters who ran the dye experiment were interested in the linear and quadratic compo-

nents of the main effects and interactions. Analyze the experiment accordingly. What information

have you gathered about the levels of the factors if high yield is of importance?

5. A set of hypothetical data is given in Table 14.18 for a partially confounded 32 experiment in 6

blocks of 3. The design is made up of two single-replicate designs: The first confounds the contrasts

(AB; A2B2) from the interaction, while the second confounds the contrasts (AB2; A2B).

(a) By hand, write out the estimates of the linear and quadratic contrasts for the main effects and

their associated variances.

(b) Using the contrast estimates in part (a), calculate the sums of squares for A and B.

Table 14.18 Partially confounded 32 experiment in b = 6 blocks of k = 3. Hypothetical data are shown in parentheses

with corresponding treatment combinations

Replicate Block Treatment combinations (Response)

1 I 00 (53) 12 (59) 21 (80)

Confounds (AB; A2B2) II 01 (66) 10 (71) 22 (78)

III 02 (69) 11 (91) 20 (92)

2 IV 00 (46) 11 (62) 22 (58)

Confounds (AB2; A2B) V 01 (65) 12 (61) 20 (76)

VI 02 (34) 10 (50) 21 (66)
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(c) Calculate the least squares estimates of a pair of orthogonal contrasts for (AB2; A2B) from the

first replicate and the estimates of a pair of orthogonal contrasts for (AB; A2B2) from the second

replicate. Using these contrast estimates, calculate the sum of squares for the AB interaction

(adjusted for blocks).

(d) Prepare an analysis of variance table. Test any hypotheses that you think are of interest and

state your conclusions about the two factors and their interaction.

(e) Check your analysis in part (d) using a computer program.

6. Sugar beet experiment

F. Yates, in a 1935 paper published in a supplement to the Journal of the Royal Statistical Society,

describes an agricultural experiment on the yield of sugar beet. The three factors of interest were

three standard fertilizers, nitrogen, phosphate, and potassium (factors N , P, and K) each at three

equally spaced levels. The experimental field was divided into b = 3 blocks and each block

subdivided into k = 9 0.1 acre plots. The experiment was designed so that the contrasts (NP2K ;

N2PK2) were confounded with blocks. The randomized design and yields of sugar beet are shown

in Table 14.19.

(a) Prepare an analysis of variance table for the data, assuming that the three-factor interaction is

negligible.

(b) Investigate the linear and quadratic trends of the main effects and the two-factor interactions.

Yates assumed in his analysis that the only important contrast for each two factor interaction

was the linear×linear contrast. Is this assumption supported by your analysis?

(c) Draw any plots that help to illustrate the important features of the analysis.

7. Example 14.3.2, continued

In Example 14.3.2, p. 483, we showed one way of associating design factors F, G, H, and J of a

23 ×4 factorial experiment to the 2-level pseudofactors A–E of a specific design from Table 13.29.

Table 14.19 Data for the sugar beet experiment

Block I Block II Block III

Levels of Levels of Levels of

N, P, K Yield N, P, K Yield N, P, K Yield

211 2575 121 2599 202 2189

120 2472 220 2517 020 2093

200 2411 022 2411 210 2354

002 2403 110 2252 111 2268

010 2220 212 2381 001 1926

021 2252 201 2067 122 2152

101 2295 102 2021 221 2349

112 2362 011 1953 012 2025

222 2434 000 1989 100 2106

Source Yates (1935). Copyright © 1935 Blackwell Publishers. Reprinted with permission. (Reprinted in Experimental

Design (1970), Charles Griffin and Company, Ltd., London. Copyright 1970 Edward Arnold/Hodder & Stoughton

Educational. Reprinted with permission.)

http://dx.doi.org/10.1007/978-3-319-52250-0_13
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There are 10 different ways to make this association (since there are 10 ways of selecting two of

A–E to represent J1 and J2).

(a) Investigate the confounding schemes for each of the ten possible associations. Specifically, for

each association, determine the number of contrasts confounded for each effect, and compare

the results.

(b) State under which circumstances you would recommend each design.

8. Consider a 22 × 32 design confounding AB, (CD2; C2D), and (ABCD2; ABC2D).

(a) Give the design—namely, list the treatment combinations block by block.

(b) Describe how to randomize the design.

(c) Give a set of five orthogonal treatment contrasts that are confounded with blocks.

9. Suggest a confounding scheme for a 23 × 33 experiment in 12 blocks of size 18. Under what

circumstances would the design be useful? Write out two blocks of the design.

10. Suggest a confounding scheme for a 22 × 32 × 4 experiment in 12 blocks of size 12. Under what

circumstances would the design be useful? Write out two blocks of the design.

11. Suggest a confounding scheme for a 22 × 32 × 6 experiment in 9 blocks of size 24. Under what

circumstances would the design be useful? Explain how to find the blocks of the design.

12. Suggest a confounding scheme for a 22 × 32 × 6 experiment in 12 blocks of size 18. Under what

circumstances would the design be useful? Write out two blocks of the design.

Table 14.20 Confounding schemes for 3p experiments in b = 3s blocks of size k = 3p−s. For each design, s independent

generators are underlined, and s corresponding equations are given. To obtain Block I of a design, list all k combinations

of the first ai’s shown, then use the equations modulo 3 to complete each treatment combination

3p b k Confounded contrasts Block I

32 3 3 (AB; A2B2) a1

a2 = 2a1

33 3 9 (ABC2; A2B2C) a1, a2

a3 = a1 + a2

33 9 3 (AB2; A2B), (AC; A2C2), a1

(BC; B2C2), (ABC2; A2B2C) a2 = a1

a3 = 2a1

34 3 27 (ABCD2; A2B2C2D) a1, a2, a3

a4 = a1 + a2 + a3

34 9 9 (AB2C; A2BC2), (ABD; A2B2D2), a1, a2

(AC2D2; A2CD), (BCD2; B2C2D) a3 = 2a1 + a2

a4 = 2a1 + 2a2

35 9 27 (ABCD2; A2B2C2D), (AB2E2; A2BE) a1, a2, a3

(AC2DE; A2CD2E2), a4 = a1 + a2 + a3

(BC2DE2; B2CD2E) a5 = a1 + 2a2
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15.1 Introduction

Fractional factorial experiments are used frequently in industry, especially in various stages of product

development and in process and quality improvement. In a fractional factorial experiment only a

fraction of the treatment combinations are observed. This has the advantage of saving time and money

in running the experiment, but has the disadvantage that each main-effect and interaction contrast will

be confounded with one or more other main-effect or interaction contrasts and cannot be estimated

separately. Two factorial contrasts that are confounded are referred to as being aliased. The term

“confounded” is generally reserved for the indistinguishability of a treatment contrast and a block

contrast (as described in Chaps. 13 and 14).

We look at two methods of obtaining fractional factorial designs that can be analyzed in a straight-

forward manner. The first method, described in Sects. 15.2–15.5, is to select one block from one of

the single-replicate designs in Chap. 13 as the fraction to be used. The second method of choosing a

fraction, described in Sect. 15.6, is popular in industry and uses the concept of an orthogonal array.

In Sect. 15.7, we aim to identify the treatment factor levels whose effects are least affected by noise

variable fluctuations; the intention being to reduce the sensitivity of a product or manufacturing process

to uncontrolled variation.

In Sect. 15.8, very small screening designs are introduced. These designs allow one to search among

many factors for the few factors which have substantially large main effects. The use of SAS and R

software in analyzing fractional factorial experiments is explored in Sects. 15.9 and 15.10, respectively.

15.2 Fractions from Block Designs; Factors with 2 Levels

15.2.1 Half-Fractions of 2p Experiments; 2p−1 Experiments

We start with a very small example to illustrate the ideas of fractional factorial experiments. Suppose

that an experiment is to be run with three treatment factors A, B, and C, each having two levels. There

are no blocking factors, so the experiment will be run as a completely randomized design. However,

only four observations can be taken.

We can obtain a fractional factorial design with just 4 of the 8 total treatment combinations by

selecting at random one of the blocks of a single-replicate design with two blocks of size 4. For

illustration, consider the block design that confounds the ABC contrast, given in Table 15.1. Suppose
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Table 15.1 23 experiment

in 2 blocks of 4,

confounding ABC

Block I 000 011 101 110

Block II 001 010 100 111

Table 15.2 Contrasts for the 1
2

-fraction (001, 010, 100, 111) of a 23 experiment, and the corresponding alias scheme

A B C AB AC BC ABC Alias scheme

001 −1 −1 1 1 −1 −1 1 I = ABC

010 −1 1 −1 −1 1 −1 1 A = BC

100 1 −1 −1 −1 −1 1 1 B = AC

111 1 1 1 1 1 1 1 C = AB

we select the second block, which is (001, 010, 100, 111) and is defined by the equation

a1 + a2 + a3 = 1 mod 2.

The four treatment combinations constitute a 1
2

-fraction or 1
2

-replicate of a 23 experiment, called a

23−1 design, and the ABC contrast is called the defining contrast for the fraction. We write

I = ABC,

which is called the defining relation for the fraction.

With only n = 4 observations, there are only n − 1 = 3 total degrees of freedom. This means that it

is not possible to estimate each of the six remaining contrasts (A, B, C, AB, AC, BC) even if no estimate

of σ
2 is required. If we look at the contrasts for a 23 experiment (shown in Table 13.2, p. 436) and cross

out the rows corresponding to the unobserved treatment combinations, just the contrast coefficients

shown in the left part of Table 15.2 remain.

Table 15.2 shows several interesting features. First, the column corresponding to ABC is not a

contrast. The coefficients are the coefficients that one would use in obtaining the sum of the four

observations, which is a multiple of the mean. So, ABC is confounded with the mean, and the ABC

contrast cannot be measured. The notation I = ABC of the defining relation indicates the equivalence

of ABC and the sum of the observations, since I corresponds to a list of coefficients all equal to +1.

Secondly, we see from Table 15.2 that the contrast coefficients for A and BC are identical, the

contrasts for B and AC are identical, and the contrasts for C and AB are identical. The main effect of

A and the interaction BC are said to be aliased, as are B and AC, and C and AB. We write

A = BC, B = AC, C = AB.

Thus, there are three estimable contrasts in the fraction, but each measures more than one factorial

effect. For example, using the cell-means model

Yijk = μ + τijk + ǫijk ,

the “A = BC” contrast with divisor v/2 (where v is the number of treatment combinations in the

fraction) is obtained by multiplying the τijk’s by the coefficients in the column labeled A in Table 15.2,

that is,
1

2
[−τ001 − τ010 + τ100 + τ111]. (15.2.1)

http://dx.doi.org/10.1007/978-3-319-52250-0_13


15.2 Fractions from Block Designs; Factors with 2 Levels 497

This is an estimable contrast with least squares estimate

1

2
[−y001 − y010 + y100 + y111].

It can be verified that this “A = BC” contrast in (15.2.1) can be written as

1
4
[−τ000 − τ001 − τ010 − τ011 + τ100 + τ101 + τ110 + τ111]

+ 1
4
[+τ000 − τ001 − τ010 + τ011 + τ100 − τ101 − τ110 + τ111]

= [−τ0.. + τ 1..] + 1
2
[τ .00 − τ .01 − τ .10 + τ .11] .

Thus, what is being estimated is the sum of the A contrast and the BC contrast, and we could refer to

the “A = BC” contrast as the A + BC contrast. However, for simplicity, we often refer to it as the A

contrast, remembering the role of BC from the list of aliased contrasts.

If in a hypothesis test or half-normal probability plot the main effect of factor A is nonsignificant,

then there are two possibilities. One is that neither A nor its alias, BC, is significantly different from

zero. The alternative is that the two contrasts have equal and opposite effects and cancel each other out.

Since the former is much more likely, this is the assumption that is usually made. If the main effect of

A appears to be significant, then it is not clear whether the observed effect is due to the main effect of A

or to the BC interaction or the combination of both effects. Because of the aliasing problem, fractional

factorial experiments are most often run as screening experiments. The word “screening” means that

the experimenter is trying to determine which of a large number of factors affect the response (see

Sect. 15.8).

The list of aliased contrasts is called the aliasing scheme for the design. We generally write this as

in the right hand side of Table 15.2, with the first row showing the defining relation and the following

rows listing the aliased contrasts. The number of rows in the aliasing scheme is the same as the number

of observations in the design.

It can be verified that, if Block I of the single replicate design in Table 15.1 were to be used as the
1
2

-fraction instead of Block II, exactly the same aliasing scheme would result except that, in each pair

of aliased contrasts, the coefficients would differ from each other in sign. The fraction would then

consist of the four treatment combinations 000, 011, 101, 110, and the A contrast would be

1
2
[−τ000 − τ011 + τ101 + τ110]
= 1

4
[−τ000 − τ001 − τ010 − τ011 + τ100 + τ101 + τ110 + τ111]

− 1
4
[+τ000 − τ001 − τ010 + τ011 + τ100 − τ101 − τ110 + τ111]

= [−τ0.. + τ 1..] − 1
2
[τ .00 − τ .01 − τ .10 + τ .11] ,

which we could refer to as the A−BC contrast. This difference in signs can be highlighted by including

this information in the aliasing scheme, that is, I = −ABC, A = −BC, B = −AC, and C = −AB.

The entire aliasing scheme in the right hand side of Table 15.2 can be deduced from the defining

relation without writing out the contrasts. Using the contrast names, we can multiply the defining

relation by A to obtain

A × I = A × ABC .

Treating I as a multiplicative identity so that A × I = A, and reducing superscripts modulo 2 so that

A2BC = BC, we obtain A = BC. The other two rows of the scheme can be obtained in a similar

fashion. From now on, we will avoid writing out the contrasts and use the contrast names and the

defining relation to obtain the aliasing scheme.
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Half-fractions of 2p experiments have 1
2

2p treatment combinations and are called 2p−1 experiments.

They are almost always obtained by selecting one block from a block design that confounds the highest-

order interaction. Thus for p = 4, for example, the fraction satisfies either

a1 + a2 + a3 + a4 = 0 (mod 2)

and has defining relation I = ABCD, or it satisfies

a1 + a2 + a3 + a4 = 1 (mod 2)

and has defining relation I = −ABCD. For p = 5, the fraction satisfies either

a1 + a2 + a3 + a4 + a5 = 0 (mod 2)

and has defining relation I = −ABCDE, or it satisfies

a1 + a2 + a3 + a4 + a5 = 1 (mod 2)

and has defining relation I = ABCDE. Notice that the sign of the contrast in the defining relation is

positive if the equation contains an even number of ai’s and is set equal to 0 (mod 2). It is also positive

if the equation contains an odd number of ai’s and also is set equal to 1 (mod 2). Otherwise, the sign

is negative. This always holds, even for the more complicated fractions of 2p experiments discussed

in the following sections.

For most purposes, we do not need to know whether the contrasts listed in the defining relation

differ in sign. Consequently, unless they are needed, we shall usually ignore the signs in the aliasing

scheme.

15.2.2 Resolution and Notation

The defining relation contains a set of contrasts such as AB, ABC, etc. that are aliased with the mean;

these contrasts are often called words. The number of letters in the shortest word in the defining relation

is called the resolution of the design.

The design in Table 15.2 is a Resolution III design, since the only word in the defining relation is

ABC, which has three letters. In all Resolution III designs, main-effect contrasts are aliased with 2-

factor interaction contrasts. In a Resolution IV design, the defining relation contains only words with 4

or more letters. Some main effects are then aliased with 3-factor interactions and 2-factor interactions

aliased with other 2-factor interactions. In a Resolution V design, such as that in Table 15.4, some

main effects are aliased with 4-factor interactions, and 2-factor interactions are aliased with 3-factor

interactions. This is summarized in Table 15.3.

Since the main-effects and low-order interactions are usually the most important factorial effects to

be measured, it is generally beneficial to select a design with as high resolution as can be found. The

designs in Table 15.60 (at the end of the chapter) all satisfy this requirement.

A 1/2q fraction of a 2p experiment is usually referred to as a 2p−q fractional factorial experiment.

The resolution number is sometimes added as a subscript. A resolution III design, for example, can be

written as a 2
p−q
III design.
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Table 15.3 Resolution numbers of fractional factorial experiments

Resolution Main effects aliased with 2-factor interactions aliased with

III 2-factor interactions and/or higher Main effects and/or interactions

IV 3-factor interactions and/or higher 2-factor interactions and/or higher

V 4-factor interactions and/or higher 3-factor interactions and/or higher

15.2.3 A Real Experiment—Soup Experiment

L.B. Hare, in the (1988) issue of the Journal of Quality Technology, described an experiment on a dry

soup mix filling process that was run at Thomas J. Lipton, Inc. The company was concerned about

keeping the weight of the mix as uniform as possible. They found that most of the variability was due

to the uneven flow of the “intermix,” which is a mixture of vegetable oil, salt, and other ingredients,

during the mixing process. The researchers prepared a list of five treatment factors that they thought

might be influential in controlling the mixing process. The factors and their levels (subsequently coded

0, 1) were:

A: number of mixer ports through which vegetable oil was added (two levels, 1 and 3);

B: temperature of mixer jacket (two levels; ambient temperature, presence of cooling water);

C: mixing time (two levels; 60 and 80 sec);

D: batch weight (two levels; 1500 and 2000 lb);

E: delay between mixing and packaging (two levels; 1 day and 7 days).

This was a screening experiment, since the researchers had little idea of which factors were going

to turn out to be important in affecting the variability of the soup mix weight. They decided to run a
1
2

-fraction to investigate the five factors, and follow up the experiment with a more detailed study of the

important factors later. They chose a Resolution V design with defining relation I = ABCDE, which

allowed them to include all main effects and two-factor interactions in the model. The corresponding

block design, which confounds ABCDE, is listed in Table 13.29. The experimenters chose the second

block, as it contained the treatment combination that represented the normal operating conditions prior

to the experiment. These were 00010, that is, one port, presence of cooling water, 60 s mix, 2000 lb

batch weight, and a one day delay before packaging.

The experiment was designed so that it could be run with very little disruption to the daily production

routine. Sets of 5 samples were taken every 15 min during the production run for each treatment

combination and weighed. The response variable was a measure of variation based on these weights.

The randomized design and the responses obtained are shown in Table 15.4. Also shown in the table are

the contrasts for the main effects. As in Chap. 13, the contrast has coefficient −1 when the corresponding

factor is at its low level and coefficient +1 when it is at its high level. The contrast coefficients for the

interactions are the products of the corresponding main-effect contrast coefficients.

The experimenters included all the main effects and 2-factor interactions in the model. Since there

were 16 − 1 = 15 degrees of freedom in total and 15 contrasts to estimate (5 main effects and 10

two-factor interactions), there were no degrees of freedom available to estimate the error variability.

The experimenters calculated all the contrast estimates and prepared a normal probability plot to find

the important contrasts. For example, the contrast estimate for the main effect of E is

Ê = (0.78 + 1.10 − 1.70 − 1.28 + 0.97 + 1.47 − 1.85 − 2.10 + 0.76

+ 0.62 − 1.09 − 1.13 + 1.25 + 0.98 − 1.36 − 1.18)/8 = − 0.47.

http://dx.doi.org/10.1007/978-3-319-52250-0_13
http://dx.doi.org/10.1007/978-3-319-52250-0_13
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Table 15.4 Design, data (measure of weight variability), and main-effect contrasts for the soup experiment. Defining

relation I = ABCDE

Levels of A, B, C, D, E yijklm Contrasts

A B C D E

01011 0.78 −1 1 −1 1 1

11111 1.10 1 1 1 1 1

10000 1.70 1 −1 −1 −1 −1

11100 1.28 1 1 1 −1 −1

00001 0.97 −1 −1 −1 −1 1

01101 1.47 −1 1 1 −1 1

00010 1.85 −1 −1 −1 1 −1

10110 2.10 1 −1 1 1 −1

00111 0.76 −1 −1 1 1 1

10011 0.62 1 −1 −1 1 1

01110 1.09 −1 1 1 1 −1

01000 1.13 −1 1 −1 −1 −1

11001 1.25 1 1 −1 −1 1

10101 0.98 1 −1 1 −1 1

11010 1.36 1 1 −1 1 −1

00100 1.18 −1 −1 1 −1 −1

Source Hare (1988). Reprinted with Permission from Journal of Quality Technology c© 1998 ASQ, www.asg.org

Table 15.5 Contrast estimates (with divisor v/2 = 8) for the soup experiment

Contrasts A B C D E AB AC

Estimates 0.145 −0.088 0.038 −0.038 −0.470 −0.015 0.095

Contrasts AD AE BC BD BE CD CE DE

Estimates 0.030 −0.153 0.068 −0.163 0.405 0.073 0.135 −0.315

Fig. 15.1 Soup

experiment: half-normal

probability plot of contrast

absolute estimates (using

divisor v/2 = 8)
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The main effect and two-factor interaction contrast estimates are shown in Table 15.5. In Fig. 15.1,

we present a half-normal probability plot (Sect. 7.5.2) which shows the absolute values of the contrast

estimates plotted against their half-normal scores. It can be seen that the most important contrasts

appear to be E, BE, and DE.

www.asg.org
http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Fig. 15.2 Interaction plots for the soup experiment

Interaction plots of the two interactions BE and DE are shown in Fig. 15.2. The response is a measure

of weight variability, and the experimenters wanted to reduce this as much as possible. The estimate of

the E contrast is negative, indicating that the low level of E (one-day delay before packaging) is more

variable that the high level (seven-day delay). The two interaction plots also indicate that a seven-day

delay before packaging would be beneficial using the ambient temperature (low level of B) and the

large batch size (2000 lb, high level of D). The interaction plots also indicate that if a seven-day delay is

not feasible, then it is better to use cooling water and a small batch size (high B, low D). The production

management of the company agreed to a seven-day delay, and the researchers decided to investigate

these three factors (B, D, and E) in more detail in a followup experiment, together with factor C, whose

interaction with E was the next largest effect.

15.2.4 Quarter-Fractions of 2p Experiments; 2p−2 Experiments

We can obtain a 1
4

-fraction of a 2p experiment by selecting at random one of the blocks from a single-

replicate confounded design with 4 blocks of size 2p−2. The defining relation is then the set of three

contrasts that were confounded to obtain the block design.

For example, suppose a 25 experiment was to be run as a completely randomized design, but only

eight observations could be taken, and the main effects and interaction AE were of particular interest.

Table 13.29 (p. 471) lists a design in 4 blocks of 8. Suppose we switch E and D in the listed design,

then we obtain a design in 4 blocks of 8 which confounds the three interactions ABD, CDE, and ABCE.

We can then select one block for the 1
4

-fraction; for example, if we select the block that satisfies

a1 + a2 + a4 = 1 (mod 2) and a3 + a4 + a5 = 0 (mod 2),

the treatment combinations in the resulting fraction are

00011 00110 01000 01101 10000 10101 11011 11110 .

http://dx.doi.org/10.1007/978-3-319-52250-0_13
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Table 15.6 Aliasing

scheme (ignoring signs) for

a 1
4

-fraction of a 25

experiment with the

defining relation

I = ABD = CDE = ABCE

I = ABD = CDE = ABCE

A = BD = ACDE = BCE

B = AD = BCDE = ACE

C = ABCD = DE = ABE

D = AB = CE = ABCDE

E = ABDE = CD = ABC

AC = BCD = ADE = BE

AE = BDE = ACD = BC

The defining relation for the fraction is

I = ABD = CDE = ABCE .

(If we work out the contrast coefficients for this fraction, we find that the coefficients for ABD are all

+1, while those for CDE and ABCE are all −1. Thus, if the signs of the contrasts were taken into

account, the defining relation would be I = ABD = −CDE = −ABCE.) The other seven rows of

the aliasing scheme are obtained by multiplying the defining relation by each of the contrast names in

turn. The resulting aliasing scheme (ignoring signs) is shown in Table 15.6.

Only one factorial effect from each row of the aliasing scheme (and none from the defining relation)

can be entered into the model for analyzing the experiment. So, for example, we could include all main

effects and the two 2-factor interactions AC and AE in the model. (Notice that, if we had not made the

switch of labels E and D, then AE would have been aliased with B.)

If the D effect, for example, is insignificant, the interactions AB, CE, and ABCDE are also regarded

as insignificant. But if the analysis shows that D has a significant effect on the response, it is unknown

whether the effect is due to the main effect of D, or to AB, or to CE, or to ABCDE (although this

latter effect is the least likely), or to some combination of all four. The design is useful for screening

when it is believed that most main effects and interactions will be negligible but one or two factors

will possibly have an important effect on the response.

This design is clearly ideal if all of the interactions are negligible, or if all interactions except exactly

one of AC, BE, AE, and BC are thought to be negligible. In the first case, two degrees of freedom

are available to estimate σ
2. In the second case, all of the main effects and the one interaction can

be measured, and one degree of freedom remains to estimate σ
2. If all main effects and, say, the CD

interaction were required to be estimated, then a different block design should be chosen since, in this

design CD = E. For example, a suitable design could be obtained by interchanging A and D in the list

of confounded contrasts. In other words, the design obtained by confounding ABD, ACE, and BCDE

will give a 1
4

-fraction in which CD is not aliased with main effects.

A list of useful 1
4

-fractions is given in Table 15.60 at the end of the chapter.

Example 15.2.1 Sludge experiment

S.R. Schmidt and R.G. Launsby, in their textbook Understanding Industrial Designed Experiments,

include an article by J. Brickell and K. Knox on the operation of a biological treatment system (known

as an activated sludge system) used in wastewater treatment plants. The details of the system are given

in the article. The response, Y, is the removal of “biochemical oxygen demand,” which is related to the

quality of water. The water quality increases as more biochemical oxygen demand is removed, so the
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response Y is to be maximized. The experiment described in the article investigates the effect of five

factors on Y:

A: Reactor biomass concentration (3000 and 6000 mg/l),

B: Clarifier biomass concentration (8000 and 12000 mg/l),

C: Waste sludge flow rate (78.5 and 940 m3/d),

D: Biological growth rate constant (0.040 and 0.075 d−1)

E: Fraction of food to biomass (0.4 and 0.8 kg/kg).

Since this experiment was to be run in a water treatment plant, it was necessary to keep the number of

observations small, and a 1
4

-fraction was selected with defining relation I = ABD = CDE = ABCE.

This gives the aliasing scheme of Table 15.6.

The experimenters selected the fraction whose treatment combinations, written as a1a2a3a4a5,

satisfied
a1 + a2 + a4 = 1 (mod 2)

a3 + a4 + a5 = 1 (mod 2)

The design, prior to randomization, is shown in Table 15.7 together with the responses obtained.

The experimenters included all main effects and the 2-factor interactions AC and BC in their model.

The contrast estimates (with divisors v/2 = 4) are listed in Table 15.8, and a half-normal probability

plot of the seven contrast estimates is shown in Fig. 15.3. There are too few contrast estimates in total

to be able to draw good conclusions from the half-normal probability plot. Nevertheless, the most

important effect appears to be the main effect of C and, perhaps to a lesser extent, E. Now, C is aliased

with DE, and E is aliased with CD. A followup experiment investigating the effects of C, D, and E

would certainly be advisable.

If we try to draw conclusions from the results of the present experiment, and if we are willing to

assume that the main effects are the dominant effects in any alias sets, it would seem advisable to set

C and possibly B at their high levels in order to maximize the response, and to set E and possibly

D at their low levels. On the other hand, if we assume that the interactions in the alias sets might be

Table 15.7 1
4

-fraction of a 25 experiment and data from the sludge experiment

Levels of A, B, C, D, E yijklm Contrasts

A B C D E AC BC

00010 195 −1 −1 −1 1 −1 1 1

00111 496 −1 −1 1 1 1 −1 −1

01001 87 −1 1 −1 −1 1 1 −1

01100 1371 −1 1 1 −1 −1 −1 1

10001 102 1 −1 −1 −1 1 −1 1

10100 1001 1 −1 1 −1 −1 1 −1

11010 354 1 1 −1 1 −1 −1 −1

11111 775 1 1 1 1 1 1 1

Source Brickell and Knox (1992). Copyright c© 1992 Air Academy Press. Reprinted with permission

Table 15.8 Contrast estimates (with divisor v/2 = 4) for the sludge experiment

Contrast A B C D E AC BC

Estimate 20.75 198.25 726.25 −185.25 −365.25 −66.25 126.25
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Fig. 15.3 Half-normal

probability plot of contrast

absolute estimates for the

sludge experiment
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Fig. 15.4 Interaction plots for the sludge experiment

important, we would examine the DE and CD interaction plots (see Fig. 15.4). The DE plot suggests

that D and E should both be at their low levels, and the CD plot suggests that C should be at its high

level and D at its low level. Since the recommendations from the interaction plots agree with those

from the main effect comparisons, we would feel comfortable in recommending that the process be set

at the cheaper of 01100 or 11100. Notice that the first of these was included among the experimental

runs (and happened to give rise to the largest observed yield), whereas the second was not included.

In either case, the experiment should be re-run at the chosen setting to confirm the results.

The authors of the article point out that other considerations, such as cost, come into play before

any system can be changed. In an actual water treatment plant, it would be expensive to change the

levels of D (biological growth rate constant) and E (fraction of food to biomass) from their current

settings. Also, increasing the waste sludge flow rate (C) increases cost. A followup experiment could

verify that the above recommendations were correct, and also could examine intermediate values

of C. �
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15.2.5 Smaller Fractions of 2p Experiments

Smaller fractions of a 2p experiment can be obtained in exactly the same way as the 1
2

-fractions and
1
4

-fractions of the preceding subsections. For a 1/2s fraction, the first step is to find a design with

2s blocks of size 2p−s that confounds negligible interactions. One block is selected at random. The

aliasing scheme is then checked to ensure that as few important contrasts as possible are aliased with

each other. If the aliasing scheme is not suitable, then an attempt is made to obtain a better design by

interchanging letters in the confounding scheme, or by investigating different confounding schemes. A

list of useful 1
4

-, 1
8
- and 1

16
-fractions of 2p experiments is given in Table 15.60 at the end of the chapter.

Example 15.2.2 Welding experiment

An experiment was discussed by A.K. Shahani in The Statistician in 1970 which involved a (1/1024)

fraction of a 221 experiment (that is, a 221−16 experiment). The experiment, which required only

v = 25 = 32 observations, was designed by Dr. Shahani for Bristol Aerojet Ltd and concerned the

“pull strength” of welds resulting from a certain welding process. The company wished to discover

which settings of the 21 factors would give welds with pull strength exceeding a given size. Of the 21

factors, only a few were expected to have important effects on the pull strength, and this allowed the

use of such a highly fractionated design.

All 21 factors were easy to manipulate, and the engineers selected two reasonable settings for each

factor (coded 0 and 1). For some of the factors, the two levels chosen were at equal distances on each

side of the current operating conditions. For others, such as factors A, D, and W , the low levels were

at the current operating conditions and could not be lowered further. If we label the factors A, B, . . .,

W omitting I and O, the contrasts selected for confounding were as follows:

ABV ACW ADT AES

BCU ABEN ACDQ ACEP

ADEM BCER BDEL CDEK

ABCEH ABDEJ ACDEG BCDEF

The defining relation consists of these 16 contrasts together with all their possible products. Since

the shortest word in the defining relation is of length 3, the design is Resolution III. Although each

main effect is aliased with several two-factor interactions, the main effects are not aliased with each

other.

The 32 treatment combinations and their responses are shown in Table 15.9. (We have corrected

typing errors that occurred in the original paper in the two treatment combinations in the second row

of our table). The responses are in coded units, details of which were not given in the original paper.

This experiment has too many factors to be able to analyze it easily by hand. The main-effect contrast

estimates (with divisors v/2 = 16), obtained from a computer package, are shown in Table 15.10. Under

the current operating conditions, it was known that the error standard deviation σ was about 60 units.

The experimenters were willing to assume that this would not change appreciably under different

operating conditions and therefore calculated the standard error of a main effect contrast �iciτi to be

√
Var(�iciτ̂i) = σ

√
�c2

i = 60

√
32/162 = 21.21.

Without assuming that the coded responses follow a normal distribution, the experimenters then deemed

any contrast whose estimated absolute value turned out to be several times larger than 21.21 to be

important.
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Table 15.9 Treatment combinations and responses for the 221−16 welding experiment

Treatment combination Response Treatment combination Response

000001111000000011111 430 100001000001111000100 422

010000100010100111001 336 110000011011011100010 380

001000001100011111010 438 101000110101100100001 96

011001010110111011100 394 111001101111000000111 319

000100010111001010111 334 100100101110110001100 202

010101001101101110001 322 110101110100010101010 238

001101100011010110010 184 101101011010101101001 188

011100111001110010100 348 111100000000001001111 −234

000010000111110101111 384 100010111110001110100 338

010011011101010001001 404 110011100100101010010 370

001011110011101001010 542 101011001010010010001 114

011010101001001101100 316 111010010000110110111 432

000111101000111100111 256 100111010001000111100 206

010110110010011000001 82 110110001011100011010 106

001110011100100000010 528 101110100101011011001 110

011111000110000100100 35 111111111111111111111 370

Source Shahani (1970). Copyright c© 1970 Blackwell Publishers. Reprinted with permission

Table 15.10 Contrast estimates for the welding experiment (with divisor 16)

Contrast A B C D E F G

Estimate −104.8 −34.6 −39.4 −152.5 12.3 37.4 5.3

Contrast H J K L M N P

Estimate 101.9 70.5 48.4 −23.4 43.5 100.1 32.9

Contrast Q R S T U V W

Estimate 16.6 3.0 42.1 −8.1 7.1 72.8 −69.0

The contrast estimates whose absolute values exceed 63.63 are those for the main effects of A, D,

H, J , N , V , and W . The estimates for main effects of M, K , and S are all around 2 standard errors,

with those for C and F a little smaller.

Since there are 32 observations, a total of 31 orthogonal contrasts can be measured. Thus there

are 10 sets of confounded interaction contrasts that can be measured in addition to the 21 main-effect

contrasts. The identification of these contrast sets requires writing out the entire aliasing scheme—a

daunting task! A proper analysis of the main effects also requires knowledge about which interactions

are aliased with which main effects. A followup experiment to separate out the most likely aliased

effects would be needed.

Assuming, temporarily, that the process can be improved by considering the main effects only, the

contrast estimates (high level minus low level) suggest that factors A, D, and W (whose contrast esti-

mates are negative) should be set at their low levels and factors H, J , K , N , V , M, and S (whose contrast

estimates are positive) should be set at their high levels. As mentioned above, A, D, and W were already

set at the lowest possible values in the original process, and therefore further experimentation with

these factors is unnecessary. The other seven factors were discussed by the engineers and new (higher)

settings selected for these, resulting in an improved process that met the pull strength requirements.

The author of the article commented that the research and development department should give con-

sideration to a further experiment involving these seven factors in which main effects and two-factor
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interactions could all be measured. He suggested the use of a 27−1 experiment, which would require

64 observations. Fewer observations would require aliasing some of the 2-factor interactions (see

Table 15.60). �

15.3 Fractions from Block Designs; Factors with 3 Levels

15.3.1 One-Third Fractions of 3p Experiments; 3p−1 Experiments

To obtain a fraction of a 3p experiment, we use the same idea that we used for 2p experiments. We

select one block at random from a confounded single-replicate design with 3s blocks of size 3p−s

with a suitable confounding scheme. For example, suppose a 1
3
-fraction of a 34 experiment is required

(that is, a total of 34−1 = 27 observations). The highest-order interaction in a 34 experiment that

can be confounded is the 4-factor interaction. Therefore, the maximum number of letters in a word

in the defining relation of the fraction is also four. For a Resolution IV design, when 3- and 4-factor

interactions are negligible, the main-effect contrasts can be estimated, but the 2-factor interactions will

be aliased. This is the best design available and, unless a larger budget can be obtained to allow more

observations, some aliasing among the low-order interactions will have to be tolerated.

Suppose the selected single-replicate confounded design is that which confounds the pair of contrasts

(ABCD; A2B2C2D2) from the 4-factor interaction. The block design is constructed using the equations

a1 + a2 + a3 + a4 = 0, 1, or 2 (mod 3)

as in Sect. 14.2.3, and one block is selected at random for the 1
3
-fraction. Since there are 27 treatment

combinations to be observed, the aliasing scheme has 27 rows. Seven rows from the aliasing scheme

are given in Table 15.11. The remaining rows contain main effects or 2-factor interaction contrasts

(such as AB2 or A2B) that are aliased only with higher-order interactions. The 27 rows of the aliasing

scheme include one for effects aliased with the mean, together with 13 additional pairs of rows, such as

the pair of rows involving AB and A2B2 which represent contrasts from the same two-factor interaction.

The two rows containing AB and A2B2 indicate, for example, that the pair of contrasts (AB; A2B2) is

aliased with the pairs of contrasts (CD; C2D2) and (ABC2D2; A2B2CD). Use of this design is illustrated

in Example 15.3.1.

Example 15.3.1 Refinery experiment

John (1971) describes an experiment of Vance (1962) to find a set of operating conditions to optimize

the quality of lube oil treated at a refinery. There were four factors of interest, called here A, B, C, and

D, and three equally spaced levels were selected for each of these so that quadratic trends could be

measured.

Table 15.11 Seven rows from the aliasing scheme for a 1
3

-fraction of a 34 experiment with the defining relation

I = ABCD = A2B2C2D2

I = ABCD = A2B2C2D2

AB = A2B2CD = C2D2 A2B2 = CD = ABC2D2

AC = A2BC2D = B2D2 A2C2 = BD = AB2CD2

AD = A2BCD2 = B2C2 A2D2 = BC = AB2C2D

http://dx.doi.org/10.1007/978-3-319-52250-0_14
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Table 15.12 1
3

-fraction of a 34 experiment and data from the refinery experiment

Treatment combination yijkl AL AQ BL BQ CL CQ DL DQ

0000 4.2 −1 1 −1 1 −1 1 −1 1

0012 5.9 −1 1 −1 1 0 −2 1 1

0021 8.2 −1 1 −1 1 1 1 0 −2

0102 13.1 −1 1 0 −2 −1 1 1 1

0111 16.4 −1 1 0 −2 0 −2 0 −2

0120 30.7 −1 1 0 −2 1 1 −1 1

0201 9.5 −1 1 1 1 −1 1 0 −2

0210 22.2 −1 1 1 1 0 −2 −1 1

0222 31.0 −1 1 1 1 1 1 1 1

1002 7.7 0 −2 −1 1 −1 1 1 1

1011 16.5 0 −2 −1 1 0 −2 0 −2

1020 14.3 0 −2 −1 1 1 1 −1 1

1101 11.0 0 −2 0 −2 −1 1 0 −2

1110 29.0 0 −2 0 −2 0 −2 −1 1

1122 55.0 0 −2 0 −2 1 1 1 1

1200 8.5 0 −2 1 1 −1 1 −1 1

1212 37.4 0 −2 1 1 0 −2 1 1

1221 66.3 0 −2 1 1 1 1 0 −2

2001 11.4 1 1 −1 1 −1 1 0 −2

2010 21.1 1 1 −1 1 0 −2 −1 1

2022 57.9 1 1 −1 1 1 1 1 1

2100 13.5 1 1 0 −2 −1 1 −1 1

2112 51.6 1 1 0 −2 0 −2 1 1

2121 76.5 1 1 0 −2 1 1 0 −2

2202 31.0 1 1 1 1 −1 1 1 1

2211 74.5 1 1 1 1 0 −2 0 −2

2220 85.1 1 1 1 1 1 1 −1 1

Sources John (1971). Copyright c© 1971 P.W.M. John. Reprinted with permission

Since this was a preliminary experiment, a 1
3
-fraction of Resolution IV was thought to be adequate.

The experimenters used a design with defining relation I = ABCD = A2B2C2D2. Part of the aliasing

scheme is shown in Table 15.11. We see from row 2 that two degrees of freedom from the AB interaction

are aliased with two degrees of freedom from each of the CD and ABCD interactions. The other two

degrees of freedom from each of these interactions are aliased with 3-factor interactions. (For example,

the pair (AB2; A2B) is aliased with the pairs (A2CD; AC2D2) and (BC2D2; B2CD)). A similar confounding

pattern occurs with AC and BD and also with AD and BC.

The treatment combinations can be obtained from the equation

a1 + a2 + a3 + a4 = 0 (mod 3)

and are shown in Table 15.12, prior to randomization, together with the data collected. Also shown are

the linear and quadratic contrast coefficients for the main effects. The objective of the experiment was

to select factor levels that would increase the response (a measure of quality).

The analysis of variance is complicated by the aliasing of pairs of degrees of freedom for two-

factor interactions. We have not tried to separate these but have listed the contributions of the pairs of
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Table 15.13 Analysis of variance for the refinery experiment

Source of variation Degrees of freedom Sum of squares Mean square

A 2 4496.29 2248.14

AL 1 4399.22 4399.22

AQ 1 97.07 97.07

B 2 2768.69 1384.35

BL 1 2647.49 2647.49

BQ 1 121.20 121.20

C 2 5519.79 2759.89

CL 1 5516.00 5516.00

CQ 1 3.79 3.79

D 2 283.37 141.68

DL 1 213.56 213.56

DQ 1 69.81 69.81

AB, CD 6 339.00 56.50

AC, BD 6 1384.24 230.71

AD, BC 6 753.38 125.56

Total 26 15,544.66

interactions on the same line of the analysis of variance table shown in Table 15.13. Without information

concerning negligible interactions, we are unable to obtain an estimate for the error variance. The most

important interactions appear to be the AC or BD interactions, and the BC or AD interactions; the

corresponding interaction plots are shown in Fig. 15.5. In each case, the plots indicate that in order to

increase the response, factors A, B, and C should all be set at their high levels, cost permitting, and

factor D should be set at its middle level. They also indicate that since the lines are not too far from

parallel, it would be reasonable to examine the main-effect contrasts.

Normalized linear and quadratic main-effect contrast estimates are obtained as

1

d

∑

i

∑

j

∑

k

∑

l

cijkl τ̂ijkl = 1

d

∑

i

∑

j

∑

k

∑

l

cijklyijkl ,

where the cijkl’s are the contrast coefficients in Table 15.12 and the divisor d is the square root of the

sum of squares of the coefficients (that is,
√

18 for the linear contrasts and
√

54 for the quadratic

contrasts). These estimates are listed in Table 15.14, and a half-normal probability plot of the estimates

is shown in Fig. 15.6. Eight estimates are too few to make a good judgment, but the most important

effects appear to be the linear trends in C, A, and B (in that order). All of these contrast estimates are

positive, suggesting that the high levels should be selected in order to increase the response. This agrees

with the conclusions from the interaction plots as well as the observed data in Table 15.12. Note that we

could have examined interactions more closely by including individual interaction contrast estimates

in the half-normal probability plot. We have not done this because of the complicated confounding of

the interactions.

Since we have no estimate for error, we are unable to test any hypotheses. However, had the

experimenters believed, prior to the experiment, that some or all of the interactions were negligible,

then tests would have been done for the remaining interactions and the main effects. The sums of

squares for testing the linear and quadratic main-effect contrasts are the squares of the correspond-

ing normalized contrast estimates in Table 15.14. For example, the sums of squares for testing the
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Fig. 15.5 Interaction plots for the refinery experiment

hypothesis that the linear trend of factor A is negligible, against the alternative hypothesis that it is not

negligible, is

ss(AL) = 66.3272 = 4399.22 .

The sums of squares for the main effects of factors A, B, C, and D can be obtained either by adding

their respective linear and quadratic contrast sums of squares, or by using the rules of Chap. 7 with

r = 1/3 (since this is a one-third fraction). For example,

ssA = ss(AL) + ss(AQ) = 66.3272 + 9.8522 = 4399.22 + 97.07 = 4496.29 ,

or

ssA = 9�ȳ2
i... − 27ȳ2

.... = 28766.30 − 24270.01 = 4496.29 . �

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 15.14 Normalized contrast estimates for the refinery experiment

ÂL ÂQ B̂L B̂Q ĈL ĈQ D̂L D̂Q

Estimate 66.33 9.85 51.45 −11.01 74.27 −1.95 14.61 −8.36

Fig. 15.6 Half-normal

probability plot for the

refinery experiment

contrast absolute estimates

0.0 0.5 1.0 1.5 2.0

Half Normal Score
N

o
rm

a
liz

e
d
 A

b
s
o
lu

te
 E

s
ti
m

a
te

0

25

50

75

B L

A L

C L

15.3.2 One-Ninth Fractions of 3p Experiments; 3p−2 Experiments

As an example of a 1
9

-fraction, we take the sixth block of the 34 single-replicate confounded design

shown in Table 14.5. The list of confounded interactions in the block design provides the list of interac-

tions in the defining relation for the 34−2 fractional factorial design. In the block design of Table 14.5,

the confounded contrasts are (AB2C; A2BC2), (ABD; A2B2D2), (AC2D2; A2CD), and (BCD2; B2C2D) so,

in the fraction, which consists of 9 treatment combinations, the defining relation is

I = AB2C = A2BC2

= ABD = A2CD = B2C2D

= A2B2D2 = BCD2 = AC2D2 .

This design has Resolution III (since the shortest word has 3 letters), and main-effect contrasts will be

aliased with 2-factor interaction contrasts. The nine observations provide 8 degrees of freedom, which

is sufficient to estimate the four main effects (with two degrees of freedom each). Therefore, the design

would be useful if all two-factor interactions were believed to be negligible. Since there are no degrees

of freedom available for estimating σ
2, a half-normal probability plot of normalized contrast estimates

would be drawn as was done in Fig. 15.6.

15.4 Fractions from Block Designs; Other Experiments

15.4.1 2p
× 4q Experiments

The simplest way to design a fractional factorial experiment when all factors have four levels, or when

some factors have two levels and the others have four levels, is to use pseudofactors. For example,

suppose we require a design for a 23 × 4 experiment with eight observations. A design in four blocks

of size 8 is shown in Table 14.9 (p. 483). The confounded contrasts are FGJ1 J2, GHJ2, and FHJ1,

where J1 and J2 are the two 2-level pseudofactors making up the 4-level factor J . Suppose Block I is

http://dx.doi.org/10.1007/978-3-319-52250-0_14
http://dx.doi.org/10.1007/978-3-319-52250-0_14
http://dx.doi.org/10.1007/978-3-319-52250-0_14
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Table 15.15 Aliasing

scheme for a 1
4

-fraction of

a 23 × 4 experiment

I = FGJ1J2 = GHJ2 = FHJ1

F = GJ1J2 = FGHJ2 = HJ1

G = FJ1J2 = HJ2 = FGHJ1

H = FGHJ1J2 = GJ2 = FJ1

J1 = FGJ2 = GHJ1J2 = FH

J2 = FGJ1 = GH = FHJ1J2

J1J2 = FG = GHJ1 = FHJ2

FJ2 = GJ1 = FGH = HJ1J2

selected from the design to give a 1
4

-fraction of a 23 × 4 experiment, then the defining relation is

I = FGJ1J2 = GHJ2 = FHJ1

and the design is Resolution III. The aliasing scheme, shown in Table 15.15, indicates that the F

contrast, for example, is aliased with one contrast from each of the GJ , FGHJ and HJ interactions.

There are 3 contrasts (J1, J2 and J1J2) for the 4-level factor J . The aliasing scheme shows that J is

aliased with contrasts from the FGJ , GHJ , FH, GH, FHJ , FG interactions.

An experiment involving pseudofactors will be illustrated in Example 15.5.1 in Sect. 15.5.

15.4.2 2p
× 3q Experiments

Suppose that a 1
6

-fraction of a 23×33 experiment is required, which has a total of 36 observations. Again,

we follow the idea of selecting one block from a block design. So we first need a block design in b = 6

blocks, each of size 36. Following the procedure of Example 14.4.1, p. 484, we select, for example, (i)

a block design in two blocks of size 4 from the 23 experiment with factors A, B, C, confounding the

ABC interaction, and (ii) a block design in three blocks of size 9 from the 33 experiment with factors

E, F, G, confounding the pair of contrasts (DE2F; D2EF2). Combining the treatment combinations in

the blocks of these designs as in Example 14.4.1 leads to a design with six blocks in which the five

contrasts ABC, (DE2F; D2EF2), and (ABCDE2F; ABCD2EF2) are confounded. Then, if one of the six

blocks is selected for the 1
6
-fraction, we have a Resolution III design with defining relation

I = ABC = DE2F = D2EF2 = ABCDE2F = ABCD2EF2 ,

and the contrasts ABC, (DE2F; D2EF2), and (ABCDE2F; ABCD2EF2) are aliased with the mean.

The aliasing scheme for the fraction has 36 rows and includes the following three rows:

A = BC = ADE2F = AD2EF2 = BCDE2F = BCD2EF2 ,

B = AC = BDE2F = BD2EF2 = ACDE2F = ACD2EF2 ,

C = AB = CDE2F = CD2EF2 = ABDE2F = ABD2EF2 .

Thus, the 2-level factors A, B, and C are aliased with 2-factor interactions between the 2-level factors

plus some higher-order interactions. For example, the A contrast is aliased with the contrasts BC,

(ADE2F; AD2EF2), and (BCDE2F; BCD2EF2).

A similar aliasing happens for the 3-level factors. For example,

http://dx.doi.org/10.1007/978-3-319-52250-0_14
http://dx.doi.org/10.1007/978-3-319-52250-0_14
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D = ABCD = D2E2F = EF2 = ABCD2E2F = ABCEF2 ,

D2 = ABCD2 = E2F = DEF2 = ABCE2F = ABCDEF2 ,

so the pairs of contrasts (D; D2), (ABCD; ABCD2), (DEF2;D2E2F), (EF2; E2F), and (ABCEF2;

ABCE2F) are aliased with one another.

Finally, there is aliasing of interactions involving both 2- and 3-level factors, for example

AD = BCD = AD2E2F = AEF2 = BCD2E2F = BCEF2 ,

AD2 = BCD2 = AE2F = ADEF2 = BCE2F = BCDEF2 ,

so the pairs of contrasts (AD; AD2), (BCD; BCD2), (ADEF2; AD2E2F), (AEF2; AE2F), and (BCEF2;

BCE2F) are aliased with one another.

The design would be useful mainly when most of the interactions were expected to be negligible.

15.5 Blocked Fractional Factorial Experiments

If experimental conditions are not constant over the entire experiment, it may be necessary to arrange

a fractional factorial experiment in blocks. For example, consider the soup experiment in Sect. 15.2.3

(p. 499), for which the experimenters used the resolution V 25−1 fraction with defining relation I =
ABCDE. Suppose the experimenters had decided that the experimental conditions could be kept fairly

stable over the course of 8 observations but not 16. The treatment combinations would then have been

divided into two blocks of size 8. If the fraction is divided into b = 2 blocks, then b − 1 = 1 contrast

and its alias must be confounded. If CDE, for example, is selected for confounding, then the aliased

pair of contrasts CDE = AB is confounded with blocks, and neither of these contrasts can be measured.

Rather than confound a 2-factor interaction, an alternative might be to select the Resolution IV design

with defining relation I = ABDE and to confound the aliased pair of contrasts BCE = ACD. Then,

all two-factor interactions can be estimated, although six of them will be in aliased pairs. The choice

between these two designs is the choice of losing information on one 2-factor interaction completely

while aliasing the others with high-order interactions, or aliasing three pairs of 2-factor interactions.

For each fractional factorial design listed Table 15.60, at the end of the chapter, a suggestion (shown

in parentheses) is given for selecting an interaction to be confounded when running the corresponding

fraction in two blocks. (The aliases of this interaction can be obtained by multiplication with the

interaction names in the defining relation, as usual).

Example 15.5.1 Flour experiment

M.G. Tuck, S.M. Lewis, and J.I.L. Cottrell describe a series of four experiments in the 1993 issue of

Applied Statistics that were carried out at Spillers Milling Ltd. in order to identify a flour that would

give a “high loaf volume and be tolerant to fluctuations in the bread making process”. In the the third

experiment in the series, four flour formulations were investigated (four levels of factor A, coded 0,

1, 2, 3), together with four noise factors each at two levels. The noise factors were amount of yeast

(factor N , low or high), proof time (factor S, short or long), degree of mixing and moulding (factor Q,

“undermixing, little water, heavy pressure” or “overmixing, much water, little pressure”), and dough

time delay (factor T , short or long). Thus, this was a 4 × 24 experiment. A 1
2

fraction with v = 32

treatment combinations was selected and divided into two blocks of size 16, representing the number

of observations that could be taken per day.

The 4-level factor A can be written in terms of two pseudofactors A1 and A2, with the level cor-

respondence 0 = 00, 1 = 01, 2 = 10, 3 = 11. The researchers selected the first block of the
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Table 15.16 A blocked 1
2

-fraction of a 4 × 24 experiment for the flour experiment

Block (day) Treatment combination Av. specific volume Contrasts

A1 A2 A1A2 N S Q T

I 000011 436 −1 −1 1 −1 −1 1 1

000110 507 −1 −1 1 −1 1 1 −1

001001 434 −1 −1 1 1 −1 −1 1

001100 508 −1 −1 1 1 1 −1 −1

010010 436 −1 1 −1 −1 −1 1 −1

010111 508 −1 1 −1 −1 1 1 1

011000 404 −1 1 −1 1 −1 −1 −1

011101 510 −1 1 −1 1 1 −1 1

100010 440 1 −1 −1 −1 −1 1 −1

100111 517 1 −1 −1 −1 1 1 1

101000 442 1 −1 −1 1 −1 −1 −1

101101 501 1 −1 −1 1 1 −1 1

110011 458 1 1 1 −1 −1 1 1

110110 536 1 1 1 −1 1 1 −1

111001 464 1 1 1 1 −1 −1 1

111100 532 1 1 1 1 1 −1 −1

II 000000 567 −1 −1 1 −1 −1 −1 −1

000101 549 −1 −1 1 −1 1 −1 1

001010 391 −1 −1 1 1 −1 1 −1

001111 418 −1 −1 1 1 1 1 1

010001 458 −1 1 −1 −1 −1 −1 1

010100 499 −1 1 −1 −1 1 −1 −1

011011 381 −1 1 −1 1 −1 1 1

011110 451 −1 1 −1 1 1 1 −1

100001 499 1 −1 −1 −1 −1 −1 1

100100 483 1 −1 −1 −1 1 −1 −1

101011 368 1 −1 −1 1 −1 1 1

101110 456 1 −1 −1 1 1 1 −1

110000 475 1 1 1 −1 −1 −1 −1

110101 597 1 1 1 −1 1 −1 1

111010 414 1 1 1 1 −1 1 −1

111111 452 1 1 1 1 1 1 1

Sources Tuck et al. (1993). Copyright c© 1993 Blackwell Publishers. Reprinted with permission

1
2

-fraction with defining relation I = A1A2NSQT . The aliased pair of contrasts selected for confound-

ing to provide two blocks were NQ = A1A2ST . Provided that the 16 combinations of design and

noise factor levels were observed in a completely random order in each block, we can analyze this as

an ordinary blocked fractional factorial experiment, without distinguishing between design and noise

factors. The distinction between these two types of factors in made in Example 15.7.1, where flour

sensitivity to the noise variable fluctuations is investigated.

The treatment combinations in each block are shown, prior to randomization, in Table 15.16, together

with the main-effect contrast coefficients. All of the contrasts, apart from the confounded contrasts

NQ and A1A2ST , are orthogonal to the block contrast, and the estimates of their aliased pairs can be
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Table 15.17 Contrast estimates (with divisor 16) for the flour experiment

Â1 Â2 Â1A2 N̂ Ŝ Q̂ T̂

11.06 3.69 24.06 −52.44 59.81 −47.06 0.56

Â1N Â2N Â1A2N Â1S Â2S Â1A2S

5.44 7.56 −11.56 4.44 14.56 −2.31

Â1Q Â2Q Â1A2Q Â1T Â2T Â1A2T

3.06 9.19 −17.19 9.19 9.56 −15.81

Table 15.18 Analysis of variance for the flour experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

Block 1 957.03 −
A 3 5719.84 1906.62 3.06 0.0737

A1 1 979.03 979.03 1.57 0.2363

A2 1 108.78 108.78 0.17 0.6843

A1A2 1 4632.03 4632.03 7.42 0.0198

N 1 21997.53 21997.53 35.26 0.0001

S 1 28620.28 28620.28 45.88 0.0001

Q 1 17719.03 17719.03 28.40 0.0002

T 1 2.53 2.53 0.00 0.9504

AN 3 1763.59 587.86 0.94 0.4533

AS 3 1896.84 632.28 1.01 0.4235

AQ 3 3113.59 1037.87 1.66 0.2318

AT 3 3407.09 1135.69 1.82 0.2017

Error 11 6862.34 623.85

Total 31 92059.72

calculated without block adjustments. The response variable for each treatment combination was the

average specific volume of three loaves, and the observed values (ml/100g) are listed in Table 15.16.

Multiplying the responses by the A1 contrast coefficients and then dividing by v/2 = 16, we obtain

the estimate of the difference in the effect of the high and low levels of A1. Translating back to the

original levels of factor A, this contrast compares the average of the flours 2 and 3 with the average of

flours 0 and 1. The contrast estimate is (7634 − 7457)/16 = 11.0625 units.

The contrast for the interaction of the noise variable N with the pseudofactor A1 is obtained by

multiplying the A1 and N contrast coefficients in Table 15.16 and dividing by v/2 = 16 to obtain the

same standard error as the main-effect contrasts. Thus the contrast has coefficients

[ 1, 1,−1,−1, 1, 1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1,

1, 1,−1,−1, 1, 1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1 ]

with divisor 16, and the contrast estimate is (7589 − 7502)/16 = 5.4375. All of the main-effect and

2-factor interaction contrast estimates are shown in Table 15.17, and the analysis of variance table is

shown in Table 15.18.

Selecting individual significance levels of α
∗ = 0.01 for each hypothesis test, (for an overall

Type I error probability of at most α = 0.09), we compare the F-ratios in Table 15.18 with either
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F1,11,0.01 = 9.65 or F3,11,0.01 = 6.22 as appropriate. The interactions of the flour formulations with

the noise variables are not significantly different from zero, but the noise variables N , S, Q themselves

do have a large effect on the specific volume. Although the flours are not significantly different in

terms of average specific volume, the contrast A1A2 appears to be the most important of the three flour

contrasts investigated. This contrast compares the average of flours 0 and 3 with the average of flours

1 and 2. The first pair give the higher average specific volume. Before the experiment took place, the

experimenters had expected flour 3 (coded 11) to be the best. The difference of averages contrast,

which compares flour 3 with the average of the other three flours, has least squares estimate

y11... − 1
3
(y00... + y01... + y10...)

= 491.000 − 1
3

(476.250 + 455.875 + 463.250)

= 25.875 .

A preplanned 95% confidence interval for this contrast is given by

y11... − 1

3
(y00... + y01... + y10...) ± t11,0.025

√
mse

(
1

8
+ 3

(
1

9

) (
1

8

))

= 25.875 ± 2.201
√

(623.849)(0.1667)

= 25.875 ± 22.443

= (3.432, 48.318).

At the 95% confidence level, it does appear that flour 3 (coded 11) has specific volume between 3.4

and 48.3 units larger than the average of the other three flours. (We can draw this conclusion only

because the contrast was preplanned. Otherwise, we would need to use Scheffé’s method of multiple

comparisons with t11,0.025 replaced by
√

3F3,11,0.05 = 3.24, and the interval would include zero). �

15.6 Fractions from Orthogonal Arrays

15.6.1 2p Orthogonal Arrays

The simplest type of orthogonal array is that shown in Table 15.19, consisting of a set of 2p − 1

orthogonal contrasts. The first column has the first half of its 8 entries equal to −1 and the second half

equal to +1. The second column has the first quarter of its entries equal to −1, the second quarter equal

to +1, the third quarter equal to −1 again and the fourth quarter equal to +1 again. The third column is

divided into eighths with alternating −1’s and +1’s. If the columns had been longer, the next column

would have been divided into sixteenths, and so on. These are the “independent” columns. The fourth,

fifth and sixth columns of Table 15.19 are the products of corresponding coefficients in the first three

columns taken in pairs, and the last column is the triple product of the first three columns. The result

is a table with 2p = 8 rows and 2p − 1 = 7 columns in which any pair of columns are orthogonal.

The p independent columns of an orthogonal array define the treatment combinations for a 2p design.

As usual, a contrast coefficient of −1 in a column corresponds to level 0 in the corresponding factor, and

a contrast coefficient of +1 in a column corresponds to level 1. If all eight treatment combinations of

Table 15.19 are used for a 23 experiment, then the orthogonal array defines a full factorial experiment,

and no aliasing of contrasts occurs.

Now suppose that only 4 observations can be taken in a 23 experiment. Instead of proceeding as in

Sect. 15.2.1 and choosing a defining relation, we could first construct an orthogonal array with n = 4
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Table 15.19 Contrasts for

a 23 experiment
A B C AB AC BC ABC

000 −1 −1 −1 1 1 1 −1

001 −1 −1 1 1 −1 −1 1

010 −1 1 −1 −1 1 −1 1

011 −1 1 1 −1 −1 1 −1

100 1 −1 −1 −1 −1 1 1

101 1 −1 1 −1 1 −1 −1

110 1 1 −1 1 −1 −1 −1

111 1 1 1 1 1 1 1

Table 15.20 An

orthogonal array for four

observations

−1 −1 1

−1 1 −1

1 −1 −1

1 1 1

Table 15.21 1
2

-fractions

of a 23 experiment obtained

from orthogonal arrays

Design d1 Design d2

TC A B C TC A B C

001 −1 −1 1 011 −1 1 1

010 −1 1 −1 000 −1 −1 −1

100 1 −1 −1 110 1 1 −1

111 1 1 1 101 1 −1 1

rows and n − 1 = 3 columns. One is shown in Table 15.20, where the first column has the first half of

its entries −1, and the second half +1, the second column is divided into quarters, and the third column

is the product of the first two. Since we have 3 factors, suppose we label the columns in order as A, B,

C. The three columns then show the parts of the A, B, and C contrasts corresponding to a 1
2

-fraction.

However, the third column is also the product of the first two columns, so it not only represents the

C contrast but also the interaction between A and B. Consequently, C is aliased with AB. Similarly,

the first column is the product of the last two columns, so A is aliased with BC. Similarly, again, B is

aliased with AC. The defining relation must be I = ABC in order to produce this aliasing scheme.

The coefficients in the contrasts tell us which treatment combinations are represented, and the

design is “Design d1” shown in Table 15.21. Notice that this is the same design that would have been

produced from the equation a1 +a2 +a3 = 1 (mod 2). We could obtain the 1
2

-fraction corresponding to

a1 +a2 +a3 = 0 (mod 2), by multiplying any one of the columns by −1 (see Design d2 in Table 15.21,

where the second column has been multiplied by −1).

Thus, we have arrived back at the same type of design that we studied in Sect. 15.2, and this will

often (but not always) be the case. The main difference in procedure is that when we start with an

orthogonal array, we are starting with an unlabeled list of contrasts which can be labeled in any way

we please. The labeling then determines the defining relation and the design.

Any columns in an orthogonal array can be multiplied by −1 and we still obtain an orthogonal array,

although the treatment combinations may not be identical, or they may be identical but in a different

order (try multiplying the B and C columns for the designs in Table 15.21 by −1 and see whether the

same design results).

Now we return to the orthogonal array of Table 15.19, which is reproduced in Table 15.22 with

column headings indicating which columns are products of which other columns. For example, column
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Table 15.22 An

orthogonal array for 8

observations

Columns

1 2 3 12 13 23 123

−1 −1 −1 1 1 1 −1

−1 −1 1 1 −1 −1 1

−1 1 −1 −1 1 −1 1

−1 1 1 −1 −1 1 −1

1 −1 −1 −1 −1 1 1

1 −1 1 −1 1 −1 −1

1 1 −1 1 −1 −1 −1

1 1 1 1 1 1 1

7 is the product of columns 1, 2, and 3. We consider using this array for a 25 experiment instead of a 23

experiment. Since there are only 8 rows, we will be looking for a 1
4

-replicate (that is, a 25−2 fractional

factorial experiment).

Suppose that we label the first 5 columns as A, B, C, D, E. Since the product of the first two columns

gives column 4 and the product of the first and third columns gives column 5, aliasing would occur

between D and AB, and between E and AC. Consequently, ABD and ACE must be in the defining

relation, together with their product, so we have

I = ABD = ACE = BCDE .

The rest of the aliasing scheme can be written out also, and we would see that A is aliased with BD and

CE, that B is aliased with AD, and that C is aliased with AE. The sixth column, which is the product

of columns 2 and 3, and also of columns 4 and 5, can be labeled BC or DE, and these two interactions

are aliased. The seventh column is ABC = CD = BE = ADE. The eight treatment combinations are

deduced from the −1’s and +1’s in the first five columns; that is,

00011, 00110, 01001, 01100, 10000, 10101, 11010, 11111 .

Different sets of treatment combinations corresponding to the same defining relation (but with different

signs in the aliasing scheme) can be obtained by multiplying one or more columns of Table 15.22

by −1.

There is nothing special about labeling the first five columns of Table 15.22 as A, B, C, D, E. Any

five columns could have been chosen. Different choices may lead to different aliasing schemes, and

sometimes these aliasing schemes may not be equally good. Table 15.62 at the end of the chapter lists

orthogonal arrays for various-sized experiments. Some useful column labelings for various fractional

factorial experiments are suggested in the table.

The standard notation, used by industrial statisticians and engineers, for an orthogonal array is

the letter L with subscript equal to the number of runs. Sometimes, the largest Resolution III design

that can be used with the array is added in brackets. The orthogonal array in Table 15.20 provides a

Resolution III design with 4 observations for 3 or fewer two-level factors and would be written as L4(2
3).

Similarly, the design of Table 15.22 would be written as L8(2
7). Occasionally, an orthogonal array for

2p experiments will be written using factor levels rather than contrast coefficients. The orthogonality

could then be checked by ensuring that in every pair of columns, all possible pairs of factor levels (00,

01, 10, and 11) appear the same number of times (see, for example, the factor levels shown together

with designs d1 and d2 of Table 15.21).
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Table 15.23 Treatment factors and their levels for the wafer experiment

Factors Prior level Experimental levels

Low (0) High (1)

A (rotation method) Oscillating Continuous Oscillating

B (wafer batch) 668G4 678D4

C (deposition temperature) 1215 ◦C 1210 ◦C 1220 ◦C

D (deposition time) Low High Low

E (arsenic flow rate) 57% 55% 59%

F (acid etch temp.) 1200 ◦C 1180 ◦C 1215 ◦C

G (acid flow rate) 12% 10% 14%

H (nozzle position) 4 2 6

Example 15.6.1 Wafer experiment

R. Kackar and A. Shoemaker (AT&T Technical Journal, 1986) describe an experiment that they helped

to run at AT&T to try to reduce the variability of the thickness of an “epitaxial layer” deposited onto

silicon wafers during the manufacture of integrated circuit devices.

The wafers were mounted on a seven-sided “susceptor” with two wafers (one above the other) on

each side. The susceptor rotated inside a heated bell jar as chemical vapors were introduced via a

nozzle near the top of the jar. The chemicals were deposited on the wafers, and the bell jar was cooled

when the thickness of the deposited layer was close to the target of 14.5µm.

The engineers identified eight factors that might affect the variability of the thickness of the epitaxial

layer. These are shown in Table 15.23 together with the operating factor levels prior to the experiment

and the levels selected for the experiment.

The experimenters decided to take 16 observations. The 16 treatment combinations were selected via

the orthogonal array L16(2
15) shown in Table 15.24. The orthogonal array is constructed as described

earlier in this section. The labels in the row headings of the table identify which columns are products

of which other columns. The assignment of factors to columns chosen by the experimenters is indicated

in the foot of the table. The experiment is a 28−4 experiment, and the defining relation is generated by

4 confounded interactions. Notice, from the heading and the foot of Table 15.24, that D must be aliased

with ABC, F must be aliased with ABE, G with ACE, and H with BCE. Thus, the defining relation

includes ABCD, ABEF, ACEG, BCEH , and all their possible products (a total of 24 = 16 terms in the

defining relation):

I = ABCD = ABEF = CDEF

= ACEG = BDEG = BCFG = ADFG

= BCEH = ADEH = ACFH = BDFH

= ABGH = CDGH = EFGH = ABCDEFGH

This is a Resolution IV design, and there is considerable aliasing between 2-factor interactions.

For example, the contrast listed in column labelled 12 in Table 15.24 not only measures the 2-factor

interaction AB, but also measures its aliased 2-factor interactions CD, EF, GH (and some higher-order

interactions).

There were 70 measurements taken for each treatment combination (5 measurements on each of the

2 wafers on the 7 sides of the receptor). From these, two different response variables were calculated—

the average of the 70 measurements (which we denote by x) and the log sample variance of the 70
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Table 15.24 An orthogonal array for 16 observations: An L16(2
15)

Columns

1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

−1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

−1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

−1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1

−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

−1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

−1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

−1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A B C D E F G H

Table 15.25 Treatment combinations and response variables for the wafer experiment

Treatment combination Average response xijklmnpq Log variance response vijklmnpq

0 0 0 0 0 0 0 0 14.821 −0.4425

0 0 0 0 1 1 1 1 14.888 −1.1989

0 0 1 1 0 0 1 1 14.037 −1.4307

0 0 1 1 1 1 0 0 13.880 −0.6505

0 1 0 1 0 1 0 1 14.165 −1.4230

0 1 0 1 1 0 1 0 13.860 −0.4969

0 1 1 0 0 1 1 0 14.757 −0.3267

0 1 1 0 1 0 0 1 14.921 −0.6270

1 0 0 1 0 1 1 0 13.972 −0.3467

1 0 0 1 1 0 0 1 14.032 −0.8563

1 0 1 0 0 1 0 1 14.843 −0.4369

1 0 1 0 1 0 1 0 14.415 −0.3131

1 1 0 0 0 0 1 1 14.878 −0.6154

1 1 0 0 1 1 0 0 14.932 −0.2292

1 1 1 1 0 0 0 0 13.907 −0.1190

1 1 1 1 1 1 1 1 13.914 −0.8625

Source Kackar and Shoemaker (1986). Copyright c© 1986 AT&T. All rights reserved. Reprinted from the AT&T Technical

Journal with permission

measurements (which we denote by v). The treatment combinations, corresponding to the orthogonal

array in Table 15.24, together with the two response variables, are shown in Table 15.25.

The experimenters first analyzed the log variance response. The contrast estimates (high level minus

low level) for this response variable are shown in Table 15.26. The contrast estimates for factors A and

H are considerably larger in absolute value than those for the other factors. Consequently, A and H



15.6 Fractions from Orthogonal Arrays 521

Table 15.26 Contrast estimates for log sample variance response variable

Contrast A B C D E F G H

Estimate 0.352 0.122 0.105 −0.249 −0.012 −0.072 −0.101 −0.566

Table 15.27 Contrast estimates for the mean response variable

Contrast A B C D E F G H

Estimate −0.055 0.056 −0.109 −0.836 −0.067 0.060 −0.098 0.142

should be investigated for reducing variability in the response. Since the log variance response is to be

reduced, and the contrast estimate for A is positive while that for H is negative, we would want to set

A at its low level (continuous rotation) and H at its high level (position 6). All other factors can be set

at their current operating conditions.

The second requirement of the experimenters was to achieve an average thickness of 14.5µm.

Contrast estimates for the average response are shown in Table 15.27. Not surprisingly, factor D,

deposition time, has by far the largest effect on the mean response, and the experimenters were able to

adjust this factor in order to meet the target.

As with any good experiment, the experimenters wished to confirm their results. Their confirmation

experiment investigated two treatment combinations. The first treatment combination consisted of

the prior operating levels of factors A and C–H, with factor B at level 1, and the second treatment

combination was the same except that the levels of A and H were changed as discussed above. The

confirmation experiment showed that the variance of the thickness had been reduced by a factor 2.5—

quite a remarkable result! �

15.6.2 2p
× 4q Orthogonal Arrays

The orthogonal arrays of Sect. 15.6.1 can be used when one or more factors have 4 levels. Each 4-level

factor requires 3 independent columns to represent 3 orthogonal contrasts. For example, the orthogonal

array in Table 15.22 could be used for a 23 × 4 experiment as follows. The first three columns (which

are independent) could be labeled A, B, and C. If the 4th column is labeled D1, then D1 is aliased with

AB. If the 7th column is labeled D2, then D2 is aliased with ABC. The product of the coefficients in

the 4th and 7th columns gives the coefficients in the 3rd column, so D1D2, the remaining contrast for

the 4-level factor, is aliased with C, and the defining relation is

I = ABD1 = ABCD2 = CD1D2 .

This is a Resolution II design, which should be avoided if possible, since it confounds two main effects

(C and D). A better design is to assign D2 to the 5th column, where it is aliased with AC. The product

of the 4th and 5th columns gives the 6th column, so that D1D2 is aliased with BC. The defining relation

is

I = ABD1 = ACD2 = BCD1D2 ,

which is Resolution III. The 7th column of Table 15.22 corresponds to the ABC contrast, which is

aliased with AD1D2, CD1, and BD2 contrasts. The complete aliasing scheme is
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I = ABD1 = ACD2 = BCD1D2

A = BD1 = CD2 = ABCD1D2

B = AD1 = ABCD2 = CD1D2

C = ABCD1 = AD2 = BD1D2

D1 = AB = ACD1D2 = BCD2

D2 = ABD1D2 = AC = BCD1

D1D2 = ABD2 = ACD1 = BC

ABC = CD1 = BD2 = AD1D2

The design would be useful for an experiment where all interactions were expected to be negligible,

in which case one degree of freedom would be available to estimate σ
2.

15.6.3 3p Orthogonal Arrays

The orthogonal arrays for 2p experiments introduced in Sect. 15.6.1 have the property that any pair of

columns in the array are orthogonal (that is, the sum of the products of corresponding coefficients is

zero). An examination of the arrays in Tables 15.21, 15.22 and 15.24 reveals that this orthogonality

arises because every pair of coefficients (−1,−1), (−1, 1), (1,−1) and (1, 1) occurs equally often

in every pair of columns. We could rewrite the array to contain the factor labels 0, 1 instead of the

contrast coefficients −1, 1, and every pair of labels would occur the same number of times in every

pair of columns. This is the way that orthogonal arrays are defined for 3p experiments.

An orthogonal array with 9 treatment combinations is shown as columns 1–4 in Table 15.28 for

four factors, each having 3 levels. If any pair of columns is selected, it can be verified that each of the

nine pairs of levels (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2) occurs once. The first

column consists of three copies of each of 0, 1, and 2. The second column consists of 0, 1, and 2, in

order, repeated three times. The third column is obtained from the sum of the coefficients in the first

two columns reduced modulo 3 (thereby ensuring that any factor assigned to the 3rd column will be

aliased with the interaction between the first two factors). The fourth column is obtained from twice

the sum of columns 2 and 3 (ensuring that any factor assigned to the fourth column will be aliased with

the interaction of factors assigned to columns 2 and 3 and with the interaction of the first two factors).

It is not possible to find more than four orthogonal columns with only 9 observations.

Table 15.28 A 3p orthogonal array for 9 observations

Columns Contrasts

1 2 3 4

0 0 0 0 −1 1 −1 1 −1 1 −1 1

0 1 1 1 −1 1 0 −2 0 −2 0 −2

0 2 2 2 −1 1 1 1 1 1 1 1

1 0 1 2 0 −2 −1 1 0 −2 1 1

1 1 2 0 0 −2 0 −2 1 1 −1 1

1 2 0 1 0 −2 1 1 −1 1 0 −2

2 0 2 1 1 1 −1 1 1 1 0 −2

2 1 0 2 1 1 0 −2 −1 1 1 1

2 2 1 0 1 1 1 1 0 −2 −1 1

A B C D AL AQ BL BQ CL CQ DL DQ
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In Table 15.28, a pair of orthogonal contrasts is given corresponding to each of the four columns in

the orthogonal array. It can be verified that this set of 8 contrasts is orthogonal. As for 2p experiments,

a 3p orthogonal array with n rows can have at most n − 1 orthogonal columns of contrast coefficients,

and therefore can accommodate at most (n − 1)/2 three-level factors. An experiment is discussed in

Sect. 15.7.1 that uses part of the orthogonal array for three-level factors and 27 observations listed in

Table 15.65.

15.7 Design for the Control of Noise Variability

Design for the control of noise variability is sometimes known as robust design or parameter design

and refers to the procedure of developing or designing a product in such a way that it performs

consistently, and as intended, under the variety of conditions of its use throughout its life. The ideas

apply equally well to the design of high quality manufacturing systems and other organizational

processes. Experimentation involves design factors (also known as control factors) which are possible

inexpensive to control in the design of the product, and noise factors which may affect the performance

of a product but which are difficult or impossible to control when the product is in use.

Experiments that involve both design and noise factors are often known colloquially as Taguchi

experiments. Dr. Taguchi was a Japanese quality consultant who advocated the use of quality improve-

ment techniques, including the design of experiments, to the Japanese engineering and industrial

communities from the 1950s. One of his fundamental contributions is the principle that reduction of

variation is generally the most difficult task from an engineering perspective and so should be the focus

of attention during the design of a product.

There are two different types of designs for such experiments—“mixed arrays” and “product arrays”.

Mixed arrays are ordinary fractional factorial designs in which the difference between the design and

noise factors is ignored at the design stage except to ensure that the design-by-noise interactions are

estimable and not confounded with blocks or part of the defining relation of a fraction. For a mixed

array, all of the treatment combinations (composed of both design and noise factors) are observed

in a random order. This complete randomization allows the design×noise interactions to be studied

and to try to identify the particular levels of the design factors that are least affected by changing the

levels of the noise factors. An example of a mixed array is the design used for the flour experiment of

Example 15.5.1 which had a single design factor at 4 levels and four two-level noise factors. Analysis of

the design×noise interactions for this experiment is illustrated in Example 15.7.1 assuming a complete

randomization of the order of treatment combinations.

Product arrays, on the other hand, are designed and analyzed differently from the usual factorial

experiments. They are composed of two fractional factorial or full factorial experiments, one for the

design factors and one for the noise factors. Then every combination of design factors is observed in

conjunction with every combination of noise factors. In product arrays, first the order of the design

factor combinations is randomized. Then, for each design factor combination in turn, observations are

taken across all of the noise factor combinations in a random or non-random order. (Occasionally, the

order of randomization is reversed). This restricted randomization means that the usual analysis of

design×noise interactions is not valid. Instead, for each design factor combination, the average and

log sample variance of the responses are calculated across the different noise factor combinations. The

average response and the log variance response are then taken as two totally separate sets of data values

and analyzed separately. The objective of the experiment is to find out which factors affect the log

sample variance response the most, and which factors most affect the average response. Design factor

combinations are then sought that give a low variance across the noise factor combinations and also

that give an average response close to the target value. Finally, confirmatory observations are taken.



524 15 Fractional Factorial Experiments

Q

y
ij.

0 1

430

445

460

475

490

505

520
A level

0

1

2

3

(a) AQ interaction

440

450

460

470

480

490

500

T

y i
j.

0 1

A level

0

1

2

3

(b) AT interaction

Fig. 15.7 Design×noise interaction plots for the flour experiment

The reason for taking the log of the sample variance before analysis is that the assumptions of the

linear model with ln(s2) as the response are more closely satisfied than taking s2 itself as the response.

(See Sect. 5.6.2 for a discussion of transformations).

The design of the wafer experiment of Example 15.6.1 was a product array, where the levels of

the single noise factor “position” were the 14 locations on the susceptor and the two responses, log

sample variance response and average response, were analyzed separately. An example of a product

array with factors at three levels will be illustrated in Sect. 15.7.1 and the computer analysis discussed

in Sects. 15.9.2 and 15.10.2 using SAS and R software, respectively.

Example 15.7.1 Flour experiment, continued

One purpose of the flour experiment in Example 15.5.1, p. 513, was to find which of the four flours

(factor A, coded 0, 1, 2, 3) was least variable under the different levels of the four noise variables:

amount of yeast (factor N), proof time (factor S), degree of mixing and moulding (factor Q), and dough

time delay (factor T ), each at 2 levels. If the treatment combinations in Table 15.16 were observed in

a completely random order within each block, this experiment can be analyzed as a mixed array. The

analysis of variance is shown in Table 15.18. The interactions of A with the noise variables can provide

information on which flours are least sensitive to noise fluctuations.

Although none of the design×noise factor interactions were significantly different from zero, we

illustrate the search for robust design factor levels by looking at the two largest such interactions (AQ

and AT ). If we plot the average response (specific volume) for each level of A versus the levels of Q

or T on the horizontal axis, we obtain the interaction plots in Fig. 15.7. From the AT interaction plot,

we can see that flours 1, 2, and 3 are much more stable than flour 0 in terms of the resulting average

specific volume of loaves. This is also apparent, to a lesser extent, in the AQ interaction plot. Thus,

flour 0 is not as robust as the other three flours and should probably be ruled out of consideration for

general use.

If we now examine the average specific volume of loaves baked over the two levels of T , we see

that flour 3 seems to be the best. a similar result is obtained by averaging over the levels of Q. In

this experiment, the AQ and AT interactions were not significantly different from zero, but if they had

been larger, this analysis would have pointed to flour 3 being preferable both in terms of robustness to

fluctuating noise factors and of leading to loaves with high specific volume.

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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15.7.1 A Real Experiment—Inclinometer Experiment

A collaborative study involving statisticians and mechanical engineers was described by S. Lewis, B.

Hodgson, R. New, and C. Sexton in the 1989 Proceedings of the Institute of Mechanical Engineers

International Conference on Engineering Design. The experiment sought to improve the performance

of an inclinometer, which is an instrument that records the angle of tilt of an object such as a crane jib.

The design of the inclinometer is described in the article as follows:

“The basic design of the product is composed in four parts: a bob-weight and flexure, a flanged

flywheel and a copper-plated disc (PCB). All are attached to a shaft supported in low-friction bearings.

When the object to which the flywheel is attached is tilted, the bob-weight assembly moves to stay

perpendicular to the earth, causing the PCB to rotate relative to the casing. The main performance

difficulty of the inclinometer is that it does not immediately register the true angle of tilt. Spurious

swing of the disc is produced by movement of the object.”

The purpose of the experiment was to vary the relative sizes of the parts of the inclinometer to find

a combination of factors that would reduce the swing. The engineers identified 7 design factors (A–G)

that could be altered and that might affect the swing. Three levels were selected for each factor so that

linear and quadratic trends could be investigated. The levels of factors A–F were equally spaced. The

factors were:

A: Flexure length (30.00, 31.25, 32.5) B: Flexure thickness (0.05, 0.275, 0.5)

C: Flexure width (4.0, 5.0, 6.0) D: Flange thickness (1.0, 3.5, 6.0)

E: Flange width (6.0, 10.5, 15.0) F: Bob-weight length (12.0, 20.0, 28.0)

G: Copper plating thickness (0.0175, 0.035, 0.07)

All measurements are in millimeters, and the levels of all factors are coded 0, 1, and 2. For the

experiment, it was possible to produce the factor levels exactly as specified, but in mass production

variability naturally creeps in. The experimenters decided to build the production variability into the

experiment as noise factors as follows (measured in mm, except where stated):

H: Flexure length (−0.25,+0.25) P: Flexure thickness (−0.005,+0.005)

J: Flange thickness (−0.025,+0.025) K : Flange width (−0.025,+0.025)

L: Copper plating thickness (−0.005,+0.005)

M: Tolerance on bob weight mass (−9.0,+9.0 × (1/100)g)

N : Maximum horizontal amplitude of vibration (5, 25)

The two levels of each noise factor were coded as 0 and 1. Thus, the entire experiment was a 37 ×27

factorial experiment, where the 3-level factors were the design factors and the 2-level factors were

the noise factors. The treatment combination 0000000 of the design factors in conjunction with the

combination 0000000 of the noise factors would have flexure length (A) of (30.00 − 0.25) mm =
29.75 mm, flexure thickness of (0.050 − 0.005) mm = 0.045 mm, and so on.

The objective of the experiment was to select the combinations of the design factors that gave the

least amount of swing. In terms of producing a product of consistently high quality, it was also important

that the variability of the amount of swing also remain low across the different noise combinations.

The experimenters selected a product array formed from a 1
81

fraction of the 37 design-treatment

combinations and a 1
16

fraction of the 27 noise combinations. This gave a total of 27 × 8 = 216

observations. For the 37−4 fractional factorial experiment, seven columns of the orthogonal array

L27(3
13) were selected. These are indicated in Table 15.65 (p. 562). For the 27−4 fractional factorial

experiment, the orthogonal array L8(2
7) shown in Table 15.22 (p. 518) was used with the noise factors
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Table 15.29 Maximum angle of swing for the inclinometer experiment. Combinations of design factors A–G are in

rows, and combinations of noise factors H–N are in columns

Noise factors H 0 0 0 0 1 1 1 1

P 0 0 1 1 0 0 1 1

J 0 0 1 1 1 1 0 0

K 0 1 0 1 0 1 0 1

L 0 1 0 1 1 0 1 0

M 0 1 1 0 0 1 1 0

N 0 1 1 0 1 0 0 1

Design factors

ABCDEFG Mean ln(s2)

0 0 0 0 0 0 0 0.62 3.54 3.56 0.62 3.09 0.71 0.73 3.20 2.01 0.73

0 0 1 1 1 1 1 0.59 3.11 3.11 0.59 2.98 0.63 0.64 3.02 1.83 0.53

0 0 2 2 2 2 2 0.59 3.01 3.02 0.59 2.97 0.61 0.62 3.00 1.80 0.50

0 1 0 1 1 2 2 0.51 2.65 2.65 0.50 2.53 0.53 0.54 2.56 1.56 0.21

0 1 1 2 2 0 0 0.18 0.96 0.96 0.18 0.89 0.19 0.20 0.90 0.56 −1.85

0 1 2 0 0 1 1 1.88 9.58 9.55 1.85 9.30 1.92 1.94 9.48 5.69 2.80

0 2 0 2 2 1 1 0.19 1.03 1.03 0.19 0.97 0.21 0.21 0.93 0.60 −1.72

0 2 1 0 0 2 2 1.85 9.46 9.42 1.82 9.19 1.90 1.92 9.35 5.61 2.77

0 2 2 1 1 0 0 0.52 2.73 2.72 0.51 2.61 0.55 0.56 2.64 1.61 0.27

1 0 0 1 2 1 2 0.29 1.56 1.56 0.29 1.45 0.31 0.32 1.47 0.91 −0.87

1 0 1 2 0 2 0 0.95 4.98 4.93 0.94 4.79 0.99 1.00 4.82 2.93 1.48

1 0 2 0 1 0 1 1.16 6.09 6.09 1.13 5.70 1.21 1.26 5.93 3.57 1.87

1 1 0 2 0 0 1 0.26 1.45 1.45 0.25 1.30 0.29 0.30 1.30 0.83 −1.05

1 1 1 0 1 1 2 1.15 5.99 5.92 1.13 5.69 1.19 1.22 5.84 3.51 1.84

1 1 2 1 2 2 0 0.85 4.31 4.30 0.84 4.23 0.86 0.88 4.28 2.57 1.21

1 2 0 0 1 2 0 1.10 5.74 5.67 1.07 5.43 1.14 1.17 5.57 3.36 1.75

1 2 1 1 2 0 1 0.29 1.55 1.55 0.28 1.45 0.31 0.32 1.47 0.90 −0.88

1 2 2 2 0 1 2 0.91 4.64 4.66 0.90 4.56 0.94 0.95 4.57 2.77 1.35

2 0 0 2 1 2 1 0.39 2.05 2.06 0.39 1.96 0.41 0.42 1.97 1.21 −0.30

2 0 1 0 2 0 2 0.67 3.61 3.57 0.65 3.27 0.72 0.74 3.41 2.08 0.79

2 0 2 1 0 1 0 1.42 7.31 7.38 1.41 7.14 1.48 1.51 7.24 4.36 2.27

2 1 0 0 2 1 0 0.69 3.66 3.60 0.67 3.37 0.73 0.74 3.47 2.12 0.82

2 1 1 1 0 2 1 1.18 6.04 6.06 1.17 5.90 1.21 1.23 5.95 3.59 1.88

2 1 2 2 1 0 2 0.37 1.95 1.95 0.37 1.87 0.39 0.40 1.88 1.15 −0.40

2 2 0 1 0 0 2 0.39 2.15 2.16 0.38 1.94 0.44 0.44 1.96 1.23 −0.25

2 2 1 2 1 1 0 0.44 2.29 2.29 0.43 2.21 0.46 0.47 2.22 1.35 −0.07

2 2 2 0 2 2 1 1.84 9.35 9.19 1.79 9.06 1.85 1.89 9.28 5.53 2.74

Sources Lewis, Hodgson, New, and Sexton (1989). Copyright c© 1989 Mechanical Engineering Publications. Reprinted

with permission
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Table 15.30 Analysis of variance for ln(s2) response for the inclinometer experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

A 2 0.6316 0.3158

Linear A 1 0.5798 0.5798 22.73 0.0005

Quadratic A 1 0.0519 0.0519 2.03 0.1794

B 2 0.1358 0.0679

Linear B 1 0.0581 0.0581 2.28 0.1571

Quadratic B 1 0.0777 0.0777 3.05 0.1064

C 2 9.8448 4.9224

Linear C 1 9.8241 9.8241 385.18 0.0001

Quadratic C 1 0.0207 0.0207 0.81 0.3852

D 2 18.8987 9.4493

Linear D 1 18.3769 18.3769 720.53 0.0001

Quadratic D 1 0.5217 0.5217 20.46 0.0007

E 2 7.0366 3.5183

Linear E 1 7.0044 7.0044 274.63 0.0001

Quadratic E 1 0.0322 0.0322 1.26 0.2829

F 2 9.5150 4.7575

Linear F 1 9.4043 9.4043 368.73 0.0001

Quadratic F 1 0.1106 0.1106 4.34 0.0593

G 2 0.0354 0.0177 0.69 0.5184

Error 12 0.3061 0.0255

Total 26 46.4039

Table 15.31 Contrast

estimates (log var

response) for the

nonnegligible contrasts

Lin A Lin C Lin D Quad D Lin E Lin F

0.359 1.478 −2.021 0.590 −1.248 1.446

assigned to the columns in the order H, P, K , −J , −L, −M, N , where the minus signs indicate that the

column was multiplied by −1 (thus reversing the high and low levels).

The maximum absolute angle of swing was ascertained for each of the selected combinations of

design- and noise- factor levels, and these are shown in Table 15.29. The noise-factor combinations

label the columns, and the design-factor combinations label the rows. The last two columns of the table

show the average and log sample variance of the observations for the design combinations calculated

across the noise combinations.

Consider first using the log sample variance ln(s2) of the observations as the response variable. The

analysis of variance table is shown in Table 15.30. We have included the information needed for testing

the hypotheses of negligible linear and quadratic trends in each of the factors except for G. The levels

of G are not equally spaced, and therefore the correct trend contrast coefficients are not those shown

in Table A.2.

If we test the hypotheses of negligible contrasts for each trend contrast shown in Table 15.30 at

individual significance levels α
∗ = 0.01 and test the hypothesis of no effect of factor G at level

α
∗ = 0.01 (for an overall level of at most α = 0.13), we reject the hypotheses of negligible linear

trends in factors A, C, D, E, F and of a negligible quadratic trend in factor D. Factors B and G show very

little effect on log variance response, so these factors (flexure thickness and copper plating thickness)

cannot be employed to achieve less variability in the swing in the inclinometer. The contrast estimates

for the nonnegligible contrasts are shown in Table 15.31. From the signs on the contrast estimates we
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Table 15.32 Analysis of variance for average response for the inclinometer experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

A 2 0.1288 0.0644

Linear A 1 0.1023 0.1023 0.53 0.4813

Quadratic A 1 0.0264 0.0264 0.14 0.7183

B 2 0.2899 0.1449

Linear B 1 0.2850 0.2850 1.47 0.2486

Quadratic B 1 0.0049 0.0049 0.03 0.8768

C 2 12.9528 6.4764

Linear C 1 12.8863 12.8863 66.48 0.0001

Quadratic C 1 0.0665 0.0665 0.34 0.5689

D 2 24.6042 12.3021

Linear D 1 22.9193 22.9193 118.23 0.0001

Quadratic D 1 1.6850 1.6850 8.69 0.0122

E 2 9.0561 4.5280

Linear E 1 7.9385 7.9385 40.95 0.0001

Quadratic E 1 1.1177 1.1177 5.77 0.0334

F 2 11.5710 5.7855

Linear F 1 11.2476 11.2476 58.02 0.0001

Quadratic F 1 0.3234 0.3234 1.67 0.2208

G 2 0.6725 0.3362 1.73 0.2179

Error 12 2.3262 0.1938

Total 26 61.6014

Table 15.33 Contrast

estimates (average

response)

Lin C Lin D Quad D Lin E Quad E Lin F

1.692 −2.257 1.060 −1.328 0.863 1.581

see that in order to reduce the variability of the swing, factors A, C, and F should be set at their low

levels, while E should be set at its high level and, from the main effect plot in Fig. 15.8(a) D should

also be set at its high level.

In order to reduce the size of the swing, we need to use as response variable the average swing for

each design combination (averaged over the noise combinations). These are listed in Table 15.29. The

analysis of variance (shown in Table 15.32) identifies the linear trends of factors C, D, E, and F as

having large effects on the swing. The contrast estimates are shown in Table 15.33. The signs of the

estimates suggest that factors D and E should be set at their high levels and factors C and F at their

low levels. Since this agrees with the conclusions of the analysis of variability, it is possible to reduce

the size and the variability of the swing simultaneously.

Plots of the least squares estimates of the effect of the levels of factor D for both log sample variance

and average response are shown in Fig. 15.8. The conclusions of the experiment are that the dimensions

of the flexure and bob-weight (A, C, F) should be decreased, while the dimensions of the flange (D,

E) should be increased. The experimenters comment in the article that the results match what would

be expected by engineering principles. The SAS and R commands for analyzing this product array

experiment are discussed in Examples 15.9.1 and 15.10.1, respectively.
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Fig. 15.8 Plots of the effect of the levels of factor D for the inclinometer experiment, where xijklmnp denotes average

response and vijklmnp denotes the log sample variance ln(s2) for corresponding design factor combinations

15.8 Small Screening Designs: Orthogonal Main Effect Plans

15.8.1 Saturated Designs

A design is called saturated if it uses only n treatment combinations, observed once each, to estimate

n − 1 factorial contrasts plus a mean. Saturated designs were studied in Sect. 7.5, p. 219, under the

heading “one observation per cell”. Due to the lack of degrees of freedom for estimating σ
2, half-

normal probability plots and the Voss-Wang method of simultaneous confidence intervals were used to

identify contrasts with large effects. Similarly, the soup fractional factorial experiment in Sect. 15.2.3,

p. 499, used a saturated design with n = 16 observations to measure a mean, 5 main effects and 10

two-factor interactions, using a half-normal probability plot for identifying unusually large contrasts.

In the extreme case, a saturated design may have only n observations for measuring the main effects

of p = n − 1 factors plus a mean, in which case interactions cannot be measured separately from the

main effects. If the n − 1 main effect contrasts are orthogonal, such designs are known as orthogonal

main-effect plans. For example, the two designs in Table 15.21, p. 517, are saturated orthogonal main-

effect plans for measuring the main effects of three factors, and the design of Table 15.22 is a saturated

orthogonal main effect plan for measuring the main effects of 7 two-level factors. The design discussed

in Sect. 15.3.2, p. 511, is an orthogonal main effect plan for four 3-level factors and n = 9 observations,

and so is the design of Table 15.28, p. 523.

Orthogonal main-effect plans can be used in the early stages of experimentation with the objective

of finding the factors with large main effects, and with the intention of investigating their interactions

later. Implicitly, such a strategy assumes that any factors which interact will also have large main

effects and so will not be screened out in the initial experiment. This assumption may not, of course,

be true. For example, in the soup experiment of Sect. 15.2.3, the largest effects by far were the BE

interaction and the E main effect, but the main effect of B was extremely small. So, if only the main

effects had been estimated in a screening experiment, factor B would not have been selected for follow

up and the large BE interaction would not have been detected. Nevertheless, it does appear that in

many experiments both factor main effects do tend to appear large when the corresponding two factors

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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interact. So, in an initial screening experiment with very few observations, experimenters will often

be content to measure main effects only.

Until now, for two-level factors, and the number of observations being a power of 2, we have

constructed orthogonal main effect plans as in Sect. 15.6.1, p. 516. For n = 2q, we wrote down q

columns where the cth column has n/2q−c alternating sets of 2q−c entries of −1s and +1s (c =
1, . . . , q) as, for example, in Table 15.22, p. 518. The remaining columns were formed as products

of corresponding coefficients in the first q columns taken in pairs, then in triples, and so on. We then

labeled the columns in terms of main effect and interaction contrasts and determined the aliasing

scheme from the relationship among the contrast coefficients. If all n − 1 columns are used to measure

main effects, the design is a saturated orthogonal main effect plan.

If n is not a power of 2, the above strategy cannot be used for obtaining an orthogonal main effect

plan. In a paper in Biometrika in 1946, R.L. Plackett and J.P. Burman provided a different method of

constructing saturated orthogonal main effect plans with n observations for p = n−1 two-level factors.

This method can be used for many values of n which are multiples of 4 (including powers of 2). When

n is a power of 2, these designs are likely to have similar aliasing properties to those discussed above.

Otherwise, they are very different and, although all pairs of main-effect contrasts are orthogonal, we

cannot write down a defining relation. Fractional factorial designs without defining relations are called

non-regular, while designs that do have defining relations are called regular. In non-regular designs,

main effect contrasts are correlated with interaction contrasts, but they may not be completely aliased

with them.

Plackett and Burman’s construction of orthogonal main effect plans uses a cyclic method. They listed

the first row of each orthogonal array, called the generator. The entire orthogonal array is obtained

from the generator by repeatedly cycling it to the right to obtain subsequent rows, and then appending

a row of −1’s. Such designs are known as Plackett–Burman designs. Some generators for cyclically

generated orthogonal main-effect plans for n = 8, 12, 16, 20 and 24 are listed in Table 15.63, and

further generators are given in Plackett and Burman’s paper. Interestingly, for n = 28 (and some larger

sizes), there is no generator that can construct an orthogonal main effect plan by cycling in this way,

and Plackett and Burman used a different method of construction for these sizes.

As an example of a Plackett–Burman design, if we take the generator for n = 12 from Table 15.63,

we have

1 1 1 −1 1 1 −1 1 −1 −1 −1,

and this gives us the first row of the orthogonal array. Cycling this to the right, and wrapping the end

round to the beginning, we get the second row of the array as

−1 1 1 1 −1 1 1 −1 1 −1 −1 .

By repeatedly cycling row by row, we obtain 11 distinct rows. The 12th row of −1’s is then added so

that each factor appears n/2 times at its high level and n/2 times at its low level. The resulting array

is shown in Table 15.34. The rows should be randomly ordered before the design is used.

We can check that all pairs of columns are orthogonal, so main effects can be estimated independently

of each other. But the design is non-regular and has no defining relation. (Notice that we can also create

the array in Table 15.34 by cycling to the left; rows 2–10 will just be in reverse order).

Some non-regular orthogonal main effect plans also exist for factors with more than 2 levels. For

example, the orthogonal array L18(3
6 × 6) of Table 15.64, at the end of the chapter, is a saturated

orthogonal main effects plan for n = 18 observations for 6 three-level factors (whose main effects

require 2 degrees of freedom each) and one six-level factor (whose main effect requires 5 degrees of
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Table 15.34 A Plackett–Burman saturated orthogonal main-effect plan for 11 factors and 12 observations

1 1 1 −1 1 1 −1 1 −1 −1 −1

−1 1 1 1 −1 1 1 −1 1 −1 −1

−1 −1 1 1 1 −1 1 1 −1 1 −1

−1 −1 −1 1 1 1 −1 1 1 −1 1

1 −1 −1 −1 1 1 1 −1 1 1 −1

−1 1 −1 −1 −1 1 1 1 −1 1 1

1 −1 1 −1 −1 −1 1 1 1 −1 1

1 1 −1 1 −1 −1 −1 1 1 1 −1

−1 1 1 −1 1 −1 −1 −1 1 1 1

1 −1 1 1 −1 1 −1 −1 −1 1 1

1 1 −1 1 1 −1 1 −1 −1 −1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

freedom). Also, the orthogonal array L27(3
13) shown in Table 15.65 is a saturated orthogonal main

effects plan with n = 27 observations for 13 three-level factors.

Example 15.8.1 Lactic acid experiment

B. Naveena, M. Altaf, K. Bhadriah, and G. Reddy, in their 2005 paper in Bioresource Technology used

a Plackett–Burman design with n = 16 observations to screen the main effects of 15 factors. They

wanted to find out which factors most affect the amount of “L(+) lactic acid” produced from wheat

bran using microbial metabolism in solid state fermentation. They explained that L(+) lactic acid is

used widely, including in foods, anti-inflammatory drugs, and synthesis of biodegradable products.

The purpose of the experiment was to take a step towards the use of renewable cheap raw material

Table 15.35 Plackett–Burman design and data (g. lactic acid per 10g. wheat bran) for the lactic acid experiment

A B C D E F G H I J K L M N P y

1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 −1 1.4659

−1 1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 1.4284

−1 −1 1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 1.1367

−1 −1 −1 1 1 1 1 −1 1 −1 1 1 −1 −1 1 2.3041

1 −1 −1 −1 1 1 1 1 −1 1 −1 1 1 −1 −1 2.2765

−1 1 −1 −1 −1 1 1 1 1 −1 1 −1 1 1 −1 1.2114

−1 −1 1 −1 −1 −1 1 1 1 1 −1 1 −1 1 1 1.8786

1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 1 −1 1 0.9304

1 1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 1 −1 0.9730

−1 1 1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 1 1.1137

1 −1 1 1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 0.9961

−1 1 −1 1 1 −1 −1 1 −1 −1 −1 1 1 1 1 1.0268

1 −1 1 −1 1 1 −1 −1 1 −1 −1 −1 1 1 1 1.7966

1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 −1 1 1 1.2928

1 1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 −1 1 0.8937

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1.0449

Sources Naveena et al., Bioresource Technology, 2005, published by Elsevier
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Table 15.36 Contrast estimates for the lactic acid experiment

A B C D E F G H

−0.065 −0.370 −0.044 −0.076 0.238 0.428 0.349 −0.016

I J K L M N P

0.276 0.036 −0.331 0.287 −0.026 −0.143 0.088
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Fig. 15.9 Half-normal probability plot of normalized contrast absolute estimates for the lactic acid experiment

(here, wheat bran) for large scale production of L(+) lactic acid. The fifteen factors that were studied

consisted of three physical factors (which we label A–C), a buffer (D), and eleven nutrients (E–N , P).

The Plackett–Burman design that was used can be obtained by cycling from the generator of

Table 15.63. The design and the responses (grams of lactic acid per 10 grams of wheat bran) are

shown in Table 15.35 before randomization. The 15 main effect contrast estimates (with divisor 1.0)

and a corresponding half-normal probability plot are shown in Table 15.36 and Fig. 15.9.

We can see that with only n = 16 observations, it is possible to identify 7 (or possibly 8) of the

15 factors as likely to be the most influential in the lactic acid production. In order of size of contrast

estimate, the 8 factors with the largest main effects are those labeled F, B, G, K , L, I , E, and N , which

are all nutrients except for B which is a physical factor. These 8 factors can then be followed up in a

later experiment, and their interactions examined. Since the main effect estimates for the five factors

F, G, L, I , and E are all positive, the experimenters suggested that these should be examined at higher

levels in the next experiment.

The estimate for the main effect of nutrient K is negative, and the experimenters commented that

the wheat bran is already rich in this nutrient, so this nutrient may not need to be added in future

experiments. The low level of factor N had already been set at zero, so a negative main effect estimate

suggests that this nutrient, too, need not be added in future. The factor B main effect estimate is

also negative and it was suggested that this be retained at its low level. Thus, main effects of only 5

factors and their interactions need to be followed up in future and this could be done in a full factorial

experiment with 32 observations, or a resolution V half fraction with 16 observations. �

It is not necessary to assign all of the columns of an orthogonal main effect plan to factors. For

example, the design of Table 15.35 could have been used to measure the main effects of factors A–L

only and, if so, this would no longer be a saturated design—there would be 3 degrees of freedom for

error. Similarly, seven of the 13 columns of the orthogonal main effect plan L27(3
13) of Table 15.65

was used as a non-saturated orthogonal main effect plan for the seven 3-level design factors in the
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inclinometer experiment of Sect. 15.7.1. The orthogonal array L18(3
7 × 2) indicated in the right hand

side of Table 15.64 is a non-saturated orthogonal main effect plan with two degrees of freedom for

error.

15.8.2 Supersaturated Designs

A design is called supersaturated if the number of factorial effects to be estimated, plus the mean,

exceeds the number of observations. In some sense, all the regular fractional factorial designs in

the earlier sections are supersaturated if an insufficient number of interactions can be assumed to be

negligible. For instance, in the sludge experiment of Example 15.2.1, p. 502, there were only n = 8

observations but, ideally, 5 main effects, 10 interactions and a mean were of interest. Similarly, in

the refinery experiment of Example 15.3.1, p. 507, there were 4 main effects (requiring 2 degrees of

freedom each), 6 two-factor interactions (requiring 4 degrees of freedom each) and a mean of interest

– a total of 33 factorial effects, but only n = 27 observations could be taken. In both of these examples,

and others like them, contrasts were either in the defining relation and could not be measured at all,

or were measurable within a set of aliased contrasts. Aliased contrast estimators were completely

correlated and non-aliased contrast estimators were independent.

However, the word supersaturated is not usually applied to fractions with alias schemes. Rather,

the term is usually reserved for designs in which, although there are fewer observations than contrasts

of interest plus the mean, some information can be gained on all contrasts. To achieve this, one must

give up the idea of independent estimates and allow some or all contrast estimators to be correlated. In

the extreme case of fewer observations than the number of factors (n < p), it is usually necessary to

estimate main effects only and to postpone consideration of interactions among important factors to a

later date.

Since the contrast estimates will be correlated, we would like the correlations to be as small as

possible. The correlation between contrast estimators can be calculated using the information about

the covariance of two contrast estimators from Sect. 6.7.2, and dividing by the square root of the product

of their variances to obtain the formula for correlation. Following Sect. 6.7.2, p. 172, the estimators of

the two contrasts �ciτi and �ksτs, with one observation per treatment combination in the design, have

correlation

Corr

(
n∑

i=1

ciYi

n∑

s=1

ksYs

)
=

∑n
i=1

∑n
s=1 ciks√∑

c2
i

∑
k2

s

.

For two-level factors, each of the n contrast coefficients is −1 or +1, so

Corr

(
n∑

i=1

ciYi

n∑

s=1

ksYs

)
= 1

n

n∑

i=1

n∑

s=1

ciks . (15.8.1)

In general, our recommendation is only to consider using a supersaturated design if the largest correla-

tion between two columns is at most 1/3 and if there are likely to be very few large main effects, say at

most n/3 (effect sparsity), (see Example 15.8.2 for problems that may be encountered in supersaturated

designs when there are many large effects.)

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 15.37 A supersaturated design with nssd = n/2 = 6 observations for measuring main effects of up to n−2 = 10

factors, obtained from a Plackett–Burman design with n = 12 rows

−1 −1 −1 1 1 1 −1 1 1 −1

−1 1 −1 −1 −1 1 1 1 −1 1

1 −1 1 −1 −1 −1 1 1 1 −1

−1 1 1 −1 1 −1 −1 −1 1 1

1 −1 1 1 −1 1 −1 −1 −1 1

1 1 −1 1 1 −1 1 −1 −1 −1

One Method of Construction

There have been a few simple methods of construction proposed for supersaturated designs with n < p,

and we describe one here that selects rows from a non-regular orthogonal main effect plan. This method

was proposed by D. Lin in his article in Technometrics, 1993, and results in nssd = n/2 observations

for investigating main effects of p = n − 2 two-level factors. The method uses an approach similar to

that used in forming regular fractions from orthogonal arrays in Sect. 15.6. It starts with an orthogonal

main effect plan with n rows and n − 1 columns containing an equal number of −1 and +1, with n

being a multiple of 4. It then selects one column, called a branching column, and takes the nssd = n/2

rows which have +1 in the branching column. The nssd = n/2 rows which have −1 could be taken

instead.

In passing, we note that, when a column of +1s (representing the mean) is appended to a saturated

orthogonal main effect plan with n observations and n − 1 two-level factors, the resulting n × n array

is often referred to as a Hadamard matrix. So, a supersaturated design constructed as above is often

referred to as being constructed from a Hadamard matrix using a branching column.

All of the orthogonal main effect plans in Table 15.63 with number of rows n being a multiple of

4, but not a power of 2, can be used to construct supersaturated designs using a branching column in

this way. When n is a power of 2, this technique may lead to complete aliasing between main effect

contrasts. For example, in the design of the lactic acid experiment of Table 15.35, if we were select

the last column (labeled P) as a branching column, and keep just those rows which have −1 in the

branching column, then the main effect contrast of A would be identical to that of L, and the main

effect contrast of C would be identical to that of D, and so on, giving a Resolution II design.

Complete aliasing between main effect contrasts does not occur using the cyclic generators of

Table 15.63 when n is a multiple of 4 but not a power of 2. For example, suppose we generate the

Plackett–Burman design in Table 15.34 using the generator for n = 12 from Table 15.63. If we select

the last column as the branching column, and keep only the rows that have +1 in this column, we

obtain the supersaturated design in Table 15.37 with nssd = 6 observations for measuring main effects

of up to n − 2 = 10 factors. The treatment combinations in the supersaturated design can be identified

from the rows of Table 15.37, with −1 representing the low level and +1 representing the high level

of each factor. The rows should be randomly ordered before the design is used.

Using (15.8.1), we can verify that all pairs of contrast estimators have correlation 0.33 or −0.33.

However, there is some hidden aliasing which is not easy to notice. If we take the contrasts for B, D

and H and multiply the corresponding coefficients together, we obtain contrast C. There are several

other hidden aliases of this type, too. Thus, this design should only be used in a setting where at most

nssd/3 = 2 main effects are expected to be large. Otherwise, there will be problems with masking of

effects. Example 15.8.2 shows that this design is successful in identifying two large main effects, but

not three. Similar issues hold for all very small designs.
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Analysis of a Supersaturated Design

In a supersaturated design, there are too many factors (and too few observations) to fit a model by

least squares that contains all main effects so, typically, smaller models are investigated. But, even

so, contrast estimates are not likely to be independent which means that half normal probability plots

cannot be used here. Even when there are few large main effects, any analysis of supersaturated designs

is tricky due to the hidden aliases. Various sophisticated methods of analysis have been researched,

including certain “penalized regression” techniques which are outside the scope of this book. One

simple method is to compare the fit of all possible regression models (Chap. 8) containing first one

variable, then two variables, then three variables, and so on, up to p = n − 1 variables; a technique

called all-subsets regression. There are still decisions to be made on how to select the best of these

models, and most software packages will present options for these. Here, we will compare only the

R2 values for models (see (8.6.1) in Sect. 8.6.1), but alternative more sophisticated methods would

be preferable. Research is still continuing today on the best methods of selecting influential factors

(or variables) when the number of observations is so small. With so few observations, the selected

model should be taken only as a possible selection of the most influential factors, and not as a model to

explain the data. The potentially influential factors that are identified must be followed up in a future

experiment; some of the identified factors may have only appeared to have had large effects due to the

hidden aliasing.

Example 15.8.2 Identifying influential factors

In this example, we examine how the contrast correlations, that are an unavoidable part of a supersatu-

rated design, might affect the identification of the factors that influence the response. Let us start with

an example using the orthogonal main effects plan with n = 12 observations in Table 15.34 and label

the columns to be the main effect contrasts of the ten factors A, B, . . . , J . This same design is shown

in columns 3–12 of Table 15.39, p. 537, together with two sets of responses listed as yBD and yBDH in

the first two columns. The data yBD in the first column were created by assuming that the contrast main

effect values for B and D are 16 and 24, respectively, and all other main effect values are randomly

selected from a N(0, 2) distribution and random errors from a N(0,1) distribution. Using data yBD, we

calculate the contrast estimates by multiplying the contrast coefficient by the corresponding response

and dividing by v/2 = 6, we obtain the estimates in Table 15.38. Since we used an orthogonal main

effects plan (Plackett–Burman design), these are independent estimates. It can be seen that factors B

and D clearly have the largest main effects and these would be selected as the only two influential

factors. An all subsets regression will also identify these two factors as the most influential, and the

regression model is

ŷ = 34.70 + 7.62x2 + 12.62x4 ,

where x2 and x4 are the coded levels ±1 of factors B and D and, when multiplied by 2, the corresponding

parameter estimates match the contrast estimates in Table 15.38. (The difference of a factor of 2 is due

to the fact that the levels ±1 are 2 apart and are treated as actual values rather than coded levels for the

regression model).

Table 15.38 Main effect contrast estimates obtained from the Plackett–Burman design in Example 15.8.2

A B C D E F G H J K

−1.84 15.24 1.37 25.24 −0.23 0.08 −1.30 −0.78 1.55 −0.05

http://dx.doi.org/10.1007/978-3-319-52250-0_8
http://dx.doi.org/10.1007/978-3-319-52250-0_8
http://dx.doi.org/10.1007/978-3-319-52250-0_8
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Now, taking the column labeled K in Table 15.39 as the branching column and keeping only those

rows corresponding to +1 in this column, we obtain the supersaturated design with nssd = 6 observa-

tions in Table 15.37.

An all-subsets regression would again select factors B and D. A regression model containing these

two factors has R2, so accounts for 97.7% of the variability in the data. The fitted model is

ŷ = 34.62 + 7.08x2 + 11.97x4 ,

which is very similar to that obtained from the orthogonal main effects plan. However, with so few

observations, the model should not be used for prediction; it should only be used as a guide to which

factors are to be followed up in a future experiment. At the follow-up stage, a predictive model can

be fitted, and the interaction between B and D can be examined. Also, notice that the number of large

main effects in this example is, as recommended, not more than nssd/3 = 2.

If we try to use this design in a situation where there are, say, three large main effects, the contrast

correlations will most likely prevent the correct factors from being selected. For example, the data set

yBDH in Table 15.39 was created to correspond to true values of the main effects of B, D and H equal

to 16, 24, 14, respectively, and these influential factors will be selected when using the orthogonal

main effects plan. But from the supersaturated design, only factor D can be detected, and an all-subsets

regression will identify C as a second influential factor. This is due to the hidden aliasing in which

the main effect contrast of C is defined by the main effect contrasts of B, D and H, as described

above. �

Example 15.8.2 illustrates that supersaturated designs can be successful in detecting the important

factors provided that there is only a small number of these (say, at most nssd/3) compared with the

number of observations, nssd . Analysis of the data in Example 15.8.2 is illustrated in Sects. 15.9.3

and 15.10.3, for the SAS and R software respectively.

15.8.3 Saturated Orthogonal Main Effect Plans Plus Interactions

Saturated orthogonal main effect plans which are equivalent to regular fractions do not give scope

for estimating interactions independently of main effects. One can draw interaction plots as we did in

Chaps. 6 and 7, but since the interactions are aliased with main effects, one cannot separate out the

information. However, non-regular saturated orthogonal main effect plans for n not a power of 2 do,

in general, offer the ability to gain some information on a few 2-factor interactions.

For example, if we take the Plackett–Burman design of Table 15.34, p. 531, and add the AB and

AC interaction contrasts, we obtain the set of contrasts in Table 15.39. Notice that neither interaction

column is identical to any main effect column and all correlations of interaction columns with main

effect columns are 0.333 or −0.333. After adding interaction contrasts to the plan, such designs are

supersaturated and so the same cautions and methods of analysis discussed in the previous section

apply. Much more has been written on the topic of estimating interactions for non-regular fractions. A

summary can be found in the paper of Xu et al. (2009).

An alternative possibility of measuring not only added interactions but also quadratic trends in main

effects is given by the definitive screening designs outlined in the next section.

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 15.39 Main effect, AB, and AC interaction contrasts for the saturated orthogonal main-effect plan of Table 15.34,

together with the responses for Example 15.8.2

yBD yBDH A B C D E F G H I J K AB AC

28.99 35.99 1 1 1 −1 1 1 −1 1 −1 −1 −1 1 1

57.32 50.33 −1 1 1 1 −1 1 1 −1 1 −1 −1 −1 −1

39.40 46.40 −1 −1 1 1 1 −1 1 1 −1 1 −1 1 −1

40.83 47.84 −1 −1 −1 1 1 1 −1 1 1 −1 1 1 1

13.35 6.35 1 −1 −1 −1 1 1 1 −1 1 1 −1 −1 −1

28.17 35.17 −1 1 −1 −1 −1 1 1 1 −1 1 1 −1 1

13.98 20.98 1 −1 1 −1 −1 −1 1 1 1 −1 1 −1 1

54.51 61.51 1 1 −1 1 −1 −1 −1 1 1 1 −1 1 −1

32.85 25.85 −1 1 1 −1 1 −1 −1 −1 1 1 1 −1 −1

39.78 32.78 1 −1 1 1 −1 1 −1 −1 −1 1 1 −1 1

52.08 45.08 1 1 −1 1 1 −1 1 −1 −1 −1 1 1 −1

15.15 8.15 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1

Table 15.40 Design and data for the vaccine experiment

AL BL CL DL EL FL Response

0 1 −1 −1 −1 −1 3.6

0 −1 1 1 1 1 28.2

1 0 −1 1 1 −1 22.0

−1 0 1 −1 −1 1 4.2

−1 −1 0 1 −1 −1 2.7

1 1 0 −1 1 1 27.5

−1 1 1 0 1 −1 2.5

1 −1 −1 0 −1 1 31.9

1 −1 1 −1 0 −1 14.9

−1 1 −1 1 0 1 8.5

1 1 1 1 −1 0 30.7

−1 −1 −1 −1 1 0 2.9

0 0 0 0 0 0 14.4

Source Erler et al. (2013), Biotechnology Letters, c© 2012 Springer Science + Business Media Dordrecht

15.8.4 Definitive Screening Designs

Definitive screening designs were introduced by Jones and Nachtsheim in the Journal of Quality

Technology in 2011. These designs have three-level factors, and allow estimation of linear and quadratic

main effect trends as well as linear×linear trends in the interactions.

Jones and Nachtsheim list definitive screening design plans for p = 4, . . . , 12 factors (for example,

the design for p = 6 is shown in Table 15.40). The rows need to be randomly ordered before the designs

are used. The designs given for p = 4, 6, 8, and 10 allow the main effect linear trends to be estimated

independently of all linear and quadratic main effect trends, and independently of the linear×linear

interaction contrasts. For other cases, the linear trend contrasts are not quite orthogonal, but they can

still be estimated independently of the quadratic main effects and the linear×linear interaction trend

contrasts. The quadratic trends are not orthogonal to each other nor to the linear×linear trends, but they

are not completely confounded (—in Table 15.40, for example, each linear×linear contrast is a function

of the quadratic trends for all factors not involved in the interaction). Because of the correlations, all

contrast estimates must be least squares estimates which are adjusted for other effects in the model.
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Definitive screening designs are supersaturated in the sense that, for p factors, they use only 2p + 1

observations to measure a total of p(p + 3)/2 trend contrasts plus a mean (e.g. if there are p = 4

factors, a definitive screening design uses 9 observations to measure 8 linear and quadratic main effect

trend contrasts, 6 interaction linear×linear trend contrasts and a mean). Like supersaturated designs,

definitive screening designs may be analyzed using all-subsets regression or a more sophisticated

“penalized regression” technique. As in Chap. 7, if the selected model contains linear×linear interaction

terms, the constituent linear main effect terms should be included too.

Example 15.8.3 Vaccine experiment

An experiment, described by Erler, de Mas, Ramsey, and Henderson in Biotechnology Letters (2013),

was run to study the effect of p = 6 factors on a particular chemical reaction related to a candidate

vaccine product. The experimenters were interested in the linear and quadratic main effects of the

factors and the linear×linear interactions, so there were 28 contrasts of interest. They used the definitive

screening design from the paper of Jones and Nachtsheim (2011), which is shown in Table 15.40, plus

some extra repeats of the final treatment combination (which we are not using here).

The response is a measure of “extent of polymerization” and is shown in the last column of

Table 15.40. The data were collected in a random order. An all-subsets regression run with all linear

terms xi (with values as in Table 15.40), quadratic terms x2
i , and linear×linear terms xixj, selects the lin-

ear trends in A, F, and D as being the most influential, with the possible addition of the linearC×linearD

trend. The regression model involving these four effects, together with the linear C main effect is

ŷ = 14.92 + 10.62x1 + 1.16x3 + 3.90x4 + 5.46x6 + 1.98x3x4 ,

and this accounts for 98% of the variability in the data. �

15.9 Using SAS Software

15.9.1 Fractional Factorials

The analysis of a fractional factorial experiment by computer is identical to that of a single-replicate

factorial experiment (Sect. 7.6, p. 225) except that only one effect should be entered into the model

from each line of the aliasing scheme (and none from the defining relation). If two aliased effects are

entered into the model, the Type I sum of squares and degrees of freedom will be zero for the second

effect entered, and the Type III sum of squares and degrees of freedom will be zero for both effects.

In Table 15.41 we show a straightforward program for analyzing the sludge experiment of Exam-

ple 15.2.1. The cell-means model in terms of the treatment combinations TC is used. (Variables A–E are

created for later use.) Using PROC GLM, the analysis of variance is generated in the usual way by the

MODEL statement, while the contrast estimates are obtained by the ESTIMATE statements, using the

contrast coefficients listed in Table 15.7 (p. 503). The output is shown in Fig. 15.10. The main effects

are each aliased with 2-factor (and 3-factor) interactions (see p. 503). The 2-factor interactions AC

and BC are aliased with BE and AE, respectively. Since there is only one observation on each of the

observed treatment combinations, the cell-means model leaves no degrees of freedom for error—this

is why the p-values and values of test statistics and standard errors are either missing or meaningless.

The inclusion of the DIVISOR=4 options in the ESTIMATE statements ensures that all the contrasts

listed in Table 15.7 will be divided by v/2 = 4 and give the same estimates as those in Table 15.8

(p. 503).

http://dx.doi.org/10.1007/978-3-319-52250-0_7
http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 15.41 SAS program for the sludge experiment—cell-means model

DATA SLUDGE;

INPUT A B C D E Y;

TC = 10000*A + 1000*B + 100*C + 10*D + E;

LINES;

0 0 0 1 0 195

0 0 1 1 1 496

0 1 0 0 1 87

0 1 1 0 0 1371

1 0 0 0 1 102

1 0 1 0 0 1001

1 1 0 1 0 354

1 1 1 1 1 775

;

PROC GLM;

CLASS TC;

MODEL Y = TC;

ESTIMATE ’A’ TC -1 -1 -1 -1 1 1 1 1 / DIVISOR = 4;

ESTIMATE ’B’ TC -1 -1 1 1 -1 -1 1 1 / DIVISOR = 4;

ESTIMATE ’C’ TC -1 1 -1 1 -1 1 -1 1 / DIVISOR = 4;

ESTIMATE ’D’ TC 1 1 -1 -1 -1 -1 1 1 / DIVISOR = 4;

ESTIMATE ’E’ TC -1 1 1 -1 1 -1 -1 1 / DIVISOR = 4;

ESTIMATE ’AC’ TC 1 -1 1 -1 -1 1 -1 1 / DIVISOR = 4;

ESTIMATE ’BC’ TC 1 -1 -1 1 1 -1 -1 1 / DIVISOR = 4;

In Table 15.42, we show the SAS program for the equivalent model written in terms of main-effect

and interaction parameters. TheESTIMATE statements for the main effects need no divisors, as they are

automatically divided by 4 (the number of observations on each of the high and low levels). However,

the ESTIMATE statements for the interaction contrasts include the option DIVISOR=2, to increase

the actual divisor by a factor of 2. Without this option, the interaction estimates would be calculated

with divisor 2 (the number of observations on each combination of levels of the two factors). The

main-effect and interaction sums of squares are shown in Fig. 15.11. The output from the ESTIMATE

statements is identical to that obtained from the cell-means model.

Again, there are no degrees of freedom for error, since a term has been included in the model from

every row of the aliasing scheme. If all 2-factor interactions can be assumed to be negligible, then AC

and BC would be omitted from the model, leaving 2 degrees of freedom for error.

Consider what would happen if two aliased terms were entered into the model. The defining relation

for the 1
4

-fraction was stated in Example 15.2.1 to be I = ABD = CDE = ABCE. Consequently, A

is aliased with BD. Adding BD into the model subsequent to A would give Type I sum of squares and

degrees of freedom for BD equal to zero. This is because BD adds no more information if A is already

in the model. The Type III sums of squares would be zero for both A and BD, since each would be

added into the model assuming that the other is already in the model.

15.9.2 Design for the Control of Noise Variability

We now turn to the analysis of experiments involving design and noise factors, often known as Taguchi

experiments. These were discussed in Sect. 15.7. There are two approaches to the analysis. The first

approach involves the analysis of the mean and variance of the response observed for each design-

treatment combination, calculated over the levels of the noise factors. The second approach involves
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Fig. 15.10 Output from

SAS program for the

sludge

experiment—cell-means

model

Table 15.42 SAS program for the sludge experiment—five-way model

PROC GLM;

CLASSES A B C D E;

MODEL Y= A B C D E A*C B*C;

ESTIMATE ’A’ A -1 1;

ESTIMATE ’B’ B -1 1;

ESTIMATE ’C’ C -1 1;

ESTIMATE ’D’ D -1 1;

ESTIMATE ’E’ E -1 1;

ESTIMATE ’AC’ A*C 1 -1 -1 1 / DIVISOR=2;

ESTIMATE ’BC’ B*C 1 -1 -1 1 / DIVISOR=2;
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Fig. 15.11 Output from

the SAS program for the

sludge

experiment—five-way

model

the study of design-by-noise interactions. The first approach requires every noise combination to be

observed with every design combination (that is, a product array), and the second approach requires

randomization of all observed combinations of noise and design factors taken together.

Example 15.9.1 Inclinometer experiment—product-array approach

The inclinometer experiment was described in Sect. 15.7.1, and the data are shown in Table 15.29

(p. 526). Since this is a product array, the analysis will be done on the average and log variance of the

responses over the levels of the noise factors, and these do not need to be identified in the SAS program

input. Thus, the SAS program in Table 15.43 reads in the data corresponding to each combination of

levels of the seven design factors (A–G) without identifying the levels of the noise factors. The average

AVY and the log sample variance LNVAR of the observations for each design-treatment combination is

computed and added to the data set. Since only 27 (i.e., 33) of the 37 design combinations are observed,

we have a 37−4 fractional factorial experiment with two possible response variables.

Two analyses are requested in Table 15.43. The first uses the response variable LNVAR. An analysis

of variance table is requested via the PROC GLM statement for the model that includes main effects

but no interactions. The least squares means for the levels of the design variables are requested via

the LSMEANS statement, and these can be used to prepare plots such as those shown in Fig. 15.8

(p. 529). Linear and quadratic trends in each design factor can be tested via ESTIMATE or CONTRAST

statements, only two of which are shown in the program. The final section of the program in Table 15.43

uses the response variable AVY. The output is similar to that shown in Tables 15.30, 15.31, 15.32 and

15.33, pp. 527–528. �

For a mixed array, in which observed combinations of noise and design factors taken together are

randomized, the analysis is done in a similar way to that of Chap. 7. In the SAS program, for the

mixed-array approach, it is necessary to input the levels of the noise factors as well as those of the

design factors. The model should include the main effects of the design and noise factors and at least the

design-by-noise interactions. The design-by-noise interactions help in identifying those design factors

whose levels give the most stable response as the noise factor levels change. Interaction plots for the

significant design-by-noise interactions are made in the same way as those described in Sect. 6.8.3. If

the noise factor levels are placed on the horizontal axis as in Fig. 15.7, p. 525, the levels of the design

factor(s) that are most robust to the noise level fluctuations are those whose average responses result in

lines closest to horizontal across the noise factor levels (cf. level 3 of factor A in Fig. 15.7(b), p. 525).

http://dx.doi.org/10.1007/978-3-319-52250-0_7
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 15.43 SAS program for the product array analysis of the inclinometer experiment

DATA INCLP;

INPUT A B C D E F G Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8;

AVY = (Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8)/8;

VAR = ((Y1*Y1 + Y2*Y2 + Y3*Y3 + Y4*Y4 + Y5*Y5 + Y6*Y6

+ Y7*Y7 + Y8*Y8) - 8*AVY*AVY)/7;

LNVAR = LOG(VAR);

LINES;

0 0 0 0 0 0 0 0.62 3.54 3.56 0.62 3.09 0.71 0.73 3.20

0 0 1 1 1 1 1 0.59 3.11 3.11 0.59 2.98 0.63 0.64 3.02

: : : : : : : : : : : : : : :

2 2 2 0 2 2 1 1.84 9.35 9.19 1.79 9.06 1.85 1.89 9.28

;

* Analysis of the log sample variance;

PROC GLM;

CLASS A B C D E F G;

MODEL LNVAR = A B C D E F G;

ESTIMATE ’Lin A’ A -1 0 1;

ESTIMATE ’Quad A’ A 1 -2 1;

: : : : : : :

ESTIMATE ’Quad F’ F 1 -2 1;

CONTRAST ’Lin A’ A -1 0 1;

CONTRAST ’Quad A’ A 1 -2 1;

: : : : : : :

CONTRAST ’Quad F’ F 1 -2 1;

LSMEANS A B C D E F G;

;

* Analysis of the sample mean;

PROC GLM;

CLASS A B C D E F G;

MODEL AVY = A B C D E F G;

ESTIMATE ’Lin A’ A -1 0 1;

ESTIMATE ’Quad A’ A 1 -2 1;

: : : : : : :

ESTIMATE ’Quad F’ F 1 -2 1;

CONTRAST ’Lin A’ A -1 0 1;

CONTRAST ’Quad A’ A 1 -2 1;

: : : : : : :

CONTRAST ’Quad F’ F 1 -2 1;

LSMEANS A B C D E F G;

15.9.3 Analysis of Small Screening Designs

For a small design with nd observations, one method of searching for the k most influential factors, for

any given k (1 ≤ k ≤ nd −1), is to select the factors that would result in a linear regression model with

largest value of R2. This is a simple method of analysis and is not guaranteed to select the best set of k

factors, especially when the estimates are highly correlated. Nevertheless, we saw in Example 15.8.2

that, for simple problems, the method can work reasonably well and solutions for different values of

k can be compared. In the SAS software, this method is easily achieved by adding an option to the

model statement as follows:
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Table 15.44 Results of the RSQUARE option

Number in model R-Square Variables in model Number in model R-Square Variables in model

1 0.6597 D 1 0.7111 C

1 0.3808 E 1 0.5778 D

1 0.3452 H 1 0.2694 E

2 0.9774 B D 2 0.9693 C D

2 0.8730 E I 2 0.8670 C G

2 0.8672 C H 2 0.7970 C H

3 0.9985 B D G 3 0.9957 A C G

3 0.9871 B D I 3 0.9957 C D G

3 0.9871 B D E 3 0.9957 A C D

3 0.9871 D E I 3 0.9957 A D G

PROC REG;

MODEL Y = A B C D E F G H I J / SELECTION = RSQUARE BEST = 6;

TheSELECTION=RSQUAREoptions asks SAS to check R2 for linear models containing k variables,

for all k = 1, 2, 3, . . . , nd − 1. The BEST=6 options asks SAS to list the 6 sets of factors producing

models with the 6 largest R2.

For example, suppose we set BEST=4, for the supersaturated design obtained from Table 15.39

with rows corresponding to +1 in the branching column K , and use the data yBD. Then, we would

obtain the output in the left part of Table 15.44 (where we have deleted the fourth selection for the one-

and two-factor models). From this table, we can see that the factors B and D, taken together, account

for 97.7% of the variation in the data and little is gained from adding a third factor.

The right part of Table 15.44 shows the results of running the RSQUARE option using the data set

yBDH of Table 15.39. From this, one would most likely select factors C and D (incorrectly). Notice that

the sets of k = 3 best factors indicate that selection of any three of A, C, D, G seems to be equivalent.

This anomaly can be explained by the hidden aliasing which can be discovered by running PROC REG

without any options, which says:

F = -A + D - E

G = A - C - D

H = -B - C - D

I = -B - D + E

J = -A + B + C + D - E

and we see that the contrasts for A, C, D and G are linearly related. The correct selection of factors for

these data is B, D and H. A linear model containing the main effects of three factors has an R2 of only

0.971, which is still high but unlikely to be the set of three factors chosen. Thus, when there are many

large effects as compared with the number of observations, their detection is difficult and, perhaps,

impossible.

15.10 Using R Software

15.10.1 Fractional Factorials

The analysis of a fractional factorial experiment by computer is identical to that of a single-replicate

factorial experiment (Sect. 7.7, p. 230) except that only one effect should be entered into the model

from each line of the aliasing scheme (and none from the defining relation). If two aliased effects are

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 15.45 R program and output for the sludge experiment—cell-means model

> sludge.data = read.table("data/sludge.txt", header = T) # Read A:E,y

> # Create variable TC within sludge.data:

> sludge.data = within(sludge.data, {TC = 10000*A+1000*B+100*C+10*D+E})

> # Create factor variables within sludge.data:

> sludge.data = within(sludge.data,

+ {fA = factor(A); fB = factor(B); fC = factor(C);

+ fD = factor(D); fE = factor(E); fTC = factor(TC)})

> head(sludge.data, 3)

A B C D E y TC fTC fE fD fC fB fA

1 0 0 0 1 0 195 10 10 0 1 0 0 0

2 0 0 1 1 1 496 111 111 1 1 1 0 0

3 0 1 0 0 1 87 1001 1001 1 0 0 1 0

> # Analysis of variance: cell means model

> modelTC = lm(y ˜ fTC, data = sludge.data)

> anova(modelTC)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

fTC 7 1510452 215779

Residuals 0 0

> # Contrast estimates: cell means model

> lsmTC = lsmeans(modelTC, ˜ fTC)

> contrast(lsmTC, list(A=c(-1,-1,-1,-1, 1, 1, 1, 1)/4,

+ B=c(-1,-1, 1, 1,-1,-1, 1, 1)/4,

+ C=c(-1, 1,-1, 1,-1, 1,-1, 1)/4,

+ D=c( 1, 1,-1,-1,-1,-1, 1, 1)/4,

+ E=c(-1, 1, 1,-1, 1,-1,-1, 1)/4,

+ AC=c( 1,-1, 1,-1,-1, 1,-1, 1)/4,

+ BC=c( 1,-1,-1, 1, 1,-1,-1, 1)/4))

contrast estimate SE df t.ratio p.value

A 20.75 NaN 0 NaN NaN

B 198.25 NaN 0 NaN NaN

C 726.25 NaN 0 NaN NaN

D -185.25 NaN 0 NaN NaN

E -365.25 NaN 0 NaN NaN

AC -66.25 NaN 0 NaN NaN

BC 126.25 NaN 0 NaN NaN

entered into the model, the Type I sum of squares and degrees of freedom will be zero for the second

effect entered, and the Type III sum of squares and degrees of freedom will be zero for both effects.

In Table 15.45 we show a straightforward program and output for analyzing the sludge experiment

of Example 15.2.1. The cell-means model in terms of the factor variable fTC for the treatment combi-

nations TC is used. (Factor variables fA–fE are created for later use.) The linear models function lm

fits the model, and the anova function generates the analysis of variance table. Then the contrast esti-

mates of interest are generated by a single contrast statement, using least squares means generated
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Table 15.46 R program (continued) for the sludge experiment—five-way model

> # Analysis of variance: factorial effects model

> modelFE = lm(y ˜ fA + fB + fC + fD + fE + fA:fC + fB:fC, data = sludge.data)

> anova(modelFE)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

fA 1 861 861

fB 1 78606 78606

fC 1 1054878 1054878

fD 1 68635 68635

fE 1 266815 266815

fA:fC 1 8778 8778

fB:fC 1 31878 31878

Residuals 0 0

> # Contrast estimates: factorial effects model

> lsmA = lsmeans(modelFE, ˜ fA); contrast(lsmA, list(A = c(-1, 1)))

> lsmB = lsmeans(modelFE, ˜ fB); contrast(lsmB, list(B = c(-1, 1)))

> lsmC = lsmeans(modelFE, ˜ fC); contrast(lsmC, list(C = c(-1, 1)))

> lsmD = lsmeans(modelFE, ˜ fD); contrast(lsmD, list(D = c(-1, 1)))

> lsmE = lsmeans(modelFE, ˜ fE); contrast(lsmE, list(E = c(-1, 1)))

> lsmAC = lsmeans(modelFE, ˜ fA:fC); contrast(lsmAC, list(AC = c(1,-1,-1,1)/2))

> lsmBC = lsmeans(modelFE, ˜ fB:fC); contrast(lsmBC, list(BC = c(1,-1,-1,1)/2))

by the lsmeans function and saved as lsmTC, and using the contrast coefficients listed in Table 15.7

(p. 503). Nicely formatted output is obtained by providing the contrasts as a list, including a name (i.e.

A, B, etc.) for each.

The main effects are each aliased with 2-factor (and 3-factor) interactions (see p. 503). The 2-factor

interactions AC and BC are aliased with BE and AE, respectively. Since there is only one observation

on each of the observed treatment combinations, the cell-means model leaves no degrees of freedom

for error—this is why the standard errors, test statistics and p-values generated by contrast are “not

a number” (NaN). The inclusion of the divisor 4 each contrast ensures that all the contrasts listed in

Table 15.7 will be divided by v/2 = 4 and give the same estimates as those in Table 15.8 (p. 503).

In Table 15.46, we show a continuation of the R program of Table 15.45, illustrating the analysis

using a factorial effects model, providing selected output. Main effect and interaction contrast estimates

are computed using thecontrast statement of the least squares means functionlsmeans. All of the

contrasts as specified use coefficients cijk = ±1/4. For the main effects, the specified coefficients ±1

are automatically divided by 4, averaging over the four combinations of the other two factors. For the

two-factor interaction contrasts, the coefficients ±1/2 are specified and are automatically divided by

2, averaging over the two observations on each combination of these two factors. The main-effect and

interaction sums of squares are shown in Table 15.46. The contrast estimates (not shown) are identical

to those obtained from the cell-means model.

Again, there are no degrees of freedom for error, since a term has been included in the model from

every row of the aliasing scheme. If all 2-factor interactions can be assumed to be negligible, then AC

and BC would be omitted from the model, leaving 2 degrees of freedom for error.
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Consider what would happen if two aliased terms were entered into the model. The defining relation

for the 1
4

-fraction was stated in Example 15.2.1 to be I = ABD = CDE = ABCE. Consequently, A

is aliased with BD. Adding BD into the model subsequent to A would give Type I sum of squares and

degrees of freedom for BD equal to zero. This is because BD adds no more information if A is already

in the model. The Type III sums of squares would be zero for both A and BD, since each would be

added into the model assuming that the other is already in the model.

15.10.2 Design for the Control of Noise Variability

We now turn to the analysis of experiments involving design and noise factors, often known as Taguchi

experiments. These were discussed in Sect. 15.7. There are two approaches to the analysis. The first

approach involves the analysis of the mean and variance of the response observed for each design-

treatment combination, calculated over the levels of the noise factors. The second approach involves

the study of design-by-noise interactions. The first approach requires every noise combination to be

observed with every design combination (that is, a product array), and the second approach requires

randomization of all observed combinations of noise and design factors taken together.

Example 15.10.1 Inclinometer experiment—product-array approach

The inclinometer experiment was described in Sect. 15.7.1, and the data are shown in Table 15.29

(p. 526). Since this is a product array, the analysis will be done on the average and log variance of the

responses over the levels of the noise factors, and these do not need to be identified in the R program

input. Thus, the R program in Table 15.47 reads in the data corresponding to each combination of

levels of the seven design factors (A–G) without identifying the levels of the noise factors. The average

Avy and the log sample variance LnVar of the observations for each design-treatment combination is

computed and added to the data set. Since only 27 (i.e., 33) of the 37 design combinations are observed,

we have a 37−4 fractional factorial experiment with two possible response variables.

Two analyses are requested in Table 15.47. The first uses the response variable LnVar. After fitting

the linear model that includes main effects but no interactions via the lm function, an analysis of

variance table is requested via the anova statement. The least squares means for the levels of each

design factor are requested by the lsmeans function, and these can be used to prepare plots such as

those shown in Fig. 15.8 (p. 529). Also, the contrast function uses the saved least squares means to

estimate and test the linear and quadratic trends for each design factor. This use of lsmeans is only

shown in the program for design factor A but can be used to obtain least squares means for the remaining

design factors and the trend contrast estimates for B–F, (since they each have equally-spaced levels).

A regression model is also fit, including linear and quadratic terms for each design factor, to generate

the sum of squares associated with the linear and quadratic contrasts. This approach also provides the

correct linear and quadratic trend contrast sums of squares for G, even though the levels of G are not

equally spaced. The final section of the program in Table 15.47 uses the response variable Avy. The

output is similar to that shown in Tables 15.30, 15.31, 15.32 and 15.33, pp. 527–528. �

For a mixed array, in which observed combinations of noise and design factors taken together are

randomized, the analysis is done in a similar way to that of Chap. 7. The model should include the main

effects of the design and noise factors and at least the design-by-noise interactions. The design-by-noise

interactions help in identifying those design factors whose levels give the most stable response as the

noise factor levels change. Interaction plots for the significant design-by-noise interactions are made

in the same way as those described in Sect. 6.9.3. If the noise factor levels are placed on the horizontal

axis as in Fig. 15.7, the levels of the design factor(s) that are most robust to the noise level fluctuations

are those whose average responses result in lines closest to horizontal across the noise factor levels

(cf. level 3 of factor A in Fig. 15.7(b), p. 525).

http://dx.doi.org/10.1007/978-3-319-52250-0_7
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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Table 15.47 R program for the product array analysis of the inclinometer experiment

# Read data from file. Header: A B C D E F G y1 y2 y3 y4 y5 y6 y7 y8

ipa.data = read.table("data/inclinometer.product.txt", header = T)

# Create factor variables

ipa.data = within(ipa.data,

{fA = factor(A); fB = factor(B); fC = factor(C); fD = factor(D);

fE = factor(E); fF = factor(F); fG = factor(G)})

# Compute Avy and LnVar of data at each design treatment combo

ipa.data = within(ipa.data, {Avy = (y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8)/8

LnVar = log(((y1*y1 + y2*y2 + y3*y3 + y4*y4 + y5*y5 + y6*y6

+ y7*y7 + y8*y8) - 8*Avyˆ2)/7)})

# Remove variables y1:y8

ipa.data = within(ipa.data, {remove(y1, y2, y3, y4, y5, y6, y7, y8)})

head(ipa.data,3)

# Analysis of log sample variance

model1 = lm(LnVar ˜ fA + fB + fC + fD + fE + fF + fG, data = ipa.data)

anova(model1)

# Least square means and contrast estimates for A (similarly for B--F)

library(lsmeans)

lsmA1 = lsmeans(model1, ˜ fA)

lsmA1

contrast(lsmA1, list(Alin = c(-1, 0, 1), Aquad = c(1, -2, 1)))

# Regression for log sample variance (to get contrast SS’s)

model2 = lm(LnVar ˜ A + I(Aˆ2) + B + I(Bˆ2) + C + I(Cˆ2) + D + I(Dˆ2)

+ E + I(Eˆ2) + F + I(Fˆ2) + G + I(Gˆ2), data = ipa.data)

anova(model2)

# Analysis of sample mean

model3 = lm(Avy ˜ fA + fB + fC + fD + fE + fF + fG, data = ipa.data)

anova(model3)

# Least square means and contrast estimates for A (similarly for B--F)

# library(lsmeans)

lsmA3 = lsmeans(model3, ˜ fA)

lsmA3

contrast(lsmA3, list(Alin = c(-1, 0, 1), Aquad = c(1, -2, 1)))

# Regression for sample mean (to get contrast SS’s, including for G)

model4 = lm(Avy ˜ A + I(Aˆ2) + B + I(Bˆ2) + C + I(Cˆ2) + D + I(Dˆ2)

+ E + I(Eˆ2) + F + I(Fˆ2) + G + I(Gˆ2), data = ipa.data)

anova(model4)

15.10.3 Analysis of Small Screening Designs

For a small design with nd observations, one method of searching for the k most influential factors,

for any given k (1 ≤ k ≤ nd − 1), is to select the factors that would result in a linear regression

model with largest value of R2. This is a simple method of analysis and is not guaranteed to select

the best set of k factors, especially when the estimates are highly correlated. Nevertheless, we saw

in Example 15.8.2 that, for simple problems, the method can work reasonably well and solutions for

different values of k can be compared. In the R software, the function regsubsets from the leaps

package fits regression models containing all subsets of p of the factors up to nvmax and prints out

the nbest models found for each value of p. Table 15.48 shows the output obtained from the R
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Table 15.48 Results of the all subsets variable selection via regsubsets

> ssd <- data.frame(A = c(-1, -1, 1, -1, 1, 1),

+ B = c(-1, 1, -1, 1, -1, 1),

+ C = c(-1, -1, 1, 1, 1, -1),

+ D = c( 1, -1, -1, -1, 1, 1),

+ E = c( 1, -1, -1, 1, -1, 1),

+ F = c( 1, 1, -1, -1, 1, -1),

+ G = c(-1, 1, 1, -1, -1, 1),

+ H = c( 1, 1, 1, -1, -1, -1),

+ I = c( 1, -1, 1, 1, -1, -1),

+ J = c(-1, 1, -1, 1, 1, -1),

+ y = c(40.83, 28.17, 13.98, 32.85, 39.78, 52.08))

> library(leaps)

> regsubsets.outssd <- regsubsets(y ˜ A + B + C + D + E +

+ F + G + H + I + J, data = ssd, nbest = 3,

+ nvmax = 3, method = "exhaustive")

Warning message:

In leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax,

force.in = force.in, :

5 linear dependencies found

> summary.outssd <- summary(regsubsets.outssd)

> as.data.frame(summary.outssd$outmat)

A B C D E F G H I J

1 ( 1 ) *

1 ( 2 ) *

1 ( 3 ) *

2 ( 1 ) * *

2 ( 2 ) * *

2 ( 3 ) * *

3 ( 1 ) * * *

3 ( 2 ) * * *

3 ( 3 ) * * *

> round(summary.outssd$rsq, 4)

[1] 0.6597 0.3808 0.3452 0.9774 0.8730 0.8672 0.9985

[8] 0.9871 0.9871

> alias(aov(y ˜ A + B + C + D + E + F + G + H + I + J, ssd))

Model :

y ˜ A + B + C + D + E + F + G + H + I + J

Complete :

(Intercept) A B C D E

F 0 -1 0 0 1 -1

G 0 1 0 -1 -1 0

H 0 0 -1 -1 -1 0

I 0 0 -1 0 -1 1

J 0 -1 1 1 1 -1
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software regsubsets command, for the supersaturated design obtained from Table 15.39 with rows

corresponding to +1 in the branching column K , and the data yBD.

The regsubsets call fits all possible models containing up to nvmax = 3 factors and displays

the nbest = 3 of each size. The statement

as.data.frame(summary.outssd$outmat)

produces a list of these best models with stars indicating which factors have been fitted in the model.

The R2 values for the listed models are obtained from the round(summary.outssd$rsq, 4)

command, where the number 4 specifies the number of decimal places. The fourth entry in the list of

R2 values corresponds to the model containing B and D; we see that the R2 = 0.9774, and little is

gained by including other factors.

Notice the warning message in the output that says there were 5 linear dependencies found. These

are the hidden aliases that can be identified by running

alias(aov(y A + B + C + D + E + F + G + H + I + J, ssd))

and observing that

F = -A + D - E

G = A - C - D

H = -B - C - D

I = -B - D + E

J = -A + B + C + D - E

If we try to use this same design for the data set yBDH from Table 15.39, we obtain

A B C D E F G H I J

1 ( 1 ) *

1 ( 2 ) *

1 ( 3 ) *

2 ( 1 ) * *

2 ( 2 ) * *

2 ( 3 ) * *

3 ( 1 ) * * *

3 ( 2 ) * * *

3 ( 3 ) * * *

with associated R2 values of 0.7111 0.5778 0.2694 0.9693 0.8670 0.7970 0.9957

0.9957 0.9957. From this, one would most likely select factors C and D (incorrectly). Notice

that the sets of k = 4 best factors indicate that selection of any three of A, C, D, G seems to be

equivalent. This anomaly can be explained by the hidden aliasing which can be discovered with the

alias command as shown above and we see that the contrasts for A, C, D and G are linearly related.

The correct selection of factors for these data is B, D and H. A linear model containing the main effects

of three factors has an R2 of only 0.971, which is still high but unlikely to be the set of three factors

chosen. Thus, when there are many large effects as compared with the number of observations, their

detection is difficult and, perhaps, impossible.

Exercises

1. Decontamination experiment—beta particles, continued

Suppose that only the first block of the data (beta particles) had been obtained in the decontami-

nation experiment described in Exercise 8 of Chap. 13 (p. 466). The design would then have been

a 1
2

-fraction of a 24 experiment with defining relation I = ABCD. The half fraction is shown in

Table 15.49. Analyze the data and compare your conclusions with those of the full experiment in

http://dx.doi.org/10.1007/978-3-319-52250-0_13
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Table 15.49 Block I of the decontamination experiment

Treatment combinations (Response)

1010 1111 0110 0000 1100 0101 0011 1001

(716) (686) (498) (1437) (527) (579) (1433) (906)

Sources Barnett and Mead (1956). Copyright c© 1956 Blackwell Publishers. Reprinted with permission

Table 15.50 Yields (in pounds) of mangold roots for Block III of the mangold experiment

Treatment combinations (Yield)

00101 11001 01011 01110 10010 11100 00000 10111

(896) (1284) (996) (860) (1184) (984) (740) (1468)

Source Design and Analysis of Experiments, by O. Kempthorne 1976, Reprinted by permission of Krieger Publishing

Company Inc.

Exercise 8 of Chap. 13. Explain the circumstances under which a half fraction would be preferred

to a single-replicate factorial experiment.

2. Mangold experiment, continued

The mangold experiment in Sect. 13.5, p. 447, was a single replicate confounded design for a 25

experiment in b = 4 blocks of size 8. The five factors were Sulphate of Ammonia (factor A at

levels 0 or 0.6 cwt per acre), Superphosphate (factor B at levels 0 or 0.5 cwt per acre), Muriate

of Potash (factor C at levels 0 or 1.0 cwt per acre), Agricultural Salt (factor D at levels 0 or 5

cwt per acre), and Dung (factor E at levels 0 or 10 tons per acre). All of the 3-, 4-, and 5-factor

interactions were expected to be negligible. The two three-factor interactions ABD, BCE and their

product ACDE were selected for confounding.

Suppose that the data from only the third block had been available, so that we have a 1
4

-fraction.

The data are reproduced in Table 15.50.

(a) Write down the aliasing scheme for this fractional factorial experiment.

(b) Analyze the data. What conclusions can you draw?

(c) Comparing your conclusions with those of Sect. 13.5, what extra information do you gain by

running the single-replicate design instead of the fraction?

(d) When would you recommend that an experimenter consider using a fractional factorial design

rather than a single-replicate design?

3. Dye experiment, continued

The dye experiment was discussed in Sect. 14.2.4 (p. 478). There were three factors: the concen-

tration of inorganic material M in the free water in the reaction mixture (factor A at three equally

spaced levels), the volume of free water in the reaction mixture (factor B at three equally spaced

levels), and the concentration of inorganic material N in the free water in the reaction mixture

(factor C at three equally spaced levels). The data for the first replicate of the original experiment

were given in Table 14.6 (p. 479) and the first block is reproduced in Table 15.51. The design for

Table 15.51 Volume of dyestuff for Block I of the dye experiment

Treatment combinations (Yield)

000 021 012 110 101 122 220 211 202

(74) (130) (56) (110) (166) (227) (195) (146) (90)

Source Data adapted from The Design and Analysis of Industrial Experiments, Second edition, 1979, Ed: O.L. Davies.

Published by Longman Group Limited

http://dx.doi.org/10.1007/978-3-319-52250-0_13
http://dx.doi.org/10.1007/978-3-319-52250-0_13
http://dx.doi.org/10.1007/978-3-319-52250-0_13
http://dx.doi.org/10.1007/978-3-319-52250-0_14
http://dx.doi.org/10.1007/978-3-319-52250-0_14
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Table 15.52 Yields of sugar beet for Block III of the sugar-beet experiment

Treatment combinations (Yield)

202 020 210 111 001 122 221 012 100

(2198) (2093) (2354) (2268) (1926) (2152) (2349) (2025) (2106)

Source Yates (1935). Copyright c© 1935 Blackwell Publishers. Reprinted with permission

the first replicate was a single-replicate design that confounded (AB2C2; A2BC). Analyze the data

of Block I as though it had come from a 1
3
-fraction. State your conclusions.

4. Sugar beet experiment, continued

The sugar beet experiment described in Exercise 6 of Chap. 14 concerned the effects of three

standard fertilizers, nitrogen, phosphate, and potassium (factors N , P, and K), each at three equally

spaced levels, on sugar beet yield. The experiment was run as a single-replicate confounding the

contrasts (NP2K ; N2PK2). Suppose the only data available were those of Block III, reproduced in

Table 15.52.

(a) If the only data available were those from Block III, write out the aliasing scheme for the design.

(b) Analyze the data from Block III as though they came from a 1
3
-fraction. State your conclusions.

5. Flour experiment, continued

Suppose that the data from Block II of the 4 × 24 experiment in Table 15.16 (p. 514) had been lost,

so that only Block I remained. This would then constitute a 1
4

-fraction.

(a) Write out the aliasing scheme for the design. What is the resolution number. Is this a good

design?

(b) Bearing in mind the purpose of the experiment, can you find a better 1
4

-fraction? If so, write out

the design and its aliasing scheme.

(c) Analyze the data from Block I of Table 15.16. What can you conclude?

6. Handwheel experiment

E.N. Corlett and G. Gregory describe an experiment in the 1960 issue of Applied Statistics that

was concerned with finding the design of a machine tool handwheel that would maximize the

accuracy on the part of the operator in the setting of the machine tool handwheel. The apparatus

consisted of an optical dividing head with a dial mounted onto a mandrel to which was connected

the handwheel spindle. The spindle was provided with an adjustable friction brake. The operator

first offset the dial by 15◦ and then moved the handwheel so that a line on the dial was brought

“into coincidence with a fixed line on the dividing head, making the final adjustment by means of

a series of taps by hand on the handwheel rim.”

Seven factors, each at two levels (coded 0 and 1) were investigated as follows.

A: Handwheel diameter (5.5 in., 10 in.)

B: Dial diameter (4 in., 8 in.)

C: Thickness of the dial line (0.008 in., 0.064 in.)

D: Friction of the spindle (7.5 lb.-in., 45 lb.-in.)

http://dx.doi.org/10.1007/978-3-319-52250-0_14
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Table 15.53 Log variance of observations for the handwheel experiment

Block I Block II

ABCDEFG ln(s2) ABCDEFG ln(s2)

0 0 0 0 0 0 0 0.7044 1 1 0 0 0 0 0 0.0561

1 0 1 0 0 0 0 0.5907 0 1 1 0 0 0 0 0.3615

0 0 1 0 0 0 1 −0.0297 1 1 1 0 0 0 1 −0.1158

1 0 0 0 0 0 1 0.3914 0 1 0 0 0 0 1 −0.1952

0 1 0 1 0 0 0 0.0792 1 0 0 1 0 0 0 0.4585

1 1 1 1 0 0 0 0.3228 0 0 1 1 0 0 0 0.2531

0 1 1 1 0 0 1 −0.1599 1 0 1 1 0 0 1 0.2727

1 1 0 1 0 0 1 −0.0996 0 0 0 1 0 0 1 0.6861

0 0 0 1 1 0 0 0.5878 1 1 0 1 1 0 0 −0.0074

1 0 1 1 1 0 0 0.3577 0 1 1 1 1 0 0 −0.2328

0 0 1 1 1 0 1 0.1847 1 1 1 1 1 0 1 −0.1046

1 0 0 1 1 0 1 0.5706 0 1 0 1 1 0 1 −0.2069

0 1 0 0 1 0 0 −0.1805 1 0 0 0 1 0 0 0.8051

1 1 1 0 1 0 0 −0.3224 0 0 1 0 1 0 0 0.4634

0 1 1 0 1 0 1 −0.1433 1 0 1 0 1 0 1 0.2904

1 1 0 0 1 0 1 0.1354 0 0 0 0 1 0 1 0.4692

Block III Block IV

ABCDEFG ln(s2) ABCDEFG ln(s2)

0 1 0 0 0 1 0 −0.6760 1 0 0 0 0 1 0 0.5457

1 1 1 0 0 1 0 −0.3824 0 0 1 0 0 1 0 0.0846

0 1 1 0 0 1 1 −0.2996 1 0 1 0 0 1 1 0.4453

1 1 0 0 0 1 1 −0.4539 0 0 0 0 0 1 1 0.2361

0 0 0 1 0 1 0 0.2970 1 1 0 1 0 1 0 −0.5069

1 0 1 1 0 1 0 0.1646 0 1 1 1 0 1 0 −0.3299

0 0 1 1 0 1 1 0.3878 1 1 1 1 0 1 1 −0.3245

1 0 0 1 0 1 1 0.2168 0 1 0 1 0 1 1 −0.3233

0 1 0 1 1 1 0 0.0148 1 0 0 1 1 1 0 0.4199

1 1 1 1 1 1 0 −0.4898 0 0 1 1 1 1 0 0.2957

0 1 1 1 1 1 1 0.1308 1 0 1 1 1 1 1 0.2278

1 1 0 1 1 1 1 −0.1829 0 0 0 1 1 1 1 0.4269

0 0 0 0 1 1 0 0.0182 1 1 0 0 1 1 0 −0.4798

1 0 1 0 1 1 0 0.2070 0 1 1 0 1 1 0 −0.0669

0 0 1 0 1 1 1 0.1101 1 1 1 0 1 1 1 −0.0584

1 0 0 0 1 1 1 0.2642 0 1 0 0 1 1 1 −0.6856

Source Corlett and Gregory (1960). Copyright c© 1960 Blackwell Publishers. Reprinted with permission

E: Level of operator’s elbow relative to height of handwheel

(Level with center of spindle, 6 in. above spindle center)

F: Previous experience of operator (Practiced, Nonpracticed)

G: Knowledge of accuracy of previous setting (Feedback, No feedback)

The response variable was ln(s2), where s2 was the sample variance of 25 repeated observations

for a particular treatment combination. It was estimated that each set of 25 repeated observations

would take about 15 min to complete, including setup time. In a morning or afternoon session of

four hours, therefore, sixteen observations could be taken. The experiment was to last over two
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days, which meant that a 27−1 fractional factorial experiment was required, divided into 4 blocks

of 16.

The highest-order interaction was selected for the defining relation of the fraction, that is, I =
ABCDEFG. Only two operators were used for the experiment, one for each level of practice. The

difference between these operators was not of interest, only the interaction of the level of practice

with the other factors. Rather unusually, then, the main effect of F was selected as one of the

contrasts for confounding. All the 2-factor interactions and most of the 3-factor interactions were

thought to be of interest. Unlikely 3-factor interactions included ACG and BDE, which were also

chosen for confounding with blocks. The complete set of confounded contrasts was F, ACG, ACFG

together with its set of aliases ABCDEG, BDEF, BDE. All other main-effect, 2-factor, and 3-factor

interaction contrasts could be estimated.

The data obtained from the experiment are shown in Table 15.53.

(a) Write out the aliasing scheme for the design.

(b) Using a computer package, estimate the (estimable) main-effect and interaction contrasts.

(c) Prepare a half-normal probability plot of the contrast estimates and identify the most important

main effects and interactions.

(d) The authors of the article point out that if the responses are normally distributed and n is large

(where n is the number of repeated observations, 25 in this experiment), then the response

variable ln(s2) has approximately constant variance equal to 2/(n − 1). Calculate the standard

error for each of the contrasts estimated in part (c). Using Bonferroni’s method with an indi-

vidual significance level of 0.001 for each test (giving an overall level of at most 0.06), which

main effects and interactions are significantly different from zero? Do these results agree with

the results from part (c)? Discuss why or why not.

(e) Draw interaction plots of the important interactions and discuss recommended settings for the

six factors A, B, C, D, E, and G for the practiced and nonpracticed operators individually.

(f) Would you recommend further experimentation? If so, which factors and which settings would

you recommend? Can you suggest a suitable design?

7. Paint experiment

(a) Suppose that you need to design an experiment involving 6 factors (A, B, C, D, E, F) at 2 levels

each (64 treatment combinations) and that only 8 observations can be taken. You decide to

sacrifice information on the ABF, ACDF, and ABCE contrasts. Write out the defining relation

and the two rows of the aliasing scheme showing the aliasing of A and the aliasing of AC.

(b) Explain what aliasing means.

(c) An experiment was run in Germany by S. Eibl, U. Kess, and F. Pukelsheim (Journal of Quality

Technology, 1992) on the thickness of a paint coating. Prior to the experiment, the thickness

achieved was around 2 mm, much higher than the target 0.8 mm. They selected the following

six factors, each at two levels:

A: belt speed B: tube width C: pump pressure

D: paint viscosity E: tube height F: heating temperature

They used the 1
8

-fraction with the aliasing scheme in part (a), and they decided to ignore

all interactions for this first experiment. Since they wanted to monitor the variation of the

thickness, they took four observations on each of the 8 treatment combinations in the fraction.
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Table 15.54 210−6 resolution III fraction and pore diameter (nm) for the anatase experiment of Exercise 8

A B C D E F G H I J Pore diameter

0 0 0 0 1 0 0 1 0 0 6.4

1 0 0 0 0 0 1 1 1 1 5.7

0 1 0 0 0 1 0 1 1 1 6.1

1 1 0 0 1 1 1 1 0 0 7.6

0 0 1 0 0 1 1 0 0 1 3.5

1 0 1 0 1 1 0 0 1 0 3.5

0 1 1 0 1 0 1 0 1 0 3.7

1 1 1 0 0 0 0 0 0 1 6.5

0 0 0 1 0 1 1 0 1 0 10.1

1 0 0 1 1 1 0 0 0 1 3.6

0 1 0 1 1 0 1 0 0 1 15.6

1 1 0 1 0 0 0 0 1 0 12.3

0 0 1 1 1 0 0 1 1 1 12.1

1 0 1 1 0 0 1 1 0 0 17.3

0 1 1 1 0 1 0 1 0 0 14.9

1 1 1 1 1 1 1 1 1 1 15.3

Source Olsen et al. (2014), Journal of Porous Materials, 21, c© 2014, Springer Science + Business Media New York.

With permission of Springer

The data are shown in Table 16.1, p. 570, where the two levels of each factor are coded as −1

and 1 and shown for factors A–F in the columns labeled zA–zF .

Calculate the analysis of variance table and contrast estimates using response variable LNVAR

(the log variance). What do you conclude?

(d) Assuming that the order of observations was completely randomized, calculate the analysis

of variance table and also contrast estimates of interest, using the 32 observations separately

(without combining them into an average). Remembering that the goal is to reduce the thickness,

what conclusions would you draw from this particular experiment?

(e) The experimenters decided to run a followup experiment with at most 16 observations. You

can use any of the original 6 factors and you can change the levels from their original settings.

The ultimate goal is to achieve a coating of 0.8 mm. Suggest a followup experiment.

8. Anatase experiment

R.E. Olsen and coauthors described several experiments in the Journal of Porous Materials (2014).

These concerned the study of anatase (a form of titanium dioxide) as a catalyst support. Specific

catalyst support properties are required, such as certain surface area, pore volume, and pore diame-

ter. Samples were prepared by mixing various chemicals with water in specified orders and speeds

to produce a “slurry”. For half the observations, the slurry was (i) dried, (ii) rinsed with distilled

water and (iii) calcinated; this was called the DRC procedure. For the remaining observations, (ii)

and (iii) were interchanged to give the DCR procedure.

In the first of their experiments, all factors had two levels, coded here as 0 or 1. These factors were

A Mixing order, B speed of water addition (slow, fast), C amount of water (7 ml, 25 ml), D rinsing

order (DRC, DCR), E drying time (3 h, 24 h), F drying temperature (25 ◦C, 100 ◦C), G calcination

ramp rate (2 ◦C/min, 20 ◦C/min), H calcination temperature (400 ◦C, 700 ◦C), I calcination time

(2 h, 20 h), J amount of an aluminium compound added (5, 22). A 210−6 resolution III fraction was

http://dx.doi.org/10.1007/978-3-319-52250-0_16
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run. Several responses were measured, including the pore diameters which are listed together with

the fraction in Table 15.54. The observations were taken in a random order (not shown here).

(a) Part of the aliasing scheme for the design is:

E = ACD, F = BCD , G = ACD, H = CD, I = ABCD, J = ABC .

Write out the defining relation for the fraction (a total of 63 contrasts):

(b) Fifteen factorial effects can be included in the model. This can include the 10 main effects.

Suggest five interaction contrasts to include (these cannot be aliased with main effects nor with

each other.)

(c) Estimate the 15 contrasts in your model and plot a half normal probability plot.

(d) From part (c), which factors seem to affect the pore diameter the most. Suppose you were

going to follow up these factors and their interactions in more detail in a later experiment. How

would you design such an experiment if you could take 16 observations?

9. Flour early experiment

The flour experiment was introduced in Example 15.5.1, p. 513. In Table 15.55, we show part of

the design for an early experiment (the first in a series of four experiments). Six ingredients, A, B,

C, D, E, F, added to the flour were to be investigated in the experiment. In addition, there were

three noise factors: Factor P (which was a combination of factors N and S in Example 15.5.1) had

two levels (“high yeast with long proof time” or “low yeast with short proof time”), Factor Q, (as

in Example 15.5.1, two levels “undermixing, little water, heavy pressure” or “overmixing, much

water, little pressure”), and Factor R (two levels, underbake or overbake).

A crossed array was selected. The noise array was a 1
2

-fraction with defining relation I = PQR.

Each of the four noise combinations was run on a single day, so that the experiment ran over four

days. The design array was a 1
4

-fraction with defining relation I = ABCD = BCEF = ADEF,

and this was run on each day. Thus the noise contrasts are confounded with days and cannot be

analyzed. However, the object of the experiment was to examine the average yield (specific volume,

ml/100 g) and the variance of the yield for the design factors across the noise factors.

(a) Calculate the average yield and the log variance of the yield for each design-treatment combi-

nation.

(b) Analyze the two sets of data separately. What recommendations would you make if the objective

is to reduce the variability and increase the specific volume?

10. Injection molding experiment

S.R. Schmidt and R.G. Launsby in their book Understanding Industrial Designed Experiments

describe an experiment on the effect of six factors on the shrinkage of a part produced by injection

molding. The six factors were injection velocity (factor A), cooling time (factor B), barrel zone

temperature (factor C), mold temperature (factor D), hold pressure (factor E), and back pressure

(factor F). Each factor had two levels coded 0 and 1.

There were two responses of interest, the length and width of the part after shrinkage. The purpose

of the experiment was to find settings of the six variables that would enable the parts to be “on

target,” that is, a post-shrinkage length of 14.5 units and width of 9.35 units.
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Table 15.55 Specific volume for part of experiment 1 of the flour early experiment

Design combinations Noise combinations

Day 1 Day 2 Day 3 Day 4

(111) (101) (000) (011)

000000 519 446 337 415

000011 503 468 343 418

001101 567 471 355 424

001110 552 489 361 425

010101 534 466 356 431

010110 549 461 354 427

011000 560 480 345 437

011011 535 477 363 418

100100 558 483 376 418

100111 551 472 349 426

101001 576 487 358 434

101010 569 494 357 444

110001 562 474 358 404

110010 569 494 348 400

111100 568 478 367 463

111111 551 500 373 462

Source Tuck et al. (1993). Copyright c© 1993 Blackwell Publishers. Reprinted with permission

The orthogonal array in Table 15.22, p. 518, was selected with columns columns 1–6 labeled A,

B, D, C, E, F, and columns 5 and 6 multiplied by −1. One degree of freedom (corresponding to

column 7) is available to measure σ
2 or one of the two-factor interactions. Five parts were measured

at each treatment combination, and the lengths and widths are recorded in Table 15.56.

(a) Write down the defining relation for the 1
8

-fraction and the aliasing scheme. The investigators

assumed that all the interactions were negligible. If they had not done so, which interactions

could have been measured?

(b) For the length data, calculate the average response and the standard deviation of the response

for each treatment combination.

(c) Can you recommend which factors should be investigated more thoroughly in order to find

a setting that would give the required length and also factors that could be set to reduce the

variability?

(d) Repeat parts (a) and (b) for the width data.

(e) Can you make any overall recommendation?

(f) Write down the assumptions on the model that would need to be true in order to interpret the

analysis of variance. Are these assumptions likely to be valid for this experiment?

11. Spectrometer experiment, continued

Read the details of the spectrometer experiment in Exercise 10 of Chap. 7. You will need to have

access to your solutions to that exercise to answer this question.

Suppose that you are consultant for a different company and that they wish to run a similar

experiment, with the same five factors, but with a total of 64 observations. To keep things simple,

you might recommend that factors A and C be examined at 2 levels each rather than 3 levels in

your first experiment (even though you may suspect that some of the factors have quadratic trends).

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 15.56 Lengths and widths of parts after shrinkage in the injection molding experiment

Treatment combinations Length (Deviation from 14.5) ×104 Width (Deviation from 9.35) ×104

A B C D E F

0 0 0 0 0 0 0 5 0 0 5 75 60 70 85 90

0 0 0 1 1 1 75 90 70 65 65 50 40 40 40 45

0 1 1 0 0 1 45 50 45 45 45 45 45 45 50 40

0 1 1 1 1 0 100 105 105 110 105 130 130 125 135 135

1 0 1 0 1 0 105 110 105 120 100 55 60 60 55 60

1 0 1 1 0 1 45 55 65 50 50 80 65 50 40 45

1 1 0 0 1 1 150 140 155 50 145 100 80 85 90 85

1 1 0 1 0 0 55 65 55 55 60 65 60 65 65 60

Source Schmidt and Launsby (1992). Copyright c© 1992 Air Academy Press. Reprinted with permission

Table 15.57 Analysis of variance for the industrial experiment

Source of variation Degrees of freedom Sum of squares Mean square Ratio p-value

A 1 262.205 262.205 54.57 0.0857

B 1 11.045 11.045 2.30 0.3712

C 1 981.245 981.245 204.21 0.0445

D 1 5.120 5.120 1.07 0.4899

E 1 1568.000 1568.000 326.33 0.0352

F 1 8.820 8.820 1.84 0.4048

Error 1 4.805 4.805

Total 7 2841.240

Thus, you have a 25 experiment. List 5 interactions that you are particularly interested in studying.

You should use information from your answer to (a) and (b) of Exercise 10 of Chap. 7 in choosing

the interactions. Design a factorial experiment in 4 blocks of size 8. State exactly how you chose

your design. Write out at least three of the treatment combinations in two of the blocks and explain

how you obtained them.

12. Design of industrial experiment

Suppose that you are asked to design an experiment for 6 treatment factors each having two levels.

Only 64 observations can be taken in total, and these should be divided into 8 blocks of size 8.

Suppose that you decide to confound the interaction contrasts ABD, DEF, and ACDF.

(a) Can all the other interaction contrasts be estimated?

(b) What does the statement “ABD is confounded” mean?

(c) How would you obtain the 8 blocks? Write out two blocks as an example.

(d) Suppose that the budget is cut before the experiment can take place, and only 8 observations can

be taken in total. How would you decide which 8 observations to take? What can be estimated?

(e) Suppose that you were fairly sure that all interactions involving 4 factors or more were negli-

gible and that neither D nor F interacts with any of the other factors. Suppose that the analysis

of variance table obtained from the results of the experiment is as in Table 15.57. What would

you investigate in a followup experiment? Give your reasons.

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 15.58 Plackett–Burman design and data for Exercise 14

A B C D E F G H I J K L M N O P Q R S y

−1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 −1 −1 1 1 134.2

1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 −1 −1 1 250.0

1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 −1 −1 59.3

−1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 −1 155.0

−1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 293.4

1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 174.4

−1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 182.3

−1 −1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 211.9

1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 13.6

1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 95.5

1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 158.0

1 1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 366.4

−1 1 1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 164.8

1 −1 1 1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 98.9

−1 1 −1 1 1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1 1 45.8

1 −1 1 −1 1 1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1 170.1

−1 1 −1 1 −1 1 1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 107.3

−1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 283.6

−1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 −1 −1 1 1 −1 130.2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 373.5

13. Suppose that you wish to run an experiment with four treatment factors (A, B, C, D) each having

three levels. The only likely interactions are AB, AC, and ABC. The experiment needs to be run in

blocks of size at most k = 9.

(a) Design a 34 experiment in b = 32 blocks of size k = 32 confounding ABD and AB2CD. What

else is confounded? Are you happy with this design? Why or why not?

(b) Show how you would obtain the nine blocks and show one of the blocks as an illustration.

(c) Write out the degrees of freedom column for the analysis of variance table. (Read the question

information again before you do this.)

(d) Suppose that the blocks are randomly ordered. After the first block is run, the budget for the

experiment is cut, so only nine observations are available. The design is now a 34−2 fractional

factorial design. Write down the defining relation for the design. Is this design going to be

useful in examining the main effects and the interactions of interest? Why or why not?

14. Plackett–Burman and supersaturated design

Table 15.58 shows a hypothetical set of data from a Plackett–Burman design with 20 observations

and 19 factors. The data were simulated from a model in which factors C, J , K and P all have large

main effects, all other main effects are drawn from a N(0, 4.5) distribution and the random errors

have a N(0, 3) distribution. There are no interactions.

(a) Using the data from Table 15.58, either fit a full main effects model or run an all-subsets

regression to verify that the four important factors can be detected.

(b) What are the estimates of the main effects of the four important factors?
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(c) Using the first column of the design in Table 15.58 as a branching column, create a supersatu-

rated design corresponding to +1 in the branching column.

(d) The supersaturated design in part (c) has 10 observations which may not be quite sufficient to

be able to detect four large main effects. Run an all-subsets regression using the 10 observa-

tions. How many of the four important factors can be detected and what are their main effect

estimates?

15. Anatase experiment

The anatase experiment was described in Exercise 8. After the initial experiment, several further

experiments were run. Table 15.59 shows one of the definitive screening designs (where factor

D of Exercise 8 has been set at level DCR, and factor A held constant). The response shown is

pore diameter (nm), The randomized order of the observations is shown in the original paper.

The design allows linear and quadratic trends in the main effects of some factors and some of the

linear×linear interactions to be measured.

(a) Use an all subsets regression to find a model that explains much of the variability in the data

(R2 at least 0.90). Remember to include the main effects of any factors that are involved in

large linear×linear interactions.

(b) If you were to design a follow-up experiment, which factors (and interactions) would you

examine? Suggest a suitable design if you could take 16 more observations.

Table 15.59 Definitive screening design and pore diameter (nm) for the anatase experiment of Exercise 15

B C E F G H I J Pore diameter

0 −1 1 1 −1 1 1 1 9.0

0 1 −1 −1 1 −1 −1 −1 10.3

−1 0 −1 1 1 1 1 −1 14.6

1 0 1 −1 −1 −1 −1 1 16.9

−1 −1 0 1 1 −1 −1 0 6.6

1 1 0 −1 −1 1 1 −1 13.3

1 −1 1 0 1 1 −1 −1 15.3

−1 1 −1 0 −1 −1 1 1 7.8

−1 −1 1 −1 0 −1 1 −1 11.0

1 1 −1 1 0 1 −1 1 14.0

1 −1 −1 −1 1 0 1 1 11.2

−1 1 1 1 −1 0 −1 −1 9.3

−1 1 1 −1 1 1 0 1 8.5

1 −1 −1 1 −1 −1 0 −1 10.0

1 1 1 1 1 −1 1 0 18.6

−1 −1 −1 −1 −1 1 −1 0 11.8

0 0 0 0 0 0 0 0 12.5

Sources Olsen et al. (2014), Journal of Porous Materials, 21, c© 2014, Springer Science + Business Media New York.

With permission of Springer
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Table 15.60 2p−s fractions of 2p experiments. For each defining relation, s independent generators are underlined, and s

corresponding equations are given. To obtain the v = 2p−s treatment combinations in the fraction, list all v combinations

of levels ai of the p − s factors not determined by the equations, then use the equations modulo 2 to complete each

treatment combination. For two blocks, confound the effect in parentheses and its aliases

2p−s v Defining relation Equations

25−2
III

8 I = ABCE = ABD = CDE a4 = a1 + a2

(AC) a5 = a1 + a2 + a3

26−2
IV

16 I = ABCD = CDEF = ABEF a4 = a1 + a2 + a3

(ACE) a6 = a3 + a4 + a5

27−2
IV

32 I = ABCDE = ABFG = CDEFG a5 = a1 + a2 + a3 + a4

(AEF) a7 = a1 + a2 + a6

28−2
V

64 I = ABCDE = DEFGH = ABCFGH a5 = a1 + a2 + a3 + a4

(CEF) a8 = a4 + a5 + a6 + a7

26−3
III

8 I = BCD = ABE = ACDE a4 = a2 + a3

= ABCF = ADF = CEF a5 = a1 + a2

= BDEF (AC) a6 = a1 + a2 + a3

27−3
IV

16 I = ABCD = CDEF = ABEF a4 = a1 + a2 + a3

= ACEG = BDEG = ADFG a6 = a3 + a4 + a5

= BCFG (ACF) a7 = a1 + a3 + a5

28−3
IV

32 I = ABCD = CDEF = ABEF a4 = a1 + a2 + a3

= ACEGH = BDEGH = ADFGH a6 = a3 + a4 + a5

= BCFGH (ABG) a8 = a1 + a3 + a5 + a7

29−3
IV

64 I = CDEF = ACEGH = ADFGH a4 = a1 + a2 + a3

= ABCDJ = ABEFJ = BDEGHJ a8 = a1 + a3 + a5 + a7

= BCFGHJ (ACF) a9 = a1 + a2 + a3 + a4

27−4
III

8 I = ABCD = BCE = ADE a4 = a1 + a2 + a3

= ACF = BDF = ABEF a5 = a2 + a3

= CDEF = ABG = CDG a6 = a1 + a3

= ACEG = BDEG = BCFG a7 = a1 + a2

= ADFG = EFG = ABCDEFG

28−4
IV

16 I = ABCD = CDEF = ABEF a4 = a1 + a2 + a3

= ADFG = BCFG = ACEG a6 = a3 + a4 + a5

= BDEG = ABGH = CDGH a7 = a1 + a4 + a6

= ABCDEFGH = EFGH = BDFH a8 = a1 + a2 + a7

= ACFH = BCEH = ADEH

(ADH)

29−4
IV

32 I = ABCD = CDEF = ABEF a4 = a1 + a2 + a3

= ADFGH = BCFGH = ACEGH a6 = a3 + a4 + a5

= BDEGH = ABGJ = CDGJ a7 = a1 + a4 + a5 + a6

= ABCDEFGH = EFGJ = BDFHJ a8 = a1 + a2 + a7

= ACFHJ = BCEHJ = ADEHJ

(ABH)
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Table 15.61 3p−s fractions of 3p experiments. For each defining relation, s independent generators are underlined, and s

corresponding equations are given. To obtain the v = 3p−s treatment combinations in the fraction, list all v combinations

of levels ai of the p − s factors not determined by the equations, then use the equations modulo 3 to complete each

treatment combination

3p−s v Defining relation Equations

34−2
III

9 I = AB2C = A2BC2 a3 = 2a1 + a2

= ABD = A2CD = B2C2D a4 = 2a2 + 2a3

= A2B2D2 = BCD2 = AC2D2

35−2
III

27 I = ABC2D2 = A2B2CD a4 = a1 + a2 + 2a3

= ADE2 = A2BC2E2 = B2CD2E2 a5 = a1 + a4

= A2D2E = BC2DE = AB2CE

36−2
IV

81 I = ABC2D2 = A2B2CD a4 = a1 + a2 + 2a3

= ACEF = A2BD2EF = B2C2DEF a6 = 2a1 + 2a3 + 2a5

= A2C2E2F2 = BCD2E2F2 = AB2DE2F2

36−3
III

27 I = ABC2D2 = A2B2CD a4 = a1 + a2 + 2a3

= BDE2 = AB2C2E2 = A2CD2E2

= B2D2E = AC2DE = A2BCE a5 = a2 + a4

= CDF2 = ABF2 = A2B2C2D2F2 a6 = a3 + a4

= BCD2E2F2 = AB2DE2F2 = A2C2E2F2

= B2CEF2 = AD2EF2 = A2BC2DEF2

= C2D2F = ABCDF = A2B2F

= BC2E2F = AB2CD2E2F = A2DE2F

= B2C2DEF = ACEF = A2BD2EF

37−3
IV

81 I = ABC2D2 = A2B2CD a4 = a1 + a2 + 2a3

= ACEF = A2BD2EF = B2C2DEF a6 = 2a1 + 2a3 + 2a5

= A2C2E2F2 = BCD2E2F2 = AB2DE2F2

= BC2E2FG = AB2CD2E2FG = A2DE2FG a7 = 2a2 + a3

= ABF2G = A2B2C2D2F2G = CDF2G + a5 + 2a6

= A2BCEG = B2D2EG = AC2DEG

= B2CEF2G2 = AD2EF2G2 = A2BC2DEF2G2

= AB2C2E2G2 = A2CD2E2G2 = BDE2G2

= AB2FG2 = C2D2FG2 = ABCDFG2
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Table 15.62 Orthogonal arrays with 2p observations and useful column labelings. Assign factors in alphabetical order

No. of factors 8 observations—Design of Table 15.22

Columns

1 2 3 12 13 23 123

3–6 A B C E F G D

No. of factors 16 observations—Design of Table 15.24

Columns

1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

4–5 A B C D E

6–15 A B K C L M D E N P F Q G H J

No. of factors 32 observations

Columns

1 2 12 3 13 23 123 4 14 24 124 34 134 234 1234

4–22 A B C M D N P Q G

Columns

5 15 25 125 35 135 235 1235 45 145 245 1245 345 1345 2345 12345

4–22 E R S T H U V J W K L F

Table 15.63 Generators for cyclically generated orthogonal main-effect plans. These are saturated designs for factors

each at two levels, for n observations with n divisible by 4 but not a power of 2. To generate a design, systematically

cycle the generator to the right to obtain n − 1 rows; then include a final row of −1’s

n Generator

8 1 1 1 −1 1 −1 −1

12 1 1 1 −1 1 1 −1 1 −1 −1 −1

16 1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 −1

20 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1

24 1 1 1 1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1

28 Does not exist

32 −1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 −1 1 −1 1 −1 −1 1 −1 1 1 1

1 −1 −1 1 1 −1 1 1

36 −1 −1 −1 −1 −1 1 −1 −1 −1 1 1 −1 1 1 1 1 −1 1 −1 1 −1 −1 1

1 −1 1 1 −1 1 −1 −1 −1 1 1 1

Obtained via a computer program described by Dean and Draper (1999). Further generators are given in Plackett and

Burman (1946)
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Table 15.64 Orthogonal arrays for 18 observations: L18(3
6 × 6) and L18(3

7 × 2)

For L18(3
7×2) replace

6-level column by the

two columns below

0 0 0 0 0 0 0 0 0

0 1 2 2 0 1 1 1 0

0 2 1 2 1 0 2 2 0

0 1 1 0 2 2 3 0 1

0 2 0 1 2 1 4 1 1

0 0 2 1 1 2 5 2 1

1 1 1 1 1 1 0 0 0

1 2 0 0 1 2 1 1 0

1 0 2 0 2 1 2 2 0

1 2 2 1 0 0 3 0 1

1 0 1 2 0 2 4 1 1

1 1 0 2 2 0 5 2 1

2 2 2 2 2 2 0 0 0

2 0 1 1 2 0 1 1 0

2 1 0 1 0 2 2 2 0

2 0 0 2 1 1 3 0 1

2 1 2 0 1 0 4 1 1

2 2 1 0 0 1 5 2 1

Sources L18(3
6 × 6) from http://neilsloane.com/oadir/

http://neilsloane.com/oadir/
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Table 15.65 A 3p orthogonal array for 27 observations: L27(3
13)

Columns

1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 2 2 2 2 2 2 2 2 2

0 1 1 1 0 0 1 1 1 2 2 0 2

0 1 1 1 1 1 2 2 2 0 0 1 0

0 1 1 1 2 2 0 0 0 1 1 2 1

0 2 2 2 0 0 2 2 2 1 1 0 1

0 2 2 2 1 1 0 0 0 2 2 1 2

0 2 2 2 2 2 1 1 1 0 0 2 0

1 0 1 2 0 1 0 1 2 1 2 2 0

1 0 1 2 1 2 1 2 0 2 0 0 1

1 0 1 2 2 0 2 0 1 0 1 1 2

1 1 2 0 0 1 1 2 0 0 1 2 2

1 1 2 0 1 2 2 0 1 1 2 0 0

1 1 2 0 2 0 0 1 2 2 0 1 1

1 2 0 1 0 1 2 0 1 2 0 2 1

1 2 0 1 1 2 0 1 2 0 1 0 2

1 2 0 1 2 0 1 2 0 1 2 1 0

2 0 2 1 0 2 0 2 1 2 1 1 0

2 0 2 1 1 0 1 0 2 0 2 2 1

2 0 2 1 2 1 2 1 0 1 0 0 2

2 1 0 2 0 2 1 0 2 1 0 1 2

2 1 0 2 1 0 2 1 0 2 1 2 0

2 1 0 2 2 1 0 2 1 0 2 0 1

2 2 1 0 0 2 2 1 0 0 2 1 1

2 2 1 0 1 0 0 2 1 1 0 2 2

2 2 1 0 2 1 1 0 2 2 1 0 0

A B C D E F G



16Response Surface Methodology

16.1 Introduction

Response surface methodology was developed by Box and Wilson in 1951 to aid the improvement

of manufacturing processes in the chemical industry. The purpose was to optimize chemical reactions

to obtain, for example, high yield and purity at low cost. This was accomplished through the use of

sequential experimentation involving factors such as temperature, pressure, duration of reaction, and

proportion of reactants. The same methodology can be used to model or optimize any response that

is affected by the levels of one or more quantitative factors. The models are generalizations of the

polynomial regression models studied in Chap. 8.

The general scenario is as follows. The response is a quantitative continuous variable (e.g., yield,

purity, cost), and the mean response is a smooth but unknown function of the levels of p factors (e.g.,

temperature, pressure), and the levels are real-valued and accurately controllable. The mean response,

when plotted as a function of the treatment combinations, is a surface in p + 1 dimensions, called the

response surface. For example, Fig. 16.1 shows a response surface for two factors A and B.

We will denote the levels of A by values of x1 or xA and the levels of B by values of x2 or xB .

We will denote a treatment combination by x = (x1, x2, . . . , x p) or by x = (xA, xB , . . . , xP ) and the

mean response at x by ηx = E[Yx]. The general response surface model is of the form

Yx = ηx + ǫx ,

where ǫx is a random error variable.

The objective of obtaining a response surface is twofold:

(i) to locate a feasible treatment combination x for which the mean response is maximized (or mini-

mized, or equal to a specific target value); and

(ii) to estimate the response surface in the vicinity of this good location or region, in order to better

understand the “local” effects of the factors on the mean response.

In general, throughout the chapter we will think about maximizing the response, but we show via an

example that exactly the same techniques can be used for minimizing a response. The techniques can

easily be adapted when the goal is to have the response close to a target value.

© Springer International Publishing AG 2017

A. Dean et al., Design and Analysis of Experiments,

Springer Texts in Statistics, DOI 10.1007/978-3-319-52250-0_16
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Fig. 16.1 Hypothetical
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One possible approach to achieving the objective involves collecting observations at each location

on a grid of treatment combinations spanning the entire experimental region of interest (as suggested

by Fig. 16.1). However, the number of observations required by such a comprehensive approach can be

very large, and it grows very quickly as the number of factors under study increases. Also, somewhat

sophisticated modeling techniques would generally be needed to obtain an adequate fit of a model

over the entire region. Instead, it is generally more efficient to conduct a sequence of small “local”

experiments with which to search out the location of the peak mean response and then to study its

vicinity.

Seeking out the peak is analogous to climbing an unfamiliar mountain under conditions of limited

visibility—the mountain is the response surface, and your location on the mountainside is a treatment

combination, say xa . Standing at position xa , you look around and can see enough to determine in

which direction to go to continue a steep ascent. Then you climb in the determined direction as long

as it continues to take you up, not looking about lest you lose footing. Then you stop and look around

again to determine whether you are at the top of the mountain or in which direction you need to continue

your ascent. Of course, when you reach a peak, due to the limited visibility, you may not be sure that

you have actually reached the highest peak.

How does one do this experimentally? Looking around with limited visibility is equivalent to

analyzing the data of a local experiment, consisting of observations on treatment combinations x

close to your current position, xa . The local terrain is assessed by fitting a local model. Collecting

observations in sufficiently close proximity to one another generally allows the local response surface

to be well approximated by a rather simple polynomial regression model. When still far from the peak,

a first-order model is often adequate. The fitted first-order model is a plane, from which the direction or

path of steepest ascent is easily determined. Then observations are collected along this path as long as

the response continues to increase. When the response stops increasing, another local experiment can

be conducted to determine a new path of steepest ascent. This process can be iterated until the first-order

model no longer adequately describes the local true surface. For example, close to the peak, the true

surface generally exhibits greater curvature, and a first-order regression model becomes inadequate,

exhibiting lack of fit. A larger number of observations is needed to fit a higher-order model with which

to locate and study the vicinity of the peak. Typically, a second-order model is suitable.

A flow chart describing the steps in this process is shown in Fig. 16.2. While a surface is difficult

to envisage in more than three dimensions, the process can work well for any number of factors. How

well it works depends on several decisions requiring judgment on the part of the experimenter. The first

part of this chapter (Sect. 16.2) looks at the left-hand portion of the flow chart and investigates first-

order designs and first-order models, including lack of fit and the path of steepest ascent. Section 16.3
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addresses the right-hand portion of the flow chart, which becomes relevant when the vicinity of the

peak is reached. Second-order designs and models are described. More details about second-order

designs are given in Sect. 16.4, and an experiment conducted in the flour milling industry is described

in Sect. 16.5. The collection of observations as a block design is discussed in Sect. 16.6. Sections 16.7

and 16.8 describe the use of the SAS and R software, respectively.

16.2 First-Order Designs and Analysis

16.2.1 Models

Before the peak of the response surface is reached, a small local experiment is conducted to assess the

local terrain. If the local experiment is not in the vicinity of the peak, then a first-order regression model

often provides an adequate approximation to the local response surface. For p factors, the standard

first-order model is a first-order polynomial regression model:
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Yx,t = β0 + β1x1 + · · · + βpx p + ǫx,t , (16.2.1)

where Yx,t denotes the t th observation at treatment combination x = (x1, . . ., x p), and the error

variables ǫx,t are assumed to be independent with N (0,σ2) distributions. The parameter βi is a measure

of the local linear effect of the i th factor (i = 1, . . . , p).

We often code the levels of each factor in each local experiment so that zero represents the midrange

of the levels of the factor (the average of the highest and lowest levels included in the experiment) and

+1 and −1 represent the highest and lowest levels of the factor, respectively. For the i th factor, such

coded levels zi are obtained as

zi = (xi − mi )/hi , (16.2.2)

where mi denotes the midrange of the values of xi of the i th factor, and hi denotes the half-range—

half of the range. So, in terms of coded levels, the center of the design corresponds to the point

z0 = (0, 0, . . . , 0).

The first-order model (16.2.1) can be rewritten in terms of the coded factor levels as follows:

Yz,t = γ0 + γ1z1 + · · · + γpz p + ǫz,t . (16.2.3)

The parameters in models (16.2.1) and (16.2.3) are related, since

β0 = γ0 −
∑

i

miγi/hi and βi = γi/hi (i = 1, 2, . . . , p) .

A design for estimating the parameters of a first-order model is called a first-order design. A first-

order design should (i) allow for efficient estimation of each linear effect βi or γi , (ii) allow a test for

lack of fit of the first-order model, and (iii) be expandable to a good second-order design.

As long as there is no significant model lack of fit but there are significant linear effects, the fitted

first-order model can be used to estimate the path of steepest ascent. If there is significant lack of fit of

the first-order model, then additional observations may be collected to augment the first-order design

so that a second-order polynomial regression model can be fitted to the data.

If there is no significant model lack of fit and also no significant linear effects, then more data may

be needed to increase precision of the parameter estimators. Alternatively, the experimenters may need

to change the factors under study or increase the range of levels.

16.2.2 Standard First-Order Designs

Throughout the rest of Sect. 16.2, we consider designs which we refer to as standard first-order designs.

These designs consist of nf “factorial points” and n0 “center points.” The factorial points consist of

the treatment combinations of a 2p factorial experiment run as a completely randomized design as

in Chap. 7, or a 2p−s fractional factorial design of Resolution III or higher. The center points are

observations collected at the center of the local region under study; that is, at z0 = (0, 0, . . . , 0). These

are needed to provide error degrees of freedom and to provide adequate power for a test for model lack

of fit.

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Standard first-order designs are orthogonal, which means that

(i) for each factor, the sum of the coded levels used in the design is zero, (
∑

zi = 0, summing over

observations), so half of the nf factorial points in the design have each factor at its high level and

the other half have each factor at its low level; and

(ii) for each pair of factors, the sum of cross products of the coded levels in the design is zero

(
∑

zi z j = 0, summing over observations).

The factorial portion of the design is chosen to be at least Resolution III so that the linear effects

can be estimated. Higher resolution allows model lack of fit due to two-factor interaction effects to be

tested. The 2p−s orthogonal fractional factorial designs and the Plackett–Burman designs of Chap. 15

are the most efficient designs for estimation of the linear effects.

16.2.3 Least Squares Estimation

The method of least squares (as shown in optional Sect. 8.3) is used to fit a first-order model to the

data. Denote the fitted model by

ŷx = β̂0 + β̂1x1 + · · · + β̂px p (16.2.4)

or, in coded form,

ŷz = γ̂0 + γ̂1z1 + · · · + γ̂pz p . (16.2.5)

If a standard first-order design is used, with the extreme levels of each factor coded as +1 and −1,

then the least squares estimator γ̂i of the linear effect γi of the i th factor is

γ̂i = (Yzi (+1) − Yzi (−1))/2 , (16.2.6)

where Yzi (+1) and Yzi (−1) denote the averages of the response variables at the high and the low level of

the i th factor, respectively. The parameter 2γi denotes the change in the mean response between the

high and low levels of the i th factor. This is the same as the main-effect contrast for the i th factor. The

least squares estimator of βi in the uncoded model is β̂i = γ̂i/hi , where hi is the half-range of the

uncoded levels of the i th factor.

Example 16.2.1 Paint experiment, continued

Several experiments were run in Germany by Eibl et al. (1992) on the thickness of a paint coating. The

first experiment in the series was examined in Exercise 7 of Chap. 15. To study how to decrease the

mean thickness, the experimenters selected the following six factors, each at two levels:

A : belt speed B : tube width C : pump pressure

D : paint viscosity E : tube height F : heating temperature

They used a 26−3
I I I fractional factorial design with defining relation

I = BCD = ADE = ABCE = ABF = ACDF = BDEF = CEF .

http://dx.doi.org/10.1007/978-3-319-52250-0_15
http://dx.doi.org/10.1007/978-3-319-52250-0_8
http://dx.doi.org/10.1007/978-3-319-52250-0_15
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Table 16.1 Paint thickness for the paint experiment

z A zB zC zD zE zF yz1 yz2 yz3 yz4 yz. s2
z

1 −1 1 −1 −1 −1 1.09 1.12 0.83 0.88 0.9800 0.021400

−1 −1 1 −1 1 1 1.62 1.49 1.48 1.59 1.5450 0.004967

1 1 −1 −1 −1 1 0.88 1.29 1.04 1.31 1.1300 0.042867

−1 1 −1 −1 1 −1 1.83 1.65 1.71 1.76 1.7375 0.005825

−1 −1 −1 1 −1 1 1.46 1.51 1.59 1.40 1.4900 0.006467

1 −1 −1 1 1 −1 0.74 0.98 0.79 0.83 0.8350 0.010700

−1 1 1 1 −1 −1 2.05 2.17 2.36 2.12 2.1750 0.017633

1 1 1 1 1 1 1.51 1.46 1.42 1.40 1.4475 0.002358

Source Eibl et al. (1992). Reprinted with Permission from Journal of Quality Technology © 1992 ASQ, www.asq.org

The experimenters decided to ignore all interactions for this first experiment. Since they wanted to

monitor the variation of the paint thickness, they took four observations on each of the 8 treatment

combinations in the fraction. The data are shown in Table 16.1, with factor levels coded as −1 and 1.

If the data were collected in a completely random order, model (16.2.5) can be fitted using the 32

individual observations.

Using z A, . . . , zF rather than z1, . . . , z6 to denote the factor levels, the fitted first-order model for

the mean response is

ŷz = γ̂0 + γ̂Az A + · · · + γ̂F zF

= 1.42 − 0.32z A + 0.21zB + 0.12zC + 0.07zD − 0.03zE − 0.01zF ,

where, for example, the parameter estimate γ̂D is calculated as

γ̂D = (yzD(+1) − yzD(−1))/2 = (1.493125 − 1.348125)/2 = 0.0725 ≈ 0.07 ,

where yzD(+1) is the average of the observations with D at its high level and yzD(−1) is the average of

the observations with D at its low level. �

16.2.4 Checking Model Assumptions

Before progressing with the analysis of the fitted model, the model assumptions should be checked.

We shall discuss tests for model lack of fit in Sect. 16.2.6.

If there is no model lack of fit, then the error assumptions may be checked using residual plots. If

the observations were collected sequentially in a known run order, then the residuals are plotted against

run order to check for independence of observations. Residuals are plotted against predicted values to

assess equality of error variances. Normality is checked by plotting residuals versus normal scores.

16.2.5 Analysis of Variance

Suppose that a standard first-order design has been used, with the extreme levels of each factor coded

as −1 and +1. Under the first-order model, it follows from Eq. (16.2.6) that

www.asq.org
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Table 16.2 Analysis of variance for a first order model for the paint experiment

Source of

variation

Degrees of

freedom

Sum of

squares

Mean

square

Ratio p-value Expected

mean square

A 1 3.2640 3.2640 242.07 0.0001 σ2 + 32γ2
A

B 1 1.3448 1.3448 99.73 0.0001 σ2 + 32γ2
B

C 1 0.4560 0.4560 33.82 0.0001 σ2 + 32γ2
C

D 1 0.1540 0.1540 11.42 0.0024 σ2 + 32γ2
D

E 1 0.0221 0.0221 1.64 0.2127 σ2 + 32γ2
E

F 1 0.0066 0.0066 0.49 0.4902 σ2 + 32γ2
F

Error 25 0.3371 0.0135 σ2

Total 31 5.5846

Computational formulae

ssi = nf γ̂
2
i = nf (yzi (+1) − yzi (−1))

2/4, for i = A, B, C, . . .

ssE by subtraction sstot =
∑

z

∑
t y2

zt − ny2
.

Var(γ̂i ) =
(

σ2

nf /2
+ σ2

nf /2

)
/4 = σ2/nf ,

for any i = A, B, C, . . . . The sum of squares for testing that the main-effect contrast γA is zero (that

is, H A
0 : γA = 0 against H A

A : γA �= 0) is

ssA = γ̂2
A/(1/nf ) = nf γ̂

2
A ,

and since there is only one degree of freedom for the A contrast, msA = ssA. For the first-order model

and a standard first-order design, we have expected mean square

E[MSA] = nf E[γ̂2
A] = nf Var(γ̂A) + nf (E[γ̂A])2 = σ2 + nf γ

2
A .

It can also be shown that msE = ssE/(n − p − 1) is an unbiased estimate of σ2, where ssE is obtained

by subtraction in the analysis of variance table. Consequently, the decision rule for testing H A
0 against

H A
A is

reject H A
0 if msA/msE > F1,n−p−1,α .

Similar formulae hold for each main effect. The analysis of variance for the first-order model and a

standard first-order design will be illustrated for the paint experiment.

Example 16.2.2 Paint experiment, continued

The paint experiment was discussed in Example 16.2.1, and the data were given in Table 16.1. The

purpose of the experiment was to study the effects of six factors on paint thickness. The experimental

design consisted of four observations on each of the treatment combinations of a 26−3
I I I design, which

is an orthogonal factorial design with nf = 32 factorial points and no center points. The analysis of

variance for a first order model is shown in Table 16.2, together with the expected mean squares. The

linear effect of each of factors A, B, C , and D is significantly different from zero, but factors E and F

appear to have little effect on the response. �
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16.2.6 Tests for Lack of Fit

A first-order design allows the experimenter to determine when the first-order model is no longer

adequate, provided that there are more design points than first-order model parameters, and the design

includes replication at one or more points. There is said to be model lack of fit when the model does not

adequately represent the mean response as a function of the factor levels. Lack of fit of the first-order

model occurs when the local response surface is no longer a plane.

Generic Test

Let nd denote the number of distinct coded treatment combinations z. For each treatment combination

for which there is replication, the sample variance s2
z of the nz observations at that treatment combination

provides an unbiased estimate of the error variance σ2, whether or not there is model lack of fit. These

sample variances can be pooled together to obtain a sum of squares for pure error

ssPE =
∑

z

(nz − 1)s2
z (16.2.7)

with n − nd degrees of freedom, giving a mean square for pure error

msPE = ssPE/(n − nd) ,

with E[msPE] = σ2. The error sum of squares ssE with n − p − 1 degrees of freedom is obtained

from fitting the first-order model (Table 16.2), and the difference

ssLOF = ssE − ssPE (16.2.8)

is called the sum of squares for lack of fit. The corresponding mean square is

msLOF = ssLOF/(nd − p − 1) .

The expected mean square is E[msLOF] = σ2 + θ2, where θ2 is a quadratic function of any higher

order parameters that are estimable due to the inclusion of more design points than needed to fit the

first order model. Then the ratio

msLOF/msPE

is used to test the null hypothesis of no model lack of fit. The null hypothesis is rejected at level α if

this ratio exceeds Fnd−p−1,n−nd ,α. This lack-of-fit test is summarized in Table 16.3.

Example 16.2.3 Paint experiment, continued

The paint experiment was described in Example 16.2.1. The analysis of variance for the first-order

model was shown in Table 16.2, giving ssE = 0.3371 with 25 degrees of freedom. There were nz = 4

observations at each of eight factorial points, and the corresponding eight sample variances, each with

three degrees of freedom, were given in Table 16.1, p. 570. These eight sample variances can be pooled

together to obtain

ssPE =
∑

z

(4 − 1)s2
z = 0.3367
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Table 16.3 Generic lack-of-fit test for the first-order model

Source of

variation

Degrees of

freedom

Sum of

squares

Mean

square

Ratio Expected

mean square

Lack of fit nd − p −1 ssLOF msLOF msLOF/msPE σ2 + θ2

Pure Error n − nd ssPE msPE σ2

Error n − p − 1 ssE

Computational formulae

ssE from Table 16.2, ssPE =
∑

z(nz − 1)s2
z , ssLOF by subtraction,

nd distinct design points, n observations total, p factors,

θ depends on the nature of estimable model lack of fit

Table 16.4 Generic lack-of-fit test for the paint experiment

Source of

variation

Degrees of

freedom

Sum of

squares

Mean

square

Ratio p-value

Lack of fit 1 0.0004 0.0004 0.03 0.8594

Pure error 24 0.3367 0.0140

Error 25 0.3371 0.0135

based on n − nd = 32 − 8 = 24 degrees of freedom. The sum of squares for lack of fit is

ssLOF = ssE − ssPE = 0.3371 − 0.3367 = 0.0004 ,

and the test is summarized in Table 16.4. Since the p-value is large, there is no evidence of lack of fit

of the first-order model. �

Test for Second-Order Lack of Fit

If the generic test indicates lack of fit of the first-order model, this provides no insight into why the

model is not fitting well. To understand the nature of the lack of fit, it can be helpful to consider what

the mean square for lack of fit measures in terms of higher-order models. If the first-order model is

inadequate, the next possibility is that a second-order model would provide an adequate approximation

to the local response surface. If so, then lack of fit of the first-order model is attributable to the presence

of either two-factor interactions or to quadratic effects or to both.

If the only lack of fit is due to two-factor interaction effects, this corresponds to a twisting of the

response surface. Such lack of fit can be tested if the first-order design allows estimation of two-factor

interactions in addition to providing error degrees of freedom. In the paint experiment, for example, it

is possible to estimate the AC interaction effect, in addition to the six main effects, provided that all

other interaction effects are known to be negligible.

If the center of the experimental design is near the peak of the response surface, then one would

expect quadratic effects, or curvature, to be present and a higher mean response near the design center

than at the factorial points. Multiple center points z0 = (0, . . . , 0) are usually included in a first-order

design, because comparison of the mean response at the center of the design region with the mean

response at the factorial points provides an effective test for lack of fit due to quadratic effects.

So, to assess second-order lack of fit we fit a second-order polynomial regression model under the

alternative hypothesis. With respect to the coded factor levels, the standard second-order model for p

factors is
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Yz,t = γ0 +
∑

i

γi zi +
∑

i

γi i z
2
i +

∑

i< j

γi j zi z j + ǫz,t ,

where the parameter γi represents the linear effect of the i th factor, γi i represents the quadratic effect

of the i th factor, and γi j represents the cross product effect between the i th and j th factors.

If the factorial portion of the standard first-order design is either a complete factorial design or a

fraction of resolution V or higher, then all two-factor interaction parameters γi j in the second-order

model are estimable (assuming higher-order interactions to be negligible). For testing for second-order

lack of fit, we add the sums of squares for these two-factor interactions to obtain a pooled interaction

sum of squares, ssI. If the factorial portion of the design is a fraction of resolution less than V, then not

all two-factor interactions are estimable, and only the sums of squares of those two-factor interactions

which are not aliased with main effects may be pooled—one sum of squares from each alias set.

The quadratic-effect parameters are not individually estimable from a standard first-order design.

They are aliased with one another, and only their sum can be estimated. It can be shown that

E[Yf − Y0] =
p∑

i=1

γi i ,

with

Var(Yf − Y0) =
(

1

n0
+ 1

nf

)
σ2 = n

nf n0
σ2 ,

where Yf and Y0 denote the average of the nf factorial points and the average of the n0 center points,

respectively. It follows that the corresponding sum of squares for testing whether or not the sum of the

quadratic parameters is zero is

ssQ = nf n0

n
(Yf − Y0)

2 ,

with one degree of freedom. The expected mean square is

E[MSQ] = σ2 + nf n0

n
(

p∑

i=1

γi i )
2 .

In the generic test for lack of fit of the first-order model, ssI and ssQ are part of ssLOF. Thus, we

can write

ssLOF = ssI + ssQ + ssH ,

where ssH is the sum of squares for lack of fit due to a higher-order model. Then lack of fit due

specifically to interaction terms and quadratic terms can be investigated separately. The tests are

summarized in Table 16.5 for a standard first-order design.

For all tests for lack of fit, an adequate number of pure error degrees of freedom are needed for the

test power to be reasonably high. Since Var(Yf − Y0) > σ2/n0, the test for lack of fit due to quadratic

effects will have low power if there are few center points. Typically, 3–6 center points would be used.

Example 16.2.4 Acid copper pattern plating experiment

Poon (1995) conducted a sequence of fractional factorial and response surface experiments each involv-

ing as many as seven factors to minimize the coating thickness variation of an acid copper-plating



16.2 First-Order Designs and Analysis 575

Table 16.5 Lack-of-fit test for the first-order model, given the data of a standard first-order design, with p factors

A, B, . . . and m alias sets for interaction effects clear of main effects

Source of

variation

Degrees of

freedom

Sum of

squares

Mean

square

Ratio Expected

mean square

Interaction m ssI = ssAB + · · · msI msI
msPE

σ2 + nf

m
θ1

Quadratic 1 ssQ msQ
msQ
msPE

σ2 + n0nf

n
θ2

2

Higher-order nd − p − m − 2 ssH

Pure Error n − nd ssPE msPE σ2

Error n − p − 1 ssE

Computational formulae

ssAB = nf γ̂
2
AB = nf (yz AzB (+1) − yz AzB (−1))

2/4 ssE from Table 16.2

ssQ = (n0nf /n)2(y f − y0)
2 θ1 = γ2

AB + · · ·
ssPE =

∑
z(nz − 1)s2

z θ2 = γAA + γBB + · · ·
ssH = (ssE−ssPE)−ssI−ssQ

Table 16.6 Data for the acid copper pattern plating experiment

Anode–cathode

separation (in.)

Current density

(asf)

Standard

deviation (μm)

Coded Uncoded Coded Uncoded

−1 9.5 −1 31 5.60

−1 9.5 1 41 6.45

1 11.5 −1 31 4.84

1 11.5 1 41 5.19

0 10.5 0 36 4.32

0 10.5 0 36 4.25

Source Poon (1995). Reprinted with permission

process. In the final experiments, conducted in the vicinity of minimum thickness variation, response

surface methods were utilized to study the effects of anode-cathode separation (factor A) and cathodic

current density (factor B) on the standard deviation of coating thickness. One experiment used the

factorial points of a single replicate 22 design, augmented by two center points. The response was the

standard deviation (in μm) of copper-plating thickness. The coded and uncoded factor levels, together

with the resulting data, are given in Table 16.6.

The midrange of levels of factor A is (11.5+9.5)/2 = 10.5, and the half-range is (11.5−9.5)/2.0 =
1.0. So the coded levels are given by

z A = xA − 10.5 .

The midrange and half-range of the factor B levels are (41 + 31)/2 = 36 and (41 − 31)/2 = 5,

respectively, so the coded levels of factor B are

zB = (xB − 36)/5 .

Table 16.7 shows the analysis of variance, including tests for lack of fit, due to a second-order

model. The analyses are identical for coded and uncoded factor levels. There are significant quadratic

effects—an indication that quadratic terms for either or both of factors A and B are needed to adequately

model the response surface. The first-order design is inadequate, then, because not all parameters in



576 16 Response Surface Methodology

Table 16.7 Analysis of variance and lack-of-fit test for the acid copper pattern plating experiment

Source of

variation

Degrees of

freedom

Sum of

squares

Mean

square

Ratio p-value Expected

mean square

A 1 1.0201 1.0201 1.46 0.3137 σ2 + nf γ
2
A

B 1 0.3600 0.3600 0.51 0.5250 σ2 + nf γ
2
B

Error 3 2.0986 0.6995

Total 5 3.4787

Interaction AB 1 0.0625 0.0625 25.51 0.1244 σ2 + nf γ
2
AB

Quadratic 1 2.0336 2.0336 830.05 0.0221 σ2 + n0nf

n
θ2

Pure error 1 0.0025 0.0025

Error 3 2.0986 0.6995

where θ = γAA + γBB

the second-order model are estimable. The solution is to collect some additional observations, as will

be illustrated in Example 16.3.1. �

16.2.7 Path of Steepest Ascent

If there are significant linear effects and there is no significant lack of fit of the first-order model, then

the path of steepest ascent may be followed to climb towards the maximum of the response surface.

Given the fitted first-order regression model (16.2.5), the path of steepest ascent from the current

position za is determined as follows. If γ̂i is positive, increase zi to increase predicted mean response

ŷz. If γ̂i is negative, decrease zi to increase ŷz. To follow the path of steepest ascent up the fitted

response surface, change each zi in proportion to the magnitude of γ̂i . So, if the value z1 of the first

factor is changed by uγ̂1 units for some real number u, then the level zi of the i th factor should be

changed by uγ̂i for each other factor i .

The path of steepest ascent is defined above with respect to the coded variables. This presumes

that the original variables have been coded in such a way to make the coded scales in some sense

comparable. Since the original variable may be measured on scales that are not directly comparable,

there is some art to the scaling of the coded variables.

Example 16.2.5 Paint experiment, continued

The paint experiment was described in Example 16.2.1, p. 569. The experimenters conducted an

experiment to study how to decrease the thickness of a paint coating from about 2 mm to the target

0.8 mm. Four observations were taken at each treatment combination of a 26−3
I I I design and are shown

in Table 16.1, p. 570.

The target thickness is approximately achieved at the experimental design point z = (+1,−1,−1,

+1,+1,−1) so perhaps no further analysis or experimentation is needed. Nevertheless, we will use

these data to illustrate how to move efficiently towards the lower target response surface value.

Since a lower mean response is required, we need to identify the path of steepest descent. The fitted

first-order model is obtained from Example 16.2.1 as

ŷz = γ̂0 + γ̂Az A + · · · + γ̂F zF

= 1.42 − 0.32z A + 0.21zB + 0.12zC + 0.07zD − 0.03zE − 0.01zF .
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The analysis of variance conducted in Example 16.2.2 suggests that only factors A, B, C , and D

significantly affect the response. So, these four factors should be adjusted in an attempt to reduce paint

thickness.

Based on the signs of the parameter estimates in the fitted model, we ought to be able to effect

a reduction in mean response if we increase the level of factor A and decrease the level of any of

factors B, C , and D. To follow the path of steepest descent, we change the levels of these factors each

in proportion to the magnitude of its corresponding parameter estimate, γ̂i . So, if we increase z A by

0.32u units for some real number u, then we decrease zB by 0.21u units, decrease zC by 0.12u units,

and decrease zD by 0.07u units.

Observations along the path of steepest descent moving away from the center of the current design,

z0 = (0, 0, 0, 0, 0, 0), consist of treatment combinations (0.32u,−0.21u, −0.12u,−0.07u, 0, 0) cor-

responding to increasing values of u, such as u = 3, 3.5, 4, . . .. The suggested values of u start at

u = 3. This value is large enough to move the level of factor A near to the edge of the region of

the current local experiment and corresponds to ŷ = 0.9226. For the value u = 4, the extrapolated

prediction of the first order model is ŷ = 0.7568, already less than the target value of 0.8, making

the step sizes reasonable or perhaps a bit too large. Certainly, other values of u could also have been

chosen. Observations may then be collected along this path setting u equal to each value in turn until

the target thickness is achieved, or until the response stops decreasing before reaching the target level.

In the latter case, at the point of lowest response along the path another first-order design could be run

to determine a new path of steepest descent. �

In the previous example, the effects of factors E and F were not found to be significantly different

from zero, so their levels were not changed in following the estimated path of steepest descent. There

are a variety of reasons why the effect of a factor may be negligible. The obvious reason is that response

is independent of the factor. However, it could also be that the levels used for the factor may be near

the optimal value, so the response surface may be relatively flat with respect to small changes in the

level of that factor. Alternatively, the levels of the factor may simply be too close together to give rise

to a detectable change in the mean response. In subsequent experiments, the levels of such factors can

be chosen farther apart to guard against the last scenario.

16.3 Second-Order Designs and Analysis

16.3.1 Models and Designs

Second-order designs and analysis are used when the test for lack of fit of the first-order model indicates

that the vicinity of the maximum (or minimum) of the response surface has been reached and a second-

order model should be fitted. For p factors, the standard second-order model is

Yx,t = β0 +
p∑

i=1

βi xi +
p∑

i=1

βi i x2
i +

∑

i< j

βi j xi x j + ǫx,t , (16.3.9)

where Yx,t denotes the t th response observed for treatment combination x = (x1, x2, . . . , x p). The

random-error variables ǫx,t are assumed to be independent with N (0,σ2) distributions. The parameter

βi represents the linear effect of the i th factor. The parameter βi i represents the quadratic effect of the

i th factor, and βi j represents the cross product effect, or interaction effect, between the i th and j th

factors.
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With respect to the coded factor levels zi = (xi − mi )/hi , the second-order model is

Yz,t = γ0 +
p∑

i=1

γi zi +
p∑

i=1

γi i z
2
i +

∑

i< j

γi j zi z j + ǫz,t . (16.3.10)

Experimental designs used to fit a second-order model are referred to as second-order designs. A

second-order design should (i) allow for efficient estimation of the response surface, in the sense of

having Var(Ŷz) be small in the design region; (ii) allow a test for lack of fit of the second-order model;

and (iii) allow for efficient estimation of all model parameters. Second-order designs must have at least

(p + 1)(p + 2)/2 distinct design points; otherwise, not all of the (p + 1)(p + 2)/2 parameters in the

second-order model can be estimated. We will consider only such designs in this chapter. Observations

at even more points are needed, plus some replication, in order to be able to conduct a generic test

for model lack of fit. Other properties of second-order designs that are sometimes desirable include

rotatability, orthogonality, and orthogonal blocking—these will be discussed in Sects. 16.4.1–16.4.3.

The method of least squares is used to fit the second-order model to the data. This method is exactly

as discussed in optional Sect. 8.3, with each second-order term z2
i or zi z j being treated as a single

regressor. In terms of the uncoded and coded factor levels, the fitted models are, respectively,

ŷx = β̂0 +
∑

i

β̂i xi +
∑

i

β̂i i x2
i +

∑

i< j

β̂i j xi x j (16.3.11)

and

ŷz = γ̂0 +
∑

i

γ̂i zi +
∑

i

γ̂i i z
2
i +

∑

i< j

γ̂i j zi z j , (16.3.12)

where the parameters with hats denote the least squares estimates. Although it is possible to obtain

explicit formulae for the least squares estimates for any specific design, the formulae for the quadratic

parameter estimates γ̂i i are complicated. Consequently, we rely on statistical computer software to

obtain the least squares estimates (see Sects. 16.7 and 16.8 for the use of the SAS and R software,

respectively).

As long as there is no significant lack of fit, the fitted second-order model can be used to

study the local response surface. Generally, there will be a unique treatment combination xs =
(xs1, xs2, . . . , xsp), called the stationary point, at which the fitted surface ŷx is neither increasing

or decreasing—the tangent plane is level. At the stationary point, ŷx is maximized, minimized, or is at

a saddle point. The surface near a saddle point is reminiscent of a horse saddle—rising up from front

to back but sloping down from side to side. A saddle point yields neither a maximum nor a minimum

for the fitted model. Instead, these will be found at the boundary of the design region.

If there is significant lack of fit of the second-order model, a higher-order model could be used, or

a more local experiment could be run.

16.3.2 Central Composite Designs

Central composite designs were first described by Box and Wilson (1951), and they are nowadays

the most popular second-order designs. Each design consists of a standard first-order design with nf

orthogonal factorial points and n0 center points, augmented by na “axial points.”

We follow the convention of coding the factor levels so the factorial points have coded levels ±1 for

each factor. However, it should be noted that some software packages will recode the levels in a central

http://dx.doi.org/10.1007/978-3-319-52250-0_8


16.3 Second-Order Designs and Analysis 579

Fig. 16.3 Central

composite designs for

p = 2 and p = 3 factors

(a) p = 2 (b) p = 3

composite design before doing the analysis. In SAS, for example, the default is to code the extreme

levels of each factor as ±1, whereas R allows the user to specify the coding. Under our convention,

axial points are points located at a specified distance α from the design center in each direction on

each axis defined by the coded factor levels. On the zi -axis, for example, two axial points are obtained

by setting zi = ±α, with z j = 0 for all j �= i . Thus, if there are p factors, there are 2p distinct axial

points. Axial points are also commonly referred to as star points. Figure 16.3 shows central composite

designs for p = 2 and p = 3 factors, with axial points represented by unfilled circles or balls.

A central composite design is easily built up from a standard first-order design by the addition of

axial points, and possibly some extra factorial and center points. If the factorial portion of the design is

a complete factorial or a fractional factorial of resolution V or more, all parameters of the second-order

model are estimable. Otherwise, some aliasing will occur, and some terms will need to be omitted

from the second-order model. A design should include enough replication, often at the center points,

to allow for a test for model lack of fit. The axial points are located at a distance α from the center of

the design, where the choice of α depends on the properties required of the design. A popular choice

is α = (nf )
1/4 (see Sect. 16.4.1).

Example 16.3.1 Acid copper pattern plating experiment, continued

In Example 16.2.4, p. 574, a standard first-order design was used to study the effects of anode–cathode

separation (factor A) and cathodic current density (factor B) on the standard deviation of a copper-

plating thickness. The first-order design involved the nf = 4 factorial points of a single-replicate 22

design, augmented by n0 = 2 center points. There was significant lack of fit of the first-order model,

so additional observations needed to be taken in order to fit a second-order model. The experimenters

augmented the first-order design with four axial points, using α ≈ (nf )
1/4 =

√
2, say α = 1.4142,

giving the central composite design and data shown in Table 16.8.

The second-order model is fitted by a computer regression package. In terms of the uncoded factor

levels, the fitted model is given by

ŷx = β̂0 + β̂AxA + β̂B xB + β̂AAx2
A + β̂BBx2

B + β̂ABxAxB

= 84.1990 − 8.8689xA − 1.7526xB

+ 0.4419x2
A + 0.0286x2

B − 0.0250xAxB ,

and, in terms of the coded factor levels, z A = (xA − 10.5), zB = (xB − 36)/5, the fitted model is
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Table 16.8 Data for the acid copper pattern plating experiment—central composite design

Anode–cathode separation (in.) Current density (asf) Standard deviation (µm)

Coded Uncoded Coded Uncoded

−1.0000 9.5000 −1.0000 31.0000 5.60

−1.0000 9.5000 1.0000 41.0000 6.45

1.0000 11.5000 −1.0000 31.0000 4.84

1.0000 11.5000 1.0000 41.0000 5.19

0.0000 10.5000 0.0000 36.0000 4.32

0.0000 10.5000 0.0000 36.0000 4.25

−1.4142 9.0858 0.0000 36.0000 5.76

1.4142 11.9142 0.0000 36.0000 4.42

0.0000 10.5000 −1.4142 28.9290 5.46

0.0000 10.5000 1.4142 43.0710 5.81

Source Poon (1995). Reprinted with permission
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Fig. 16.4 Response surface contour plot and response surface plot of fitted second-order model for the acid copper

pattern plating experiment

ŷz = γ̂0 + γ̂Az A + γ̂B zB + γ̂AAz2
A + γ̂BBz2

B + γ̂ABz AzB

= 4.2850 − 0.4894z A + 0.2119zB

+ 0.4419z2
A + 0.7144z2

B − 0.1250z AzB .

Figure 16.4 shows both a contour plot and a surface plot of the fitted model for uncoded factor levels.

The stationary point is in the center of the ellipses. Clearly, the stationary point provides a minimum.

The exact location of the stationary point will be determined in Sect. 16.3.5. �
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16.3.3 Generic Test for Lack of Fit of the Second-Order Model

If the second-order design includes nd distinct treatment combinations, with nd larger than the number

of parameters (p+2)(p+1)/2, and replication at one or more of these, then a generic test for lack of fit

of the second-order model can be conducted, just as for the first-order model (Sect. 16.2.6). The sum of

squares for pure error, ssPE, and the sum of squares for lack of fit, ssLOF, are calculated as in (16.2.7)

and (16.2.8). The error sum of squares ssE and the error degrees of freedom are obtained from the

analysis of variance table of the second-order model. The test proceeds exactly as in Table 16.3 except

that the error degrees of freedom are n − [(p + 2)(p + 1)/2] and the degrees of freedom for lack of fit

are then nd − [(p + 2)(p + 1)/2]. The test will be illustrated for the acid copper-plating experiment

in Example 16.3.2 in the next subsection.

16.3.4 Analysis of Variance for a Second-Order Model

Table 16.9 shows an outline analysis of variance table for a central composite design and second-order

model, assuming that all parameters are estimable. The degrees of freedom associated with the linear

effects have been added (pooled) together, as have those of the quadratic effects and those of the

interaction (cross product) effects. Sequential, or Type I, sums of squares are listed for each of these

pooled sources of variation. These include the sum of squares for all linear terms, ss(L); the sum of

squares for adding all quadratic terms to the model, given that all linear terms are already included,

ss(Q|L); and the sum of squares for adding all interaction terms to the model, given that all linear

and quadratic terms are already in the model, ss(I |L , Q). Using these sequential sums of squares,

the analysis of variance is the same whether factor levels are coded or not. The coefficients ai , ai i ,

and ai j listed in the expected mean squares are positive and depend on the design and the model. If

coded factor levels are used, the expected mean squares would involve the parameters γ instead of the

parameters β, but would have the same form.

If a central composite design is used and factor levels are coded in the usual way, the linear, quadratic

and interaction sums of squares are independent of one another, so the corresponding sums of squares

are the same, no matter in which order the terms are fitted. Also, the individual linear and interaction

(cross product) parameters are estimated independently of one another and of the quadratic effects.

The quadratic parameters are estimated independently of each other only if α and the number of center

points n0 are chosen to satisfy certain restrictions (see Sect. 16.4.2).

Table 16.9 Analysis of variance for a central composite design and second-order model

Source of

variation

Degrees of

freedom

Sum squares

of (Type I)

Mean square

(Type I)

Ratio Expected

mean square

L p ssL msL msL
msE

σ2 +
∑

i ai β
2
i

Q|L p ss(Q|L) ms(Q|L)
ms(Q|L)

msE
σ2 +

∑
i ai i β

2
i i

I |L , Q 1
2

p(p − 1) ss(I |L , Q) ms(I |L , Q)
ms(I |L ,Q)

msE
σ2 +

∑
i< j ai j β

2
i j

Error df ssE msE σ2

Total n − 1 sstot

Formula: df = n − 1
2
(p + 2)(p + 1)
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Table 16.10 Analysis of variance for the acid copper pattern plating experiment

Source of

variation

Degrees of

freedom

Sum of

squares

Mean

square

Ratio p-value

Linear 2 2.2751

AL 1 1.9159 1.9159 65.99 0.0012

BL 1 0.3591 0.3591 12.37 0.0245

Quadratic 2 2.4361

AQ|BQ 1 0.8926 0.8926 30.74 0.0052

BQ|AQ 1 2.3330 2.3330 80.36 0.0009

Interaction 1 0.0625 0.0625 2.15 0.2162

Error 4 0.1161 0.0290

Total 9 4.8898

Example 16.3.2 Acid copper pattern plating experiment, continued

The data for the central composite design of the acid copper pattern plating experiment were shown

in Table 16.8, p. 580. The analysis of variance for the coded data is given in Table 16.10. The table

shows the decomposition of the linear sum of squares with respect to the individual linear effects.

Each of the two quadratic effects is shown adjusted for the other quadratic effect. If we test each

hypothesis at individual level 0.01, the linear effect of factor A is significantly different from zero, as is

the adjusted quadratic effect of each factor. Consequently, the model should include these three terms.

We would also include the linear effect of B, since the higher-order (quadratic) term is included. The

AB-interaction effect, or cross product effect, is not significantly different from zero.

Before settling on a final model, we should check the lack of fit of the second-order model. The only

replication consisted of two center-point observations with values 4.32 and 4.25. The sample variance

of these two observations is s2
0 = 0.00245, so ssPE = 0.00245 with one degree of freedom. From the

analysis of variance table, Table 16.10, we see that ssE = 0.1161 with 4 degrees of freedom. So,

ssLOF = ssE − ssPE = 0.1161 − 0.00245 = 0.11365

with 4 − 1 = 3 degrees of freedom for lack of fit. There is significant lack of fit of the second-order

model if

msLOF/msPE > F3,1,α ,

for appropriate significance level α. Here,

msLOF/msPE = (0.11365/3)/(0.00245/1) = 15.463 ,

which is less than F3,1,0.10 = 53.6, so there is no significant lack of fit of the second-order model, and

the model fitted in Example 16.3.1, p. 579, should be a reasonable approximation to the true surface

in the local region under study (9.5 ≤ xA ≤ 11.5; 31 ≤ xB ≤ 41). �
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16.3.5 Canonical Analysis of a Second-Order Model

After fitting a second-order model, we need to (i) determine the location of the stationary point and

(ii) characterize the stationary point as providing a response surface minimum, maximum, or saddle

point. The nature of the response surface at the stationary point may be evident from contour or surface

plots, as is the case in Fig. 16.4, or its characterization may be done via canonical analysis. We provide

an overview and illustration of canonical analysis in this section, leaving the computations to software

(see Sects. 16.7.2 and 16.8.2 for the use of the SAS and R software, respectively).

In response surface methods, it is customary to perform the canonical analysis using the model

fit to the coded data. We think of each coded treatment combination z as a point in p-dimensional

space, z = (z1, z2, . . . , z p). Then the stationary point that we are trying to find is the point zs =
(zs1, zs2, . . . , zsp) at which the fitted response surface ŷz is neither increasing nor decreasing—the

tangent plane is level. The stationary point can be obtained via calculus as the critical point of the fitted

surface ŷz. The stationary point xs for the model fit to the uncoded data can be obtained from zs by

simply uncoding each factor level zsi . In view of Eq. (16.2.2), this uncoding is accomplished by taking

xsi = hi × zis + mi , for i = 1, 2, . . . , p.

The second step—characterizing the response surface at the stationary point as a minimum, maxi-

mum, or saddle point—may be accomplished by putting the fitted second-order response surface into

canonical form. To accomplish this, we change to a new coordinate system of points in two steps.

First we set v = z − zs , so that vi = zi − zsi for i = 1, 2, . . . , p. This moves the coordinate system

so that the stationary point is at the origin with respect to the vi -axes, so the stationary point is now

vs = (0, 0, . . . , 0). The other points v = z − zs measure position relative to the stationary point zs .

This eliminates all linear terms from the model. As the second step, the vi -axes are rotated to obtain

wi -axes, with the rotation chosen to eliminate the cross product terms from the model.

In terms of each of these coordinate systems, the fitted model has the following equivalent repre-

sentations:

ŷz = γ̂0 +
p∑

i=1

γ̂i zi +
p∑

i=1

γ̂i i z
2
i +

∑

i< j

γ̂i j zi z j ,

ŷv = ŷvs +
p∑

i=1

γ̂i iv
2
i +

∑

i< j

γ̂i jviv j ,

ŷw = ŷws +
p∑

i=1

λ̂i iw
2
i ,

where ŷvs and ŷws are equal and each denotes the predicted response at the stationary point.

The last equation is said to be in canonical form, and in this form, we can immediately tell whether

the stationary point is a maximum, a minimum, or a saddle point. If all of the λ̂i i ’s are negative, then

the fitted model is concave down and has a maximum at the stationary point. If all of the λ̂i i ’s are

positive, then the fitted model is concave up and has a minimum at the stationary point. If some of the

λ̂i i ’s are positive and some are negative, the stationary point is a saddle point. The λ̂i i are called the

canonical coefficients.

If a specific λ̂i i is relatively large in magnitude, then ŷw will change rapidly for changes away from

the stationary point ws = (0, 0, . . . , 0) in the wi direction. Thus, if the stationary point is a saddle

point and if λ̂ℓℓ is the largest positive λ̂i i , movement in either direction away from the stationary point

along the wℓ-axis provides a path of steepest ascent. On the other hand, if a specific λ̂i i is relatively
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small in magnitude, then ŷw is relatively unaffected by changes away from the stationary point along

the wi -axis.

Example 16.3.3 Acid copper pattern plating experiment, continued

In Example 16.3.1, p. 579, a second-order model was fitted to data collected from a central composite

design. The experiment was run in order to study the effects of anode-cathode separation (factor A)

and cathodic current density (factor B) on the standard deviation of copper-plating thickness. In terms

of the coded factor levels z A = (xA − 10.5), zB = (xB − 36)/5, the fitted model was

ŷz = γ̂0 + γ̂Az A + γ̂B zB + γ̂AAz2
A + γ̂BBz2

B + γ̂ABz AzB

= 4.2850 − 0.4894z A + 0.2119zB

+ 0.4419z2
A + 0.7144z2

B − 0.1250z AzB .

The following additional results are provided without computational details, since we are leaving those

to software (see Sects. 16.7.2 and 16.8.2).

The stationary point is zs = (zs A, zs B) = (0.5395,−0.1011). Using these values of z A and zB in

the fitted model, we obtain the predicted response at the stationary point to be ŷzs = 4.1423.

The canonical coefficients are λ̂11 = 0.7280 and λ̂22 = 0.4282. Since both canonical coefficients

are positive, the stationary point minimizes the estimated standard deviation of coating thickness. Now,

λ̂11 is larger than λ̂22—nearly twice as large—so the surface will rise more rapidly as we move away

from zs in the w1 direction than in the w2 direction.

The w1 canonical axis consists of all points (z A, zB) of the form

(zs A, zs B) = (0.5395,−0.1011) + u(−0.2134, 0.9770) .

The point (−0.2134, 0.9770) has been scaled to be one unit from the origin (i.e. (−0.2134, 0.9770)

is a vector of length one), so a unit change in u corresponds to a step of size one along the w1-axis.

Since the second component of this point is nearly one, the w1-axis is nearly parallel to the z2-axis,

or equivalently, to the B axis. This means that the coded level of B must be controlled more precisely

than the coded level of A in order to maintain a minimum response. This conclusion is suggested by

examining the fitted equation, since the coefficient of z2
B is somewhat larger than those of z2

A and z AzB .

Likewise, the w2 canonical axis consists of all points (z A, zB) of the form

(zs A, zs B) = (0.5395,−0.1011) + q(−0.9770,−0.2134) ,

where a unit change in q corresponds to a step of size one along the w2-axis. Since the first component

of the point (−0.9770,−0.2134) has magnitude nearly one, the w2-axis is nearly parallel to the z A-axis

(or z1-axis). �

The canonical analysis has been described and illustrated here in terms of the coded factor levels.

The SAS and R software likewise do the canonical analysis in terms of coded factor levels, though

SAS software codes the levels somewhat differently, which impacts the canonical coefficients.
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Canonical Analysis Formulas (Optional)

This subsection requires the knowledge of matrices and vectors. Consider the fitted second-order model

ŷz = γ̂0 +
∑

i

γ̂i zi +
∑

i

γ̂i i z
2
i +

∑

i< j

γ̂i j zi z j

for p factors. Let b denote the p × 1 vector of linear parameter estimates, with i th entry γ̂i . Let B

denote the p × p matrix with i th diagonal element γ̂i i and with off-diagonal (i j)th entry γ̂i j/2. Then

the least squares fitted model can be written in matrix terms as

ŷz = γ̂0 + z′b + z′Bz .

Furthermore, the stationary point is

zs = −1

2
B−1b ,

with corresponding predicted mean response

ŷzs = γ̂0 − z′
sBzs = γ̂0 + 1

2
z′

sb .

The canonical coefficients λ̂i i are the eigenvalues of the matrix B. The eigenvectors of B determine

the canonical axes, the canonical axis wi being the normalized eigenvector of B corresponding to the

eigenvalue λ̂i i . Obtaining the canonical coefficients and canonical axes using SAS and R software will

be illustrated in Sects. 16.7.2 and 16.8.2, respectively.

16.4 Properties of Second-Order Designs: CCDs

In this section we discuss some desirable properties—rotatability, orthogonality, and orthogonal

blocking—of second-order designs. The discussion here focuses on central composite designs (CCDs)

because their properties can be controlled by judicious choice of the number of center points n0 and the

distance α of the axial points from the design center. In addition to rotatability, orthogonal blocking,

and orthogonality, a design should include enough center points (say 3–6) to provide a reasonably

sensitive test for lack of fit.

16.4.1 Rotatability

A design is rotatable if the variance Var(Ŷz) of the predicted response is the same for all coded points

z = (z1, z2, . . . , z p) at any given distance d = (
∑

i z2
i )

1/2 from the design center, z0 = (0, 0, . . . , 0).

Thus, there is the same amount of information about the response surface at the same distance d in any

direction from the design center. This is a reasonable requirement of a design, since data are generally

collected without knowing in which direction from the design center the stationary point of the fitted

surface will be located.

Rotatable Central Composite Designs

Suppose we take a central composite design for p factors, with one observation at each axial point

located a distance α from the design center, and with one observation at each of the nf factorial points.



586 16 Response Surface Methodology

It can be shown that such a central composite design is rotatable if

α = (nf )
1/4 , (16.4.13)

and if each axial point is observed ra times, then the requirement for rotatability becomes

α = (nf /ra)1/4 .

The details can be found in the articles by Box and Hunter (1957) and Draper (1982).

Example 16.4.1 Acid copper pattern plating experiment, continued

In Example 16.3.1, p. 579, a central composite design was used for p = 2 factors. The design involved

one observation at each nf = 4 factorial points and na = 4 axial points, plus two center points. If the

model, in terms of coded factor levels, is fitted using α = (nf )
1/4 =

√
2, the design is rotatable with

respect to the coded factor levels. For example, it can be verified that the estimate of the variance is

V̂ar(Ŷz) = 0.0182

at each point z = (z1, z2) at distance
√

2 from the design center. This includes each factorial point and

each axial point. For comparison, V̂ar(Ŷ ) = 0.0145 at the center point and V̂ar(Ŷ ) = 0.0100 at the

points (−1, 0), (1, 0), (0,−1), and (0, 1), which are each a distance 1.0 from the design center. �

16.4.2 Orthogonality

The second-order model (16.3.10) includes (p + 1)(p + 2)/2 parameters, including the intercept γ0.

A second-order design is orthogonal if the sums of squares, ss(γi |γ0) (i = 1, 2, . . . , p), ss(γi i |γ0)

(i = 1, 2, . . . , p), and ss(γi j |γ0) (1 ≤ i < j ≤ p), each adjusted for the intercept γ0, are independent.

In the analysis of variance of an orthogonal design, the sums of squares associated with these (p +
2)(p + 1)/2 − 1 parameters are independent, and do not depend on the order in which the parameters

are entered into the model. Orthogonality is advantageous if the experimenter is interested in evaluating

which of the linear, quadratic, and cross product effects are significantly different from zero.

Orthogonal Central Composite Designs

Suppose we take a central composite design with one observation at each of the nf factorial points and

2p axial points, and with n0 observations at the center. As shown by Khuri and Cornell (1987), p. 119,

the design is orthogonal if

(nf + 2α2)2 = nf n ,

where n is the total number of observations; that is, n = nf + 2p + n0. So, a central composite design

with nf factorial points and 2p axial points can be made orthogonal by appropriate choice of α or

n0. For example, if the number of center points is fixed at n0, then n is fixed, and a central composite

design is orthogonal if

α =
(√

nf n − nf

2

)1/2

. (16.4.14)
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If a central composite design is to be rotatable and n0 is not fixed, then we would choose α = (nf )
1/4,

and the design would also be orthogonal if the number of center points was chosen to be

n0 = 4
√

nf + 4 − 2p . (16.4.15)

This may not be achievable, since n0 must be an integer. Rounding (16.4.15) to the nearest integer

gives a rotatable design that is nearly orthogonal.

Example 16.4.2 Flour production experiment

In Sect. 16.5, we will consider the last of four experiments described by Tuck et al. (1993) to develop

robust bread flours. This experiment was run using a central composite design for three factors, with

one observation at each of nf = 8 factorial points and 2p = 6 axial points. From Eq. (16.4.15), since√
nf =

√
8 is not an integer, the design with nf = 8 cannot be both orthogonal and rotatable. The

experimenters used only n0 = 2 center points, giving n = 16 observations in total. From Eq. (16.4.14),

the design is orthogonal if

α =
(√

(8)(16) − 8

2

)1/2

= 1.2872 .

This value of α was used by the experimenters. �

16.4.3 Orthogonal Blocking

If a second-order design is conducted as a block design, then the second-order model (16.3.10) is

modified to include additive block effects. For p factors, the model is

Yh,z,t = γ0 + θh +
p∑

i=1

γi zi +
p∑

i=1

γi i z
2
i +

∑

i< j

γi j zi z j + ǫh,z,t , (16.4.16)

where Yh,z,t denotes the t th observation at coded treatment combination z = (z1, z2, . . ., z p) in block

h, and the error variables ǫh,z,t are independent with N (0,σ2) distributions. The parameter θh denotes

the effect of the hth block, and the other parameters are defined as in the second-order model (16.3.10).

A design is said to have orthogonal blocking if the least squares estimates of the linear, quadratic, and

cross product effect parameters are the same under model (16.4.16), which includes block effects, as

under the model (16.3.10) without block effects; that is, the linear, quadratic, and cross product effects

are estimated independently of the block effects. The primary advantage of orthogonal blocking as

compared with nonorthogonal blocking is that an orthogonally blocked design gives the smallest values

of Var(Ŷ ), Var(γ̂i ), Var(γ̂i i ), and Var(γ̂i j ). A second advantage is that a rotatable design conducted

with orthogonal blocking is still rotatable.

Given a design in b blocks with orthogonal blocking, the analysis under the block design model

(16.4.16) is almost the same as it would be under model (16.3.10) for the design with no blocking.

However, the sum of squares for blocks is extracted from the sum of squares for error, and there are

b − 1 degrees of freedom for blocks giving b − 1 fewer degrees of freedom for error. The sum of

squares for blocks is

ssθ =
b∑

h=1

kh(yh.. − y...)
2 =

b∑

h=1

y2
h../kh − y2

.../n ,
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where yh.. is the sum of the observations in the hth block, kh is the size of the hth block, and y... is the

sum of all n observations in the design.

In their 1957 article, Box and Hunter developed the following general conditions under which a

second-order design can be blocked orthogonally.

(1) Each block must be a first-order orthogonal design: that is, (i) for each block and each factor i ,

the sum of coded levels of the factor,
∑

zi , is zero; and (ii) for each block and each pair of factors

i and j , the sum of cross products,
∑

zi z j , is zero. (Each sum is over all the observations in the

block.)

(2) For each block and each factor i , the sum of squares
∑

z2
i of the coded levels of the i th factor in

the block must be proportional to the number of observations in the block.

Orthogonal Blocking of Central Composite Designs

For a central composite design, we first divide the observations into two blocks: an axial-points block

consisting of the na axial points plus n0a center points, and a factorial-points block consisting of the nf

factorial points plus n0f center points. This division into blocks is natural if, for example, a first-order

design results in lack of fit, so that axial and additional center points are added at a later date to build

up to a second-order design. Each of the blocks is a first-order orthogonal design, meeting condition

(1) for orthogonal blocking. Concerning condition (2), the sum of squares
∑

z2
i of the coded levels of

each factor is 2α2 in the axial block and nf in the factorial block. So, condition (2) requires that

2α2

nf

= na + n0a

nf + n0f

.

Solving for α, a central composite design has orthogonal blocking if

α =
(

nf (na + n0a)

2(nf + n0f )

)1/2

. (16.4.17)

The design is also rotatable if α = (nf )
1/4, in which case we require

n0f = (
√

nf /2)(na + n0a) − nf . (16.4.18)

If the numbers of center points, n0a and n0f , in the blocks can be chosen to satisfy this equation, then

the design will be rotatable and can be orthogonally blocked. When this is not possible, it is preferable

to maintain orthogonal blocking but to relax rotatability. To accomplish this, the numbers n0a and n0f

can be chosen such that Eq. (16.4.18) is approximately satisfied, and then α can be computed from

Eq. (16.4.17).

It is sometimes possible to block a central composite design orthogonally in more than two blocks.

The axial block cannot be further subdivided, but the factorial block can sometimes be divided into

2m factorial blocks while maintaining orthogonal blocking if the number of factorial center points n0f

is divisible by 2m so the factorial center points can be equally divided among the 2m factorial blocks.

This is done by confounding interaction effects between three or more factors. Box and Hunter (1957,

p. 233) provide a table of blocking arrangements for rotatable and near-rotatable central composite

designs. Notice that if center points are spread across b blocks, then they provide b − 1 fewer pure

error degrees of freedom than they would in a design that is not blocked.
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Example 16.4.3 PAH recovery experiment

Barnabas et al. (1995) used a central composite design to study the effects of four factors—pressure,

temperature, extraction time, and methanol content—on the total recovery of polycyclic aromatic

hydrocarbons (PAHs) when extracted from soil. The design was composed of nf = 24 = 16 factorial

points and na = 2p = 8 axial points. Taking α = 161/4 = 2 would give a rotatable design. From

Eq. (16.4.18),

n0f = (
√

16/2)(8 + n0a) − 16 = 2n0a ,

so use of twice as many factorial center points as axial center points would give a rotatable design that

could be orthogonally blocked.

The experimenters chose to use n0a = 2 axial center points and n0f = 4 factorial center points. This

gave an axial block of size 10 and a factorial block of size 20. They then subdivided the factorial block

into two blocks each of size 10 by confounding the four-factor interaction and including two of the

four factorial center points in each factorial block. The resulting design was rotatable with orthogonal

blocking. Analysis of the design is discussed in Sects. 16.7.2 and 16.8.2 using the SAS and R software

packages, respectively. The design itself is shown in Tables 16.16 (p. 596) and 16.19 (p. 604), where

the first ten observations comprise the first factorial block, the second ten the second factorial block,

and the final ten the axial block. �

16.5 A Real Experiment: Flour Production Experiment, Continued

Tuck et al. (1993) described a series of four related experiments, involving quality improvement in the

milling industry. The collective purpose of the experiments was to develop a bread flour that would

give high loaf volume despite fluctuations in the bread-making process. We consider here their fourth

experiment.

Bread flour consists of wheat plus a small number of minor ingredients. Their fourth experiment

was concerned with the effects of three such ingredients (labeled design factors B, C , and D) on loaf

volume. An orthogonal central composite design, involving eight factorial points, six axial points, and

two center points, was used. For the axial points, the value α = 1.2872 was used to make the design

orthogonal (see Example 16.4.2).

When a product consists of a mixture of ingredients, and the total volume of the mixture is held

constant, the fractions associated with the ingredients in the mixture necessarily sum to one. This

has implications for the model and data analysis. However, in this experiment, the minor ingredients

constituted such a small portion of the mixture that the total volume did not need to remain fixed, and

standard response surface methods could be used to study the design factors.

There were a number of sources of variation in the production process that constituted noise factors.

The production factors were paired in order to keep the experiment small. So, noise factor G repre-

sented oven bake and proof time, noise factor J represented yeast and water level, and noise factor K

represented degree of mixing and moulding pressure. Each of these composite factors had two levels,

“high” and “low.” A 23−1
I I I fraction in the composite noise factors was used, with defining relation

I = GJK .

The experimental design used was a product array. It included 16 × 4 = 64 observations—each of

the 16 design factor combinations of the central composite design was observed with each of the four

noise factor combinations of the noise array. Also, the noise factors were difficult to change, so each
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Table 16.11 Flour production experiment: average specific volume yhz of loaves on half-day h; α = 1.2872

zB zC zD y1z y2z y3z y4z y.z 100 log10(sz)

−1 −1 −1 586 399 418 404 451.75 195.36

−1 −1 1 615 411 435 421 470.50 198.60

−1 1 −1 611 422 431 439 475.75 195.63

−1 1 1 639 436 444 454 493.25 198.88

1 −1 −1 603 422 400 430 463.75 197.17

1 −1 1 622 411 425 436 473.50 199.79

1 1 −1 634 471 436 425 491.50 198.68

1 1 1 673 433 423 462 497.75 207.19

α 0 0 618 414 419 477 482.00 197.80

−α 0 0 586 421 420 455 470.50 189.60

0 α 0 621 426 427 458 483.00 196.94

0 −α 0 629 412 412 426 469.75 202.68

0 0 α 631 411 433 453 482.00 200.35

0 0 −α 587 413 419 430 462.25 192.15

0 0 0 604 432 416 438 472.50 194.53

0 0 0 602 425 407 439 468.25 195.48

Source Tuck et al. (1993). Copyright © 1993 Blackwell Publishers. Reprinted with permission

noise factor combination constituted a different block, and in each block the design factor treatment

combinations (zB zC zD) were randomly ordered. Observations were collected over two days using

half-days as blocks, with the four blocks collected in the order (zG z J zK ) = 111, 100, 010, 001. As a

result, noise factor effects are also confounded with changes in conditions from half-day to half-day.

For each observation, three loaves were baked from a single dough, then the average specific volume

of the three loaves recorded. The resulting data yhz are shown in Table 16.11.

For each of the 16 treatment combinations z of the central composite design in turn, the sample

mean y.z and the log sample variance (×100) were computed from the observations yhz in the four

blocks (h = 1, 2, 3, 4). The effects of the design factors on these two response variables were studied

separately by fitting second-order response surface regression models to each set of 16 responses.

The analysis of variance for fitting the second-order model to the response y.z is shown in

Table 16.12. Because the design is orthogonal, the effects can be assessed for significance indepen-

dently of their order of entry into the model. The only effects that are significantly different from

zero at an individual significance level of 0.01 are the main effects of factors C and D. The overall

significance level for the nine tests is at most 0.09. The experimenters decided also to retain the main

effect of factor B, for which p = 0.0204. If the corresponding first-order model is fitted to y.z, we

obtain

ŷ.z = 475.50 + 4.42zB + 10.24zC + 6.87zD .

The coefficients of zB , zC , and zD are all positive. Thus, increasing the level of design factors B, C ,

and D has a positive effect on the mean loaf specific volume.

The analysis of variance for the response 100 log10(sz) is shown in Table 16.13. No effects can be

regarded as significantly different from zero at an individual 0.01 significance level. However, in this

setting it would not be particularly bad to make a Type I error, and if we raise the individual significance

level we would select the linear effects of factors B and D and the quadratic effect of C as being the

important effects. If the corresponding model is fitted and the linear effect of C is also included, we

obtain
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Table 16.12 Flour production experiment: analysis of variance for y.z

Source of

variation

Degrees of

freedom

Sum of squares Mean square Ratio p-value

zB 1 221.4366 221.4366 9.77 0.0204

zC 1 1185.3603 1185.3603 52.30 0.0004

zD 1 533.2415 533.2415 23.53 0.0029

z2
B 1 48.0081 48.0081 2.12 0.1958

z2
C 1 50.4906 50.4906 2.23 0.1862

z2
D 1 1.1997 1.1997 0.05 0.8257

zB zC 1 3.4453 3.4453 0.15 0.7101

zB zD 1 51.2578 51.2578 2.26 0.1833

zC zD 1 2.8203 2.8203 0.12 0.7363

Error 6 135.9897 22.6650

Total 15 2233.2500

Table 16.13 Flour production experiment: analysis of variance for 100 log10(sz)

Source of

variation

Degrees of

freedom

Sum of squares Mean squares Ratio p-value

zB 1 54.9174 54.9174 8.24 0.0284

zC 1 0.3730 0.3730 0.06 0.8208

zD 1 70.1514 70.1514 10.53 0.0176

z2
B 1 0.6409 0.6409 0.10 0.7669

z2
C 1 61.4625 61.4625 9.23 0.0229

z2
D 1 7.8587 7.8587 1.18 0.3191

zB zC 1 8.7175 8.7175 1.31 0.2963

zB zD 1 2.6931 2.6931 0.40 0.5484

zC zD 1 4.3269 4.3269 0.65 0.4511

Error 6 39.9752 6.6625

Total 15 251.1164

̂100 log10(sz) = 195.19 + 0.18zC + 3.35z2
C + 2.20zB + 2.49zD

≈ 195.19 + 3.35(zC + 0.027)2 + 2.20zB + 2.49zD .

Taking the two fitted models, we see that not only does the mean response increase as the levels of

factors B, C , and D are increased, but so does the variability. The minimum variability with respect to

factor C is achieved at zC = −0.027. However, the amount of factor C in the loaf cannot be negative,

and so the minimum variability is achieved when the amount of factor C , as well as factors B and D,

is zero.

The end result was that the experimenters set zC = 0 to achieve low variability and adjusted the

level of factor B (which has the slightly smaller effect on the variance, and may have been less costly

than factor D) to raise mean response to the desired level.
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16.6 Box–Behnken Designs

A central composite design has five levels for each factor, ±1, ±α, 0. For a given experiment, circum-

stances may dictate the use of fewer levels, but at least three levels per factor are needed for quadratic

terms to be estimable in the second-order model. Use of 3p factorial designs or regular 3p−s fractional

factorial designs might be considered. These tend to be large, however, and the smaller ones tend to

be of resolution III or IV so that two-factor interactions are confounded with main effects or other

two-factor interactions. For fitting a second-order response model a different type of design, called

a Box–Behnken design, is often preferred, since interaction parameter estimates are not completely

confounded, and in many cases, these designs are considerably smaller than 3p−s fractional factorial

designs.

A Box–Behnken design for p factors is constructed by a composition of an incomplete block design

for p treatments in b blocks of size k and a 2k factorial design having factor levels coded +1 and −1.

The method of composition is illustrated in Example 16.6.1. In addition to the points generated by the

composition, center points must be added to the design for all model parameters to be estimable.

A list of Box–Behnken designs can be found in the article of Box and Behnken (1960). The designs

have p factors with each factor observed at 3 levels, for p = 3–7, 9–12, and 16. The designs for p = 4

and 7 are rotatable, and the others are nearly rotatable. The designs for p = 4–7, 9, 10, 12, and 16 allow

orthogonal blocking. All of the designs possess a high degree of orthogonality, the only correlation

being between the estimators of the intercept and the quadratic terms.

Example 16.6.1 Construction of a Box–Behnken Design: p = 4

Suppose we require a second-order design for p = 4 factors, each observed at three levels, and with

a total of 27 observations. As illustrated by Box and Behnken (1960), a Box–Behnken design can be

constructed from a composition of a balanced incomplete block design in b = 6 blocks of size k = 2

and a 22 factorial design as follows. The balanced incomplete block design, shown below left, consists

of all possible combinations of four treatment labels taken two at a time. Shown to its right are the

v = 4 treatment combinations of a 22 design, with factor levels coded +1 and −1. These two designs

are composed as follows. In each of the six blocks of the incomplete block design, the treatment labels

are replaced by the symbol ±1 and the blank “−” by 0 to give the Box–Behnken design represented

in condensed form (and without center points) below right.

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 − −
− − 3 4

1 − 3 −
− 2 − 4

1 − − 4

− 2 3 −

⎤
⎥⎥⎥⎥⎥⎥⎦

with

⎡
⎢⎢⎣

−1 −1

−1 1

1 −1

1 1

⎤
⎥⎥⎦ gives

⎡
⎢⎢⎢⎢⎢⎢⎣

±1 ±1 0 0

0 0 ±1 ±1

±1 0 ±1 0

0 ±1 0 ±1

±1 0 0 ±1

0 ±1 ±1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The same design, but expanded out and augmented with three center points, is shown in Table 16.14.

The first ±1 in each row of the condensed design is replaced by the first column of levels of the

22 design, the second ±1 is replaced by the second column of levels, and each 0 is replaced by a

column of v = 4 zeros. With the addition of three center points, this gives the design with 27 treatment
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Table 16.14 Box–Behnken design: p = 4 factors, n = 27 treatment combinations
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 0

−1 1 0 0

1 −1 0 0

1 1 0 0

0 0 −1 −1

0 0 −1 1

0 0 1 −1

0 0 1 1

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 −1 0

−1 0 1 0

1 0 −1 0

1 0 1 0

0 −1 0 −1

0 −1 0 1

0 1 0 −1

0 1 0 1

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 −1

−1 0 0 1

1 0 0 −1

1 0 0 1

0 −1 −1 0

0 −1 1 0

0 1 −1 0

0 1 1 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

combinations shown as the 27 rows of Table 16.14. Although this design has the same number of

treatment combinations as a 34−1
I V design, it does not have complete confounding of the two-factor

interactions in pairs. �

In general, the composition of an incomplete block design for p treatments in b blocks of size k

with a factorial design with v = 2k treatment combinations yields a Box–Behnken design for p factors

with bv treatment combinations. The i th of the k treatment labels in each block is replaced by the i th

of the k columns of the factorial design, and each “−” is replaced by a column of v zeros.

In general, if the incomplete block design is a balanced incomplete block design with r = 3λ, as in

Example 16.6.1, then the resulting Box–Behnken design is rotatable—otherwise not. If there does not

exist a balanced incomplete block design with r = 3λ, then one can either use a balanced incomplete

block design with r �= 3λ or use a partially balanced incomplete block design. If a partially balanced

incomplete block design is used, each pair of treatment labels must occur together in at least one block

for all second-order model parameters to be estimable.

Orthogonal Blocking

Many Box–Behnken designs can be blocked orthogonally. The requirements for orthogonal blocking

of a second-order design were given in Sect. 16.4.3, and these imply that a Box–Behnken design can

be blocked orthogonally under either of two circumstances.

First, if the blocks of the incomplete block design in the composition can be partitioned into equirepli-

cate sets, then the same partition of observations in the Box–Behnken design provides orthogonal

blocking as long as the same number of center points is included in each block. Such is the case

for the design of Example 16.6.1, since each pair of blocks in the balanced incomplete block design

includes every treatment label exactly once. For the resulting Box–Behnken design in Table 16.14, each

bracketed set of nine treatment combinations is a corresponding block with one center point included.

The second situation that allows orthogonal blocking occurs when interactions involving three or

more factors can be confounded in the generating factorial design. An example follows:

Example 16.6.2 Example of orthogonal blocking

For p = 4 factors, the balanced incomplete block design with blocks consisting of the four combinations

of three treatment labels can be combined with the 23 factorial design as follows.
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⎡
⎢⎢⎣

1 2 3 −
1 2 − 4

1 − 3 4

− 2 3 4

⎤
⎥⎥⎦ with

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1

−1 −1 1

−1 1 −1

−1 1 1

1 −1 −1

1 −1 1

1 1 −1

1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

gives

⎡
⎢⎢⎣

±1 ±1 ±1 0

±1 ±1 0 ±1

±1 0 ±1 ±1

0 ±1 ±1 ±1

⎤
⎥⎥⎦ ,

where the i th occurrence of ±1 in any row of the combined design is replaced by the i th column of the

factorial design, and each 0 in the combined design is replaced by a column of eight 0’s. The resulting

32-run Box–Behnken design can be partitioned into two blocks of size 16 by confounding the three-

factor interaction in the generating factorial design. Thus, treatment combinations in the combined

design are divided into two blocks, the division depending on whether they include an even or odd

number of factors at level “−1.” An equal number of center points must be added to each block. �

16.7 Using SAS Software

In this section we illustrate the analysis of a standard first-order design and a central composite design

using the SAS procedures GLM and RSREG, respectively.

16.7.1 Analysis of a Standard First-Order Design

The acid copper pattern plating experiment of Poon (1995) was introduced in Example 16.2.4 (p. 574).

This small experiment involved four factorial points and two center points. A SAS program using the

GLM procedure for the analysis of this standard first-order design is shown in Table 16.15. After reading

Table 16.15 SAS program for first-order response surface regression

* Enter data of the first-order design and code levels;
DATA COPPER;
INPUT XA XB S;
ZA = (XA - 10.5);
ZB = (XB - 36)/5;
LINES;
9.5 31 5.60
9.5 41 6.45

11.5 31 4.84
11.5 41 5.19
10.5 36 4.32
10.5 36 4.25

;
* Analysis of the first-order design;
PROC GLM;
MODEL S = ZA ZB;

* Add model terms to test for lack of fit;
PROC GLM;
MODEL S = ZA ZB ZA*ZB ZA*ZA;
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the data and coding the factor levels, there are two calls of PROC GLM. Neither of these calls includes

a CLASS statement, since the goal is to fit a regression model to the levels of the quantitative factors

and not to compare the effects of their levels.

In the first call, the first-order model (16.2.3) is fitted, generating the output shown in Fig. 16.5.

Neither main effect is significantly different from zero, indicating either that the experimental region

is in the vicinity of the peak, or that neither factor affects the response.

In the second call of PROC GLM, the interaction term and one quadratic term are added to the model

to test for lack of fit of the first-order model—the model would contain too many parameters if both

quadratic terms were added. Some of the resulting output is shown in Fig. 16.6. At an overall level of

Fig. 16.5 SAS output

from the first call of PROC
GLM: analysis of variance

and parameter estimates for

a first-order design

Fig. 16.6 SAS output

from the second call of

PROC GLM: test for lack of

fit of the first-order model
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Table 16.16 SAS program for response surface regression (PAH recovery experiment)

DATA PAH;
INPUT RUN B1 B2 PRES TEMP ET MC Y;
LINES;

1 1 0 250 55 47.5 15 391.8
2 1 0 150 85 47.5 15 413.6
3 1 0 250 55 22.5 5 68.7
4 1 0 250 85 47.5 5 143.0
5 1 0 150 85 22.5 5 104.0
6 1 0 150 55 22.5 15 309.1
7 1 0 200 70 35.0 10 400.6
8 1 0 250 85 22.5 15 402.5
9 1 0 150 55 47.5 5 77.7

10 1 0 200 70 35.0 10 426.5
11 0 1 250 85 47.5 15 457.5
12 0 1 150 55 22.5 5 56.9
13 0 1 250 85 22.5 5 94.1
14 0 1 250 55 22.5 15 409.7
15 0 1 150 55 47.5 15 410.9
16 0 1 150 85 22.5 15 375.8
17 0 1 150 85 47.5 5 110.5
18 0 1 200 70 35.0 10 387.8
19 0 1 250 55 47.5 5 103.0
20 0 1 200 70 35.0 10 399.1
21 -1 -1 200 70 35.0 10 416.9
22 -1 -1 200 40 35.0 10 359.8
23 -1 -1 200 70 10.0 10 276.1
24 -1 -1 200 70 60.0 10 462.3
25 -1 -1 100 70 35.0 10 311.5
26 -1 -1 200 70 35.0 10 346.5
27 -1 -1 200 70 35.0 0 46.8
28 -1 -1 200 70 35.0 20 418.7
29 -1 -1 200 100 35.0 10 413.9
30 -1 -1 300 70 35.0 10 429.4

;
* Sort by independent variables for lack of fit test;
PROC SORT; BY B1 B2 PRES TEMP ET MC;
* Response surface regression, including contour plots;
ODS GRAPHICS ON; * Needed for contour plots;
PROC RSREG PLOTS = SURFACE;
MODEL Y = B1 B2 PRES TEMP ET MC / COVAR = 2 LACKFIT;
RUN;

ODS GRAPHICS OFF;

Source The data in the program are reprinted from Barnabas et al. (1995) with permission. Copyright © 1995 American

Chemical Society

0.10 for the four tests (each being done at individual level α∗ = 0.025), the quadratic term ZA*ZA
is significantly different from zero, indicating the presence of significant curvature. This fact caused

the experimenters to add axial points to the first-order design to obtain a central composite design (see

Example 16.3.1).
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16.7.2 Analysis of a Second-Order Design

The SAS procedure RSREG is used to fit a second-order response surface regression model. This

is illustrated in Table 16.16 in the context of the PAH recovery experiment that was introduced in

Example 16.4.3 (p. 589). A rotatable central composite design with orthogonal blocking was used to

study the effects of four factors—pressure (PRES), temperature (TEMP), extraction time (ET), and

methanol content (MC)—on the total recovery of polycyclic aromatic hydrocarbons (Y) when extracted

from soil.

The SAS program shown in Table 16.16 reads the run number, the levels of the block indicator

variables, the uncoded levels of the four factors, and the data into data set ONE. Until now, we have

always declared a block variable to be a classification variable via the CLASS statement and listed

its levels as 1, 2, . . . , b. However, PROC RSREG does not recognize classification variables, and if

a single block factor were included in the model, it would be interpreted as a single covariate—a

quantitative variable possessing one degree of freedom. We have included in the model the pair of

covariates (B1, B2), for which we have selected the three coded pairs of levels (1, 0), (0, 1) and

(−1,−1). The three pairs of levels distinguish the three blocks and provide two block degrees of

freedom.

Only the factor names need be listed in the MODEL statement in RSREG, as all quadratic and

cross product terms in the factors are automatically included in the model. To avoid treatment–block

interactions from being included, B1 and B2 are declared to be covariates. This is done via the option

COVAR = 2, which indicates that the first two listed independent variables are covariates and should

not be included in any interactions.

A generic test for model lack of fit can optionally be requested if the SAS data set has been sorted

by the independent variables in the model to cluster replicated observations. PROC SORT is used to

sort the data, and a test for lack of fit is requested via the option LACKFIT in the model statement of

PROC RSREG.

PROC RSREG codes the levels of each factor so that +1 and −1 represent the extreme levels of

each factor. For example, the axial points of a central composite design would typically be coded ±1

by SAS software rather than the conventional ±α. Figure 16.7 shows how SAS codes the factor levels,

as well as the resulting analysis of variance table. The analysis of variance table includes Type I sums

of squares for covariates, linear terms, quadratic terms, and cross product terms, adding the terms to

the model in that order. These Type I sums of squares are the same, whether coded or uncoded factor

levels are specified in the model statement. Observe that the cross product terms are not significantly

different from zero, and there is no significant lack of fit of the model.

Type III sums of squares are also provided for each factor, pooling together the sums of squares

for all terms—linear, quadratic and interaction—involving the factor. This information can be used for

assessing whether any single factor can be removed from the model. These Type III sums of squares

are also the same using either the coded or uncoded factor levels. The Type III sums of squares indicate

that the factor methanol content (MC) is needed in the model, but perhaps not the other factors. Further

analysis could explore what additional terms are needed, if any.

Figure 16.8 contains the parameter estimates and corresponding t-tests. Clearly the linear and

quadratic methanol content terms are needed in the model, providing some clarification to the analysis

of variance results.

In Fig. 16.9, the canonical analysis is shown, including the stationary point (Critical Value) in

terms of both coded and uncoded factor levels; the predicted value at the stationary point; the canonical

coefficients (Eigenvalues); classification of the stationary point as a maximum, minimum, or saddle

point; and the direction of each canonical axis (Eigenvectors). The canonical coefficients and axes

are with respect to the coded factor levels.
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Fig. 16.7 SAS output from PROC RSREG: coding of factor levels, analysis of variance, and lack-of-fit test

For this experiment, all eigenvalues (canonical coefficients) are negative, so the stationary point

is a maximum. The eigenvectors are each scaled to be of length one. The last eigenvalue, with value

−227.865046, is the largest in magnitude. For the corresponding eigenvector, the primary component

is that of MC with value 0.994301. So, the fitted model has greatest curvature at the stationary point

when moving in either direction determined by this fourth eigenvector, which is nearly parallel to

the MC-axis. This is evident from the contour plots in Fig. 16.10, where MC is the x-axis variable of

plots (b), (e) and (f). Such a panel of contour plots is generated by inclusion of PLOTS = SURFACE

as an option of PROC RSREG in Table 16.16, whereas changing the option to PLOTS = 3D would
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Fig. 16.8 SAS output from PROC RSREG: parameter estimates for uncoded and coded factor levels

generate response surface plots. Note that such graphics require ODS GRAPHICS ON, and PROC

RSREG must run before turning ODS GRAPHICS OFF.

16.8 Using R Software

In this section we illustrate the analysis of a standard first-order design and a central composite design

using the response surface methods function rsm of the rsm library. We then illustrate generation of

central composite and Box–Behnken designs using functions of the rsm package.

16.8.1 Analysis of a Standard First-Order Design

The acid copper pattern plating experiment of Poon (1995) was introduced in Example 16.2.4 (p. 574).

This small experiment involved four factorial points and two center points. An R program and output

for the analysis of this standard first-order design is shown in Tables 16.17 and 16.18. In Table 16.17,
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Fig. 16.9 SAS output

from PROC RSREG:

canonical analysis

the data are read from file, coded using the coded.data function of the rsm package, saved as

copper1, and displayed.

In the R program continuation in Table 16.18, the first-order analysis is generated using the rsm
function. In the statement

model1 = rsm(s ˜ FO(zA, zB), data = copper1)

the syntax FO(zA, zB) fits the first order model in both coded response variables, using the coded

data copper1, saving the results as model1. Then the summary(model1) command generates

pertinent information, including: parameter estimates, standard errors, and corresponding t-tests; the

analysis of variance table, including a lack-of-fit test; and the direction of steepest ascent with respect

to coded and uncoded variables. Finally, the command

steepest(model1, dist=seq(0, 5, by = 1), descent = F)

provides predicted response at steps along the path of steepest ascent, stepping from the origin (which

is the design center point for coded data) at distances from zero to five in unit increments, showing the

location of each step in terms of the coded and uncoded predictor variables.

Based on the t tests, neither main effect is significantly different from zero, indicating either that

the experimental region is in the vicinity of the peak, or that neither factor affects the response. The

lack-of-fit test yields a p-value of 0.034, indicating significant lack-of-fit of the first order model,

though the test does not distinguish whether this is due to interaction or quadratic effects. The reader

may verify that the significant lack-of-fit is due to a quadratic effect. This fact caused the experimenters

to add axial points to the first-order design to obtain a central composite design (see Example 16.3.1).
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Fig. 16.10 Response surface contour plots for the PAH recovery experiment
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Table 16.17 R program and output for first-order response surface regression: data entry and coding

> # Read first 6 observations from file
> copper.data = head(read.table("data/copper.txt", header = T), 6)
> # Code data
> # install.packages("rsm")
> library(rsm)
> copper1 = coded.data(copper.data, zA ˜ xA - 10.5, zB ˜ (xB - 36)/5)
> copper1

xA xB s
1 9.5 31 5.60
2 9.5 41 6.45
3 11.5 31 4.84
4 11.5 41 5.19
5 10.5 36 4.32
6 10.5 36 4.25

Data are stored in coded form using these coding formulas ...
zA ˜ xA - 10.5
zB ˜ (xB - 36)/5

16.8.2 Analysis of a Second-Order Design

In the previous section, the syntaxFOwas used with thersm function to fit a first order response surface

regression model. Analogously, the syntax SO is used to fit a second order model. This is illustrated

in the R program beginning in Table 16.19, in the context of the PAH recovery experiment that was

introduced in Example 16.4.3 (p. 589). A rotatable central composite design with orthogonal blocking

was used to study the effects of four factors—pressure (Pres), temperature (Temp), extraction time

(ET), and methanol content (MC)—on the total recovery of polycyclic aromatic hydrocarbons (y) when

extracted from soil.

The R program beginning in Table 16.19 reads the data from a file pah.txt which contains the

run number, the block level, the uncoded levels of the four factors, and the response variable. A factor

variable for blocks is created and all the information is saved in the data set pah.data. The function

coded.data of the response surface methods package rsm then codes the levels of each of the

factors, saving the coded data as pah.ccd.data. The data are then displayed (see Table 16.19),

including the coding formulas. The coding formulas used here code the extreme levels of each factor

as ±1, so the results presented here are consistent with those in the prior SAS software section, though

one could certainly choose instead to code the levels of the factorial points as ±1.
The R program is continued in Table 16.20, where the output shown is all generated by the following

two program lines.

model2 = rsm(y ˜ fBlock + SO(zP, zT, zET, zMC), data = pah.ccd.data)
summary(model2)

The first line fits the response surface regression model, saving the results as model2. Block effects

are included in the model additively, whereas the syntaxSO(zP, zT, zET, zMC) causes inclusion

of all terms up to second order in the four factors, including linear, interaction, and quadratic effects.

The summary command then generates the output shown in Table 16.20, as well as the canonical

analysis shown in Table 16.21.
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Table 16.18 R program and output for first-order response surface regression: parameter estimates and analysis of

variance

> # First-order model analysis
> model1 = rsm(s ˜ FO(zA, zB), data = copper1)
> summary(model1)

Call:
rsm(formula = s ˜ FO(zA, zB), data = copper1)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.108 0.341 14.96 0.00065
zA -0.505 0.418 -1.21 0.31373
zB 0.300 0.418 0.72 0.52495

Multiple R-squared: 0.397, Adjusted R-squared: -0.00545
F-statistic: 0.986 on 2 and 3 DF, p-value: 0.469

Analysis of Variance Table

Response: s
Df Sum Sq Mean Sq F value Pr(>F)

FO(zA, zB) 2 1.380 0.690 0.99 0.469
Residuals 3 2.099 0.700
Lack of fit 2 2.096 1.048 427.78 0.034
Pure error 1 0.002 0.002

Direction of steepest ascent (at radius 1):
zA zB

-0.85974 0.51074

Corresponding increment in original units:
xA xB

-0.85974 2.55368

> steepest(model1, dist = seq(0, 5, by = 1), descent = F)

Path of steepest ascent from ridge analysis:
dist zA zB | xA xB | yhat

1 0 0.000 0.000 | 10.500 36.000 | 5.108
2 1 -0.860 0.511 | 9.640 38.555 | 5.696
3 2 -1.720 1.021 | 8.780 41.105 | 6.283
4 3 -2.579 1.532 | 7.921 43.660 | 6.870
5 4 -3.439 2.043 | 7.061 46.215 | 7.458
6 5 -4.299 2.554 | 6.201 48.770 | 8.046

In Table 16.20, the analysis of variance table includes Type I sums of squares for blocks, linear or first

order terms, two way interaction terms, and pure quadratic terms, adding the terms to the model in that

order. These Type I sums of squares would be the same modeling either coded or uncoded factor levels.

A lack-of-fit test is also provided. Observe that the cross product terms are not significantly different

from zero, and there is no significant lack of fit of the model. The linear and quadratic components are

clearly significant. Looking at the parameter estimates and corresponding t-tests in Table 16.20, clearly

the linear and quadratic methanol content terms are needed in the model, providing some clarification

to the analysis of variance results.
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Table 16.19 R program and output for second-order response surface regression: data entry and coding

> pah.data = read.table("data/pah.txt", header = T)
> pah.data$fBlock = factor(pah.data$Block)
> library(rsm)
> pah.ccd.data = coded.data(pah.data, zP ˜ (Pres - 200)/100,
+ zT ˜ (Temp - 70)/30, zET ˜ (ET - 35)/25, zMC ˜ (MC - 10)/10)
> pah.ccd.data

Run Block Pres Temp ET MC y fBlock
1 1 1 250 55 47.5 15 391.8 1
2 2 1 150 85 47.5 15 413.6 1
3 3 1 250 55 22.5 5 68.7 1
4 4 1 250 85 47.5 5 143.0 1
5 5 1 150 85 22.5 5 104.0 1
6 6 1 150 55 22.5 15 309.1 1
7 7 1 200 70 35.0 10 400.6 1
8 8 1 250 85 22.5 15 402.5 1
9 9 1 150 55 47.5 5 77.7 1
10 10 1 200 70 35.0 10 426.5 1
11 11 2 250 85 47.5 15 457.5 2
12 12 2 150 55 22.5 5 56.9 2
13 13 2 250 85 22.5 5 94.1 2
14 14 2 250 55 22.5 15 409.7 2
15 15 2 150 55 47.5 15 410.9 2
16 16 2 150 85 22.5 15 375.8 2
17 17 2 150 85 47.5 5 110.5 2
18 18 2 200 70 35.0 10 387.8 2
19 19 2 250 55 47.5 5 103.0 2
20 20 2 200 70 35.0 10 399.1 2
21 21 3 200 70 35.0 10 416.9 3
22 22 3 200 40 35.0 10 359.8 3
23 23 3 200 70 10.0 10 276.1 3
24 24 3 200 70 60.0 10 462.3 3
25 25 3 100 70 35.0 10 311.5 3
26 26 3 200 70 35.0 10 346.5 3
27 27 3 200 70 35.0 0 46.8 3
28 28 3 200 70 35.0 20 418.7 3
29 29 3 200 100 35.0 10 413.9 3
30 30 3 300 70 35.0 10 429.4 3

Data are stored in coded form using these coding formulas ...
zP ˜ (Pres - 200)/100
zT ˜ (Temp - 70)/30
zET ˜ (ET - 35)/25
zMC ˜ (MC - 10)/10

Source The data in the program are reprinted from Barnabas et al. (1995) with permission. Copyright © 1995 American

Chemical Society

In Table 16.21, the canonical analysis is shown, including: the stationary point expressed in terms of

both coded and uncoded units; the eigenvalues, or canonical coefficients; and the eigenvectors, giving

the direction of each canonical axis. The canonical coefficients and axes are with respect to the coded

factor levels.

For this experiment, all eigenvalues (canonical coefficients) are negative, so the stationary point

is a maximum. The eigenvectors are each scaled to be of length one. The last eigenvalue, with value

−227.865, is the largest in magnitude. For the corresponding eigenvector, the primary component is
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Table 16.20 R program and output for second-order response surface regression: parameter estimates and analysis of

variance

> # Second-order model and analysis
> model2 = rsm(y ˜ fBlock + SO(zP, zT, zET, zMC), data = pah.ccd.data)
> summary(model2)

Call:
rsm(formula = y ˜ fBlock + SO(zP, zT, zET, zMC), data = pah.ccd.data)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 369.16 28.46 12.97 8.2e-09
fBlock2 6.78 26.35 0.26 0.80094
fBlock3 74.44 26.35 2.83 0.01431
zP 37.30 24.05 1.55 0.14492
zT 31.78 24.05 1.32 0.20911
zET 54.97 24.05 2.29 0.03972
zMC 263.07 24.05 10.94 6.3e-08
zP:zT -6.35 58.91 -0.11 0.91581
zP:zET -11.65 58.91 -0.20 0.84630
zP:zMC 23.10 58.91 0.39 0.70133
zT:zET 2.30 58.91 0.04 0.96945
zT:zMC -4.35 58.91 -0.07 0.94226
zET:zMC 16.55 58.91 0.28 0.78319
zPˆ2 -88.63 44.99 -1.97 0.07056
zTˆ2 -72.23 44.99 -1.61 0.13246
zETˆ2 -89.88 44.99 -2.00 0.06714
zMCˆ2 -226.33 44.99 -5.03 0.00023

Multiple R-squared: 0.928, Adjusted R-squared: 0.839
F-statistic: 10.5 on 16 and 13 DF, p-value: 0.0000582

Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

fBlock 2 33884 16942 4.88 0.0262
FO(zP, zT, zET, zMC) 4 447761 111940 32.25 0.0000012
TWI(zP, zT, zET, zMC) 6 1008 168 0.05 0.9993
PQ(zP, zT, zET, zMC) 4 99227 24807 7.15 0.0029
Residuals 13 45118 3471
Lack of fit 10 42240 4224 4.40 0.1246
Pure error 3 2877 959

that of MC with value 0.994301. So, the fitted model has greatest curvature at the stationary point

when moving in either direction determined by this fourth eigenvector, which is nearly parallel to the

MC-axis, as is evident from the SAS contour plots in Fig. 16.10 (p. 601), where MC is the x-axis variable

of plots (b), (e) and (f). To generate similar plots using R, add the following code to the end of the R

program in Tables 16.19 and 16.20.

par(mfrow = c(3, 2))

contour(model2, ˜ zP + zT + zET + zMC,

at = round(xs(model2), 3), las = 1)
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Table 16.21 R program output for second-order response surface regression: canonical analysis

Stationary point of response surface:
zP zT zET zMC

0.25947 0.19593 0.34721 0.60522

Stationary point in original units:
Pres Temp ET MC

225.947 75.878 43.680 16.052

Eigenanalysis:
$values
[1] -71.257 -84.168 -93.761 -227.865

$vectors
[,1] [,2] [,3] [,4]

zP 0.233360 0.712899 -0.655835 -0.084838
zT -0.964432 0.255316 -0.067269 0.012632
zET -0.121729 -0.652941 -0.744877 -0.063313
zMC 0.024413 0.016008 -0.102535 0.994301

The contour statement above generates six black-and-white contour plots—one for each pair of

the four factors listed. The par statement causes the six contour plots to be arranged in a 3×2

layout; otherwise, one would obtain six separate plots. The optionat = xs(model2)would use the

stationary point rather than the center point to fix the levels of the unplotted factors, whereas the option

at = round(xs(model2),3) does the same but rounds each component to 3 digits, providing

cleaner subheadings. For color plots, include the option image = T.

16.8.3 Generating Designs

In this section, we illustrate some capabilities of the R software to generate response surface designs,

using functions of thersm package. Table 16.22 contains sample R code generating most of the designs

used in examples in this chapter.

The function cube generates first order designs consisting of factorial (or cube) points and center

points. For example, the statement

cube(basis = ˜ A+B+C, generators = c(D ˜ B*C, E ˜ A*D, F ˜ A*B),

reps = 4, n0 = 0)

generates the design for the paint experiment introduced in Example 16.2.1. The syntax basis =
˜ A+B+C causes inclusion of all eight combinations of A, B and C at two levels each, then the

generators option defines the levels of D, E and F in terms of prior variables using the generators

BCD, ADE and ABF. Each of the resulting eight treatment combinations is replicated four times, since

reps = 4, and the design includes n0 = 0 center points.

Central composite designs can be generated either in one or two steps, as illustrated in the code in

Table 16.22 for the acid copper plating experiment of Example 16.2.4. The ccd function generates a

complete central composite design. Alternatively, the cube function generates the first order design,

the star function generates the axial or star points and any additional center points, and the djoin

function joins these factorial and axial parts together. The default is for the design to have two blocks—

one for each of the factorial and axial parts—unlessoneblock = T is specified. The design generated
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Table 16.22 Sample R code for generating response surface designs used in the chapter

library(rsm)

# Paint experiment
cube(basis = ˜ A+B+C, generators = c(D ˜ B*C, E ˜ A*D, F ˜ A*B),

n0 = 0, reps = 4)

# Paint experiment: same design, different notation for factors
cube(3, generators = c(x4 ˜ x2*x3, x5 ˜ x1*x4, x6 ˜ x1*x2),

n0 = 0, reps = 4)

# Acid copper pattern plating experiment: rotatable CCD
# Create design in 2 parts, then join the parts
dsgn1 = cube(2, n0 = 2, reps = 1,

coding = list(x1 ˜ (A - 10.5)/1, x2 ˜ (B - 36)/5))
dsgn2 = star(dsgn1, n0 = 0, alpha = "rotatable", reps = 1)
dsgn12 = djoin(dsgn1, dsgn2)
dsgn12 # Show design in randomized order
stdorder(dsgn12) # Show design in standard order
# Create the design all at once: defaults is factorial and axial blocks
dsgn = ccd(2, n0 = c(2, 0), alpha = "rotatable", oneblock = T,
randomize = F, coding = list(x1 ˜ (A - 10.5)/1, x2 ˜ (B - 36)/5))

varfcn(dsgn, ˜ SO(x1, x2), contour = T) # Contour of scaled variances
# Add data to the coded data set containing the design
dsgn$s = c(5.60, 4.84, 6.45, 5.19, 4.32, 4.25, 5.76, 4.42, 5.46, 5.81)
# Data analysis
model2 = rsm(s ˜ SO(x1, x2), data = dsgn)
summary(model2)
contour(model2, ˜ x1 + x2, at = round(xs(model2), 3), image = T,

las = 1)

# Flour experiment: orthogonal CCD
ccd(basis = ˜ B+C+D, n0 = 2, alpha = 1.2872, randomize = F)

# PAH experiment: rotatable CCD, with orthogonal blocking
ccd(4, alpha = "rotatable", n0 = 2, blocks = ˜ x1*x2*x3*x4,

randomize = F)

# Flour experiment: noise array only
cube(basis = ˜ G+J, generators = c(K ˜ G*J), n0 = 0, randomize = F)

# Box-Behnken example design: 4 factors, 1 ctr pt per block
bbd(4, n0 = 3, block = F, randomize = F)
# Same design, except 3 blocks
bbd(4, n0 = 1, block = T, randomize = F)
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is in terms of coded variables, though the coding option allows the user to specify the coding formula

relating each variable to its coded levels. By default, the design is randomized separately within

each block, in which case the function stdorder can be used to display the design in standard, or

unrandomized, order. One can specify a specific value of α (e.g. alpha = 1.2872 for the flour

experiment), or request that the value be set corresponding to a desired design property, such as:alpha
= "rotatable" for a rotatable design; alpha = "orthogonal" for orthogonal blocking (not

orthogonality); alpha = "spherical" for the axial and factorial points to be the same distance

from the center points, and alpha = "faces" for the axial points to be on the faces of the cube

(same as alpha = 1). Given a design, the variance function varfcn can generate a contour plot

of the scaled variance for a given design and model, so one can see rotatability or non-rotatability, for

example.

Using the bbd function, one can generate Box–Behnken designs for 3–7 factors, including designs

with orthogonal blocking for either four factors and three blocks or five factors and two blocks.

For sake of completeness, the code for the acid copper pattern plating experiment illustrates one

way to add data to the coded design data set, as needed for data analysis.

Exercises

1. Paint experiment, continued

The paint experiment of Eibl et al. (1992) was discussed in Example 16.2.1 (p. 569), where the

first-order model was fitted to the data. For the fitted first-order model, do the following.

(a) Plot the residuals versus run order, and use the plot to check the independence assumption.

(The order of the observations was not randomized in this experiment. Rather, the observations

were collected in the order they are shown row by row in Table 16.1, p. 570.)

(b) Plot the residuals versus the predicted values, and use the plot to check the assumption of equal

variance.

(c) Plot the residuals versus their normal scores, and use the plot to check the normality assumption.

(d) Verify that the design is orthogonal.

2. Paint followup experiment

The data of the second paint experiment described by Eibl et al. (1992) are given in Table 16.23.

This experiment involves factors A–D, as these had significant effects in the first experiment

(Example 16.2.1). The factors are

A: belt speed B: tube width

C : pump pressure D: paint viscosity

All four factors are at lower levels than in the first experiment. Lowering the levels of factors B–D

was indicated by the analysis of the first experiment. Lowering the level of factor A was based on

a conjecture of the experimenters.

(a) The experiment consists of two replicates of a half-fraction. Find the defining relation for the

half-fraction.

(b) Fit the first-order model, recoding the factor levels as ±1.

(c) Test for lack of fit of the first-order model.
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Table 16.23 Paint thickness yzt for the paint followup experiment

z A zB zC zD yz1 yz2

−1.5 0 −2 0 1.71 1.61

0.5 0 −2 0 0.91 1.30

−1.5 −2 0 0 1.71 1.60

0.5 −2 0 0 1.15 1.29

−1.5 0 0 −2 1.33 1.06

0.5 0 0 −2 1.74 1.98

−1.5 −2 −2 −2 0.64 0.78

0.5 −2 −2 −2 1.51 1.18

Source Eibl et al. (1992). Reprinted with Permission from Journal of Quality Technology © 1992 ASQ, www.asq.org

(d) What would you recommend the experimenters do next?

3. Fractionation experiment

Sosada (1993) studied the effects of extraction time, solvent volume, ethanol concentration, and

temperature on the yield and phosphatidylcholine enrichment (PCE) of deoiled rapeseed lecithin

when fractionated with ethanol. Initially, a single-replicate 24 experiment was conducted, aug-

mented by three center points.

(a) The results for the 16 factorial points are shown as the first 16 runs in Table 16.24. Fit the

first-order model for the response variable “PCE” and conduct the corresponding analysis of

variance.

(b) The design also included n0 = 3 center-point observations of PCE. The sample variance of

these three observations was s2
0 = 1.120. Test the first-order model for lack of fit, using a 5%

level of significance. (Hint: Since the factorial points include no replication, msPE = s2
0 , and

ssE based on all 19 runs is equal to ssE from the factorial portion of the design plus (n0 −1)s2
0 .)

(c) Based on the results of parts (a) and (b), what subsequent experimentation would you recom-

mend?

4. Fractionation experiment, continued

The fractionation experiment was described in Exercise 3, where the response PCE was used.

Consider here, instead, the analysis of “Yield”.

(a) Fit the first-order model for the response variable “Yield” based on the initial first-order 24

factorial design, shown as the first 16 runs in Table 16.24. Conduct the corresponding analysis

of variance.

(b) At the design center point, three additional observations were collected, for which the sample

variance was s2
0 = 0.090. Test the first-order model for lack of fit, using a 5% level of

significance. (Hint: Since the factorial points include no replication, msPE = s2
0 , and ssE

based on all 19 runs is equal to ssE from the factorial portion of the design plus (n0 − 1)s2
0 .)

(c) Based on the results of parts (a) and (b), what subsequent experimentation would you recom-

mend?

www.asq.org
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Table 16.24 Purified lecithin yield and phosphatidylcholine enrichment (PCE), given extraction time (z1), solvent

volume (z2), ethanol concentration (z3), and temperature (z4); fractionation experiment

Run z1 z2 z3 z4 Yield PCE

1 1 1 1 1 27.6 43.8

2 −1 −1 1 1 16.6 27.2

3 1 −1 −1 1 15.4 23.6

4 −1 1 −1 1 17.4 26.2

5 1 −1 1 −1 17.0 27.8

6 −1 1 1 −1 19.0 30.2

7 1 1 −1 −1 17.4 25.2

8 −1 −1 −1 −1 12.6 18.8

9 1 −1 1 1 18.6 28.8

10 −1 1 1 1 22.4 36.8

11 1 1 −1 1 21.4 33.4

12 −1 −1 −1 1 14.0 21.0

13 1 1 1 −1 24.0 38.0

14 −1 −1 1 −1 15.6 23.6

15 1 −1 −1 −1 13.0 20.2

16 −1 1 −1 −1 14.4 22.6

17 0 0 0 0 22.6

18
√

2 0 0 0 23.4

19 −
√

2 0 0 0 20.6

20 0
√

2 0 0 22.6

21 0 −
√

2 0 0 13.4

22 0 0
√

2 0 20.6

23 0 0 −
√

2 0 15.6

24 0 0 0
√

2 21.0

25 0 0 0 −
√

2 17.6

Source Sosada (1993). Copyright © 1993 American Oil Chemists Society. Reprinted with permission

5. Fractionation experiment, continued

The fractionation experiment was described in Exercise 3, and analysis of the first-order model

for “Yield” was considered in Exercise 4. Based on the analysis of the first-order design, the

experimenter chose to augment the 16 factorial points of the first-order design into a 25-run central

composite design, the yields from which are shown in Table 16.24.

(a) Determine whether the central composite design used is rotatable or orthogonal.

(b) Fit the second-order response surface model and determine which effects are significantly

different from zero.

(c) Conduct a canonical analysis and discuss the results with respect to the following items. What

is the nature of the critical point? Noting that the objective is to increase yield, in what direction

should one move in subsequent experimentation?

6. Film viscosity experiment

Cuq et al. (1995, Journal of Food Science) used a central composite design to study the effects

of protein concentration (g/100 g solution), pH, and temperature (◦C), denoted by P , H , and T ,
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respectively, on the apparent viscosity Y (mPa) of film-forming solution, in the development of

edible packaging films based on fish myofibrillar proteins. The data are shown in Table 16.25.

(a) Is this central composite design rotatable or orthogonal?

(b) Fit the second-order model to the data using the coded factor levels, and check the model

assumptions. Would you recommend that a transformation of the data be taken?

(c) Fit the second-order model to the natural log of the data, ln(y), using the coded factor levels.

(d) Conduct the test for lack of fit of the second-order model for ln(y).

(e) Check the model assumptions for ln(y).

(f) Conduct the canonical analysis for ln(y).

(g) Conduct the analysis of variance for ln(y).

(h) Compute the coefficient of multiple determination R2 for the second-order model for ln(y).

(i) Assess the results of the experiment, based on the model for ln(y).

7. Flour production experiment, continued

Consider again the flour production experiment of Sect. 16.5. The data were given in Table 16.11

(p. 590), along with the statistics y.z and 100 log10(sz) computed for the observations at each

design-factor combination z.

(a) Plot log10(sz) versus log10(y.z), and use the methods of Sect. 5.6.2 to determine an appropriate

variance-stabilizing transformation for these data. (Use of log10 is equivalent to use of ln for

choosing a transformation.)

Table 16.25 Apparent viscosity yzt of film-forming solution, for combinations of levels of protein concentration (g/100 g

solution), pH, and temperature (◦C)

Design point P H T

zP xP zH xH zT xT y

1 −1 1.25 −1 2.75 −1 20 50

2 1 2.75 −1 2.75 −1 20 48

3 −1 1.25 1 3.25 −1 20 16700

4 1 2.75 1 3.25 −1 20 560

5 −1 1.25 −1 2.75 1 40 320

6 1 2.75 −1 2.75 1 40 18

7 −1 1.25 1 3.25 1 40 19000

8 1 2.75 1 3.25 1 40 5000

9 −2 0.50 0 3.00 0 30 12700

10 2 3.50 0 3.00 0 30 182

11 0 2.00 −2 2.50 0 30 14

12 0 2.00 2 3.50 0 30 27800

13 0 2.00 0 3.00 −2 10 133

14 0 2.00 0 3.00 2 50 4300

15 0 2.00 0 3.00 0 30 57

16 0 2.00 0 3.00 0 30 70

17 0 2.00 0 3.00 0 30 58

18 0 2.00 0 3.00 0 30 56

Source Cuq et al. (1995). Copyright © 1995 Inst. of Food Technologists. Reprinted with permission

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Table 16.26 Resin impurity content yzt (ppm)

Design point Time Temp. yx,t

1 7.0 232.4 18.5

2 3.0 220.0 22.5

3 11.0 220.0 17.2

4 1.3 190.0 42.2

5 7.0 190.0 28.6

6 7.0 190.0 19.8

7 7.0 190.0 23.6

8 7.0 190.0 24.1

9 7.0 190.0 24.2

10 12.7 190.0 19.1

11 3.0 160.0 54.1

12 11.0 160.0 33.8

13 7.0 147.6 55.4

(b) Repeat the first analysis of variance of Sect. 16.5, for which the response variable was y.z,

after applying the transformation determined in part (a) to the observations yhz. Compare your

conclusions with those reached in Sect. 16.5.

(c) Repeat the second analysis of variance of Sect. 16.5, for which the response variable was

100 log10(sz), after applying the transformation determined in part (a) to the observations yhz.

Compare your conclusions to those reached in Sect. 16.5.

8. Central composite design

Consider using a central composite design for three factors, to include eight factorial points and

six axial points.

(a) Determine the value of α to make the design rotatable.

(b) Investigate how α and the number of center points should be chosen to make the design both

rotatable and orthogonal, if possible. If this is not possible, how can the design be made

rotatable and nearly orthogonal?

(c) Investigate whether the design can be rotatable with orthogonal blocking. If not, then investigate

whether orthogonal blocking is possible. If so, how many blocks could be used? Investigate

whether orthogonal blocking and near rotatability is possible.

9. Central composite design

Repeat Exercise 8 for a central composite design for four factors, to include 16 factorial points and

eight axial points.

10. Resin impurity experiment

An experiment was conducted using a design close to a central composite design to study the effects

of drying time (hours) and temperature (◦C) on the content y (ppm) of undesirable compounds in

a resin. The data are shown in Table 16.26.
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Table 16.27 Resin degradation (ppm) for the resin moisture experiment

Design point T H P

zT xT zH xH zP xP y

1 −1 150 −1 0 0 4 83

2 −1 150 0 50 −1 1 103

3 −1 150 0 50 1 9 94

4 −1 150 1 100 0 4 98

5 0 185 −1 0 −1 1 51

6 0 185 −1 0 1 9 48

7 0 185 1 100 −1 1 106

8 0 185 1 100 1 9 108

9 1 220 −1 0 0 4 36

10 1 220 0 50 −1 1 153

11 1 220 0 50 1 9 107

12 1 220 1 100 0 4 87

13 0 185 0 50 0 4 80

14 0 185 0 50 0 4 81

15 0 185 0 50 0 4 77

16 0 185 0 50 0 4 80

17 0 185 0 50 0 4 82

(a) Determine the coded levels of time and temperature, as well as the values of n f , na , n0. What

values of α for each factor were selected by the experimenters for the axial points? Why is the

design not quite a central composite design?

(b) Fit the second-order model, using coded factor levels.

(c) Test for model lack of fit.

(d) Check the equal variance and normality assumptions of the model using residual plots.

(e) Conduct the canonical analysis.

(f) Conduct the analysis of variance.

(g) Summarize the results.

11. Resin moisture experiment

A Box–Behnken design was used to determine whether specific drying conditions for a process

could yield a resin that is sufficiently devoid of moisture and low-molecular-weight components.

The three factors T , H , and P under study were temperature (150, 185, 220◦C), relative humidity

(0, 50, 100%), and air pressure (1, 5, 9 torr). The response variable y was a measure of product

degradation (ppm). The design and data are shown in Table 16.27.

(a) Fit the second-order model, using coded factor levels.

(b) Test for model lack of fit.

(c) Check the equal-variance and normality model assumptions using residual plots.

(d) Conduct the canonical analysis.

(e) Conduct the analysis of variance.

(f) Summarize the results.
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12. Box–Behnken design

(a) Construct a Box–Behnken design for three factors based on the balanced incomplete block

design for three treatments in three blocks of size two and the 22 factorial design.

(b) Determine whether the design constructed in part (a) is rotatable.

(c) For the design constructed in part (a), determine whether orthogonal blocking is possible.

13. Box–Behnken design

(a) Construct a Box–Behnken design for five factors based on the balanced incomplete block

design for five treatments in 10 blocks of size two.

(b) Determine whether the design constructed in part (a) is rotatable.

(c) For the design constructed in part (a), determine whether orthogonal blocking is possible.



17Random Effects and Variance
Components

17.1 Introduction

Until now, we have looked only at treatment factors whose levels have been specifically chosen. We

have tested hypotheses about, and calculated confidence intervals for, comparisons in the effects of

these particular treatment factor levels. These treatment effects are known as fixed effects, since we

represent them in the model as unknown constants (parameters). Models that contain only fixed effects

are called fixed-effects models.

As mentioned in step (f) of the checklist in Sect. 2.2, p. 7, there are occasions when we are interested

in a large population of possible levels of a treatment factor, and the levels that are actually used in the

experiment are a random sample from this population. The effects of the levels used in the experiment

are then represented as random variables whose distributions are the distributions of values in the

population. Such treatment-factor effects are called random effects, and the corresponding models

are called random-effects models. We are not interested in just the levels that happen to be in the

experiment. Rather, we are concerned with the variability of the effects of all the levels in the population.

Consequently, random effects are handled somewhat differently from fixed effects. Some examples of

experiments involving random effects are given in Sect. 17.2.

In Sect. 17.3 we look at experiments with a single random effect. The selection of sample sizes

and model assumption checking are discussed in Sects. 17.4 and 17.5. These ideas are extended to

experiments with two or more random effects in Sect. 17.6.

An experiment may involve both random and fixed effects, and the corresponding model is then

known as a mixed model. Such experiments are discussed in Sect. 17.7. Block effects may also be

random effects, and these are discussed in Sect. 17.9. Rules for obtaining confidence intervals and

testing hypotheses for random effects are given in Sect. 17.8. The use of SAS and R software is

considered in Sects. 17.10 and 17.11, respectively.

17.2 Some Examples

Before running an experiment, the checklist (Sect. 2.2, p. 7) should be completed as usual. In the case

of a random effect, the treatment factor will have an extremely large number of levels, only a very

small proportion of which can be observed in the experiment. Throughout this chapter, we will assume

that the total possible number of levels of each treatment factor will be at least 100 times larger than

the numbers of levels that can be observed. Typically, the population of possible levels will meet this
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requirement, and for the purposes of writing down a model, we may regard the population as infinite.

Otherwise, one needs to make a correction for a “finite population” in all of the formulae, and this is

beyond the scope of this book. Some examples of “infinite” populations are given in Example 17.2.1.

Example 17.2.1 Infinite populations

Suppose that a manufacturer of canned tomato soup wishes to reduce the variability in the thickness

of the soup. Suppose that the most likely causes of the variability are the quality of the cornflour

(cornstarch) received from the supplier and the actions of the machine operators. Let us consider two

different scenarios:

Scenario 1: The machine operators are highly skilled and have been with the company for a long time.

Thus, the most likely cause of variability is the quality of the cornflour delivered to the company. The

treatment factor is “cornflour,” and its possible levels are all the possible batches of cornflour that the

supplier could deliver. Theoretically, this is an infinite population of batches. We are interested not

only in the batches of cornflour that have currently been delivered, but also in all those that might be

delivered in the future. If we assume that the batches delivered to the company are a random sample

from all batches that could be delivered, and if we take a random sample of delivered batches to be

observed in the experiment, then the effect of the cornflour on the thickness is a random effect and can

be modeled by a random variable.

Scenario 2: It is known that the quality of the cornflour is extremely consistent, so the most likely

cause of variability is due to the different actions of the machine operators. The company is large

and machine operators change quite frequently. Consequently, those that are available to take part in

the experiment are only a small sample of all operators employed by the company at present or that

might be employed in the future. If we can assume that the operators available for the experiment are

representative of the population, then we can assume that they are similar to a random sample from a

very large population of possible operators, present and future. Since we would like to know about the

variability of the entire population, we model the effect of the operators as random variables, and call

them random effects. �

In the absence of any blocking factors, a completely randomized design would be used. The levels

of the random-effects treatment factor are first selected at random from the population of all possible

levels, and then the experimental units are randomly assigned to these selected levels as usual. At step (h)

of the checklist, we need to calculate the number of levels v of the treatment factor to be observed

in the experiment in addition to r, the number of observations on each level. Since this calculation

uses the formulas for confidence intervals and hypothesis tests, we will postpone the discussion to

Sect. 17.4. As a general rule, if the variability of the treatment effects is much greater than the error

(measurement) variability, then v should be large and r small; and vice versa.

Example 17.2.2 Clean wool experiment

The clean wool experiment was reported by J.M. Cameron, of the National Bureau of Standards, in the

1951 volume of Biometrics. The following checklist has been compiled from the information given in

the article.

(a) Define the objectives of the experiment.

Raw wool contains varying amounts of grease, dirt, and foreign material which must be removed before

manufacturing begins. The purchase price and customs levy of a shipment are based on the actual amount
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of wool present, i.e., on the amount of wool present after thorough cleaning—the “clean content.” The clean

content is expressed as the percentage the weight of the clean wool is of the original weight of the raw wool.

The experiment was run in order to estimate the variability in “clean content” of bales of wool in

a shipment.

(b) Identify all sources of variation.

(i) Treatment factors and their levels.

The treatment factor was “wool bale” and its levels were the entire population of bales in a particular

shipment. Seven bales were observed in the experiment, and these were selected at random from

the shipment. The shipment was large enough to allow the bales used in the experiment to be

regarded as a random sample from an infinite population of bales. The treatment factor “wool

bale” was therefore regarded as a random effect.

(ii) Experimental units.

The experimental units were time slots, so that allocation of these to the levels of the treatment

factor determined the order in which the wool bales were observed.

(iii) Blocking factors, noise factors, and covariates.

No nuisance factors were identified as major sources of variation.

(c) Choose a rule by which to assign the experimental units to the levels of the treatment factors.

A completely randomized design was selected.

(d) Specify the measurements to be made, the experimental procedure, and the anticipated dif-

ficulties.

A machine was used to bore through a bale of wool and extract a core of wool. Several cores were

taken from each of the seven selected bales so that several observations on clean content could

be made on each bale. Each core of wool was weighed and then cleaned by scouring, removing

burrs, etc. After cleaning, the wool was reweighed and the clean content calculated as the ratio of

the clean wool to the initial weight, times 100%.

An anticipated difficulty was that the scouring process, which works well with large amounts of

wool, proves difficult with a small core of wool, so that the experimental error observed in the

experiment may be larger than would normally be observed in routine production.

The observations on the clean content of the seven bales are shown in Table 17.1. Model selection

for this experiment and its analysis via SAS and R software are discussed in Sects. 17.10 and 17.11,

respectively. �

Table 17.1 Data for the clean wool experiment

Bale

1 2 3 4 5 6 7

Clean content 52.33 56.99 54.64 54.90 59.89 57.76 60.27

56.26 58.69 57.48 60.08 57.76 59.68 60.30

62.86 58.20 59.29 58.72 60.26 59.58 61.09

50.46 57.35 57.51 55.61 57.53 58.08 61.45

Source Cameron (1951). Copyright © 1951 International Biometric Society. Reprinted with permission
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17.3 One Random Effect

17.3.1 The Random-Effects One-Way Model

For a completely randomized design, with v randomly selected levels of a treatment factor T , the

random-effects one-way model is

Yit = μ + Ti + ǫit , (17.3.1)

ǫit ∼ N(0,σ2) , Ti ∼ N(0,σ2
T ) ,

ǫit’s and Ti’s are all mutually independent ,

t = 1, . . . , ri, i = 1, . . . , v .

Compare this with the fixed-effects one-way analysis of variance model (3.3.1), p. 33. The form of

the model and the error assumptions are exactly the same. The only difference is in the modeling of

the treatment effect. Since the ith level of the treatment factor T observed in the experiment has been

randomly selected from the “infinite” population, its observed effect is an observation of a random

variable Ti. The distribution of Ti is the distribution of treatment effects in the whole population. We

have assumed in (17.3.1) that the population of effects follows a normal distribution with variance

σ2
T , and this assumption will need to be checked along with the error assumptions. The mean of the

treatment-effect population has been absorbed into the constant μ, so the distribution of Ti is listed as

N(0,σ2
T ). The variance σ2

T is the parameter of interest, since if the effects of all of the treatment-factor

levels are the same, then σ2
T is zero. If the effects of the levels are quite different, then σ2

T is quite large.

Our final assumption is one of independence. If the treatment-factor levels are selected at random,

then the assumption of independence of T1, T2, . . . , Tv is reasonable. However, if, as in Example 17.2.1

Scenario 2, the levels are a “convenient sample,” then this assumption should be investigated carefully.

Independence of the Ti and ǫit requires that the treatment factor not affect any source of variation that

has been absorbed into the error variable.

In a random-effects model, the expected value of the response is μ, since

E[Yit] = E[μ] + E[Ti] + E[ǫit] = μ .

The variance of Yit is

Var(Yit) = Var(μ + Ti + ǫit) = Var(Ti) + Var(ǫit) + 2Cov(Ti, ǫit) = σ2
T + σ2 ,

since Ti and ǫit are mutually independent and so have zero covariance. Therefore, the distribution of

Yit is

Yit ∼ N(μ, σ2
T + σ2). (17.3.2)

The two components σ2
T and σ2 of the variance of Yit are known as variance components. Observations

on the same treatment are correlated, with

Cov(Yit, Yis) = Cov(μ + Ti + ǫit,μ + Ti + ǫis) = Var(Ti) = σ2
T .

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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17.3.2 Estimation of σ
2

In order to be able to test hypotheses about σ2
T or to calculate confidence intervals, we need an unbiased

estimate of σ2. The random-effects one-way model (17.3.1) is very similar to the fixed effects one-way

analysis of variance model (3.3.1), p. 33, so a natural question is whether the fixed-effects mean square

for error MSE provides an unbiased estimator for σ2 in the random-effects model also. The answer,

happily, is “yes,” and we can check it by calculating E[MSE] for the random-effects model, as shown

below.

From (3.4.6), p. 39, the fixed-effects sum of squares for error is

SSE =

v∑

i=1

ri∑

t=1

Y2
it −

v∑

i=1

riY
2

i. .

Remember that the variance of a random variable X is calculated as Var(X) = E[X2] − (E[X])2. So,

we have

E[Y2
it ] = Var(Yit) + (E[Yit])

2 = (σ2
T + σ2) + μ2 .

Now,

Y i. = μ + Ti +
1

ri

ri∑

t=1

ǫit ,

so

Var(Y i.) = σ2
T +

σ2

ri

and E[Y i.] = μ . (17.3.3)

Consequently,

E[Y
2

i.] =

(
σ2

T +
σ2

ri

)
+ μ2.

Thus,

E[SSE] =

v∑

i=1

ri∑

t=1

(σ2
T + σ2 + μ2) −

v∑

i=1

ri

(
σ2

T +
σ2

ri

+ μ2

)

= nσ2 − vσ2

(
where n =

v∑

i=1

ri

)

= (n − v)σ2 ,

giving

E[MSE] = E[SSE/(n − v)] = σ2.

So MSE is an unbiased estimator for σ2, and the observed value of the mean square for error, msE,

is an unbiased estimate for σ2 in the random-effects one-way model, as well as in the fixed-effects

one-way model.

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Confidence bounds for σ2 can be computed as under fixed-effects models (Sect. 3.4.6), that is,

σ2 ≤
ssE

χ2
n−v,1−α

, (17.3.4)

where χ2
n−v,1−α is the percentile of the chi-squared distribution with n − v degrees of freedom and

with probability of 1 − α in the right-hand tail.

17.3.3 Estimation of σ
2
T

Since the fixed-effects mean square for error msE provides an unbiased estimate of σ2, the next question

that is natural to ask is whether the fixed-effects mean square for treatments msT provides an unbiased

estimate for σ2
T . The answer is “not quite,” but we can certainly use it to find an estimate. Now msT =

ssT/(v − 1), and ssT is given in (3.5.11), p. 43, as

ssT =

v∑

i=1

riy
2
i. − ny2

..

with corresponding random variable

SST =

v∑

i=1

riY
2

i. − nY
2

.. .

Using the same type of calculation as in Sect. 17.3.2 above, we have

Y .. = μ +
1

n

∑

i

riTi +
1

n

v∑

i=1

ri∑

t=1

ǫit .

So

E[Y ..] = μ and Var(Y ..) =

∑
r2

i

n2
σ2

T +
n

n2
σ2 .

Also, from (17.3.3),

E[Y i.] = μ and Var(Y i.) = σ2
T +

σ2

ri

.

Therefore,

E[SST] =

v∑

i=1

ri

(
σ2

T +
σ2

ri

+ μ2

)
− n

(∑
r2

i

n2
σ2

T +
σ2

n
+ μ2

)

=

(
n −

∑
r2

i

n

)
σ2

T + (v − 1)σ2 .

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Since MST = SST/(v − 1), we have

E[MST] = cσ2
T + σ2, where c =

n2 −
∑

r2
i

n(v − 1)
.

Notice that if all ri are equal to r, then n = vr and c = r.

We see that MST is an unbiased estimator of cσ2
T + σ2, not σ2

T . Nevertheless, we can easily find an

unbiased estimator of σ2
T , since

E

[
MST − MSE

c

]
= σ2

T . (17.3.5)

It is, unfortunately, possible for the observed value of this estimator to be negative even though σ2
T

cannot be negative. This will occur when msE happens to be greater than msT, and this is most likely

when σ2
T is close to zero. If msE is considerably greater than msT, then the model should be questioned,

as it is unlikely to be a good description of the data.

Example 17.3.1 Ice cream experiment

The following experiment was run by Sue Hubbard in 1986 to determine whether or not different

flavors of ice cream melt at different speeds. A random sample of three flavors was selected from a

large population of flavors offered to the customer by a single manufacturer in May 1986. It is not

obvious that the selected flavors are representative of all possible ice cream flavors, since some may

include an ingredient that inhibits melting. The theoretical population is therefore the population of all

flavors that could be made with ingredients similar to those flavors available.

The three flavors of ice cream were stored in the same freezer in similar-sized containers. For each

observation, one teaspoonful of ice cream was taken from the freezer, transferred to a plate, and the

melting time at room temperature was observed to the nearest second. Eleven observations were taken

on each flavor. These are shown, together with their order of observation, in Table 17.2 and plotted in

Fig. 17.1.

Now,

ssE =
∑ ∑

y2
it − 11

∑
y2

i.

= 30,206,485 − 30,003,028.8181

= 203,456.1819 .

So an unbiased estimate of σ2 is

msE = ssE/(33 − 3) = 6781.8727 seconds2 .

Table 17.2 Melting times for three randomly selected flavors of ice cream. Order of observation in parentheses

Flavor Time in seconds (order of observation)

1 924 (1) 876 (2) 1150 (5) 1053 (7) 1041 (10) 1037 (12)

1125 (15) 1075 (16) 1066 (20) 977 (22) 886 (25)

2 891 (3) 982 (4) 1041 (8) 1135 (13) 1019 (14) 1093 (18)

994 (27) 960 (30) 889 (31) 967 (32) 838 (33)

3 817 (6) 1032 (9) 844 (11) 841 (17) 785 (19) 823 (21)

846 (23) 840 (24) 848 (26) 848 (28) 832 (29)
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Fig. 17.1 Plot of data for

the ice cream experiment
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Similarly,

ssT = 11
∑

y2
i. − 33y2

..

= 30,003,028.8181 − 29,830,018.9393

= 173,009.8787 .

So msT = ssT/(3 − 1) = 86,504.9394 seconds2, and an unbiased estimate of σ2
T is given by

msT − msE

c
=

86,504.9394 − 6781.8727

11

= 7247.5515 seconds2.

�

17.3.4 Testing Equality of Treatment Effects

When the treatment factor has random effects, we are interested in the variability of the treatment

effects in the entire population of levels, not just those in the experiment. Since the variance of the

effects in the population is σ2
T , the null hypothesis of interest is of the form

HT
0 : σ2

T = 0 ,

and the alternative hypothesis is

HT
A : σ2

T > 0.

It would be very convenient if we could use the same hypothesis-testing rule as we used for testing

equality of treatment effects in the fixed-effects model. The fixed-effects decision rule was to reject the

hypothesis of no difference in the treatments if msT/msE > Fv−1,n−v,α, (see (3.5.15), p. 43). Let us

examine the ratio msT/msE in the random-effects one-way model (17.3.1). In Sect. 17.3.2 we showed

that

E[MSE] = σ2 ,

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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and in Sect. 17.3.3 we showed that

E[MST] = cσ2
T + σ2 ,

where c = (n2 −
∑

r2
i )/n(v − 1), and if all ri are equal to r, then c = r.

So, if HT
0 : σ2

T = 0 is true, then the expected value of the numerator of the ratio MST/MSE is equal

to σ2, the same as the expected value of the denominator. Then, if HT
0 is true, the ratio should be in the

region of 1.0. But if σ2
T is large, the expected value of the numerator is larger than the denominator,

and the ratio should be large and positive. This situation is similar to that for the fixed-effects case. The

only remaining question is whether MST/MSE has an F distribution with v − 1 and n − v degrees of

freedom when HT
0 is true.

It can be shown that

SST/(cσ2
T + σ2) ∼ χ2

v−1 (17.3.6)

and

SSE/σ2 ∼ χ2
n−v

and that SST and SSE are independent. Consequently, we have

SST/((cσ2
T + σ2)(v − 1))

SSE/(σ2(n − v))
=

MST/(cσ2
T + σ2)

MSE/σ2
∼

χ2
v−1/(v − 1)

χ2
n−v/(n − v)

∼ Fv−1,n−v , (17.3.7)

and when σ2
T = 0, then

MST

MSE
∼ Fv−1,n−v .

Thus, to test H0 : σ2
T = 0 against HA : σ2

T > 0, our decision rule is to

reject HT
0 if

msT

msE
> Fv−1,n−v,α (17.3.8)

for some chosen value of the significance level α. The test can be set out in an analysis of variance

table in the usual way; see Table 17.3. We have included the expected mean squares in the table for

easy reference.

Rather than testing whether or not the variance of the population of treatment effects is zero, it may

be of more interest to test whether the variance is less than or equal to some proportion of the error

Table 17.3 Analysis of variance table for the random-effects one-way model

Source of

variation

Degrees of

freedom

Sum of squares Mean squares Ratio Expected

mean

square

Treatments v − 1 ssT ssT
v−1

msT
msE

cσ2
T + σ2

Error n − v ssE ssE
n−v

σ2

Total n − 1 sstot

Computational formulae

ssT =
∑

i riy
2
i. − ny2

.. ssE =
∑

i

∑
t y2

it −
∑

i riy
2
i.

sstot =
∑

i

∑
t y2

it − ny2
.. c =

n2−
∑

r2
i

n(v−1)
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variance, that is,

H
γT
0 : σ2

T ≤ γσ2 and H
γT
A : σ2

T > γσ2,

for some constant γ. From (17.3.7), we see that if H
γT
0 is true with σ2

T = γσ2, then

MST/(σ2(cσ2
T /σ2 + 1))

MSE/σ2
=

MST

MSE(cγ + 1)
∼ Fv−1,n−v.

So, our decision rule (17.3.8) needs only the minor modification of including the constant (cγ + 1),

that is,

reject H
γT
0 if

msT

msE
> (cγ + 1)Fv−1,n−v,α . (17.3.9)

If we choose γ = 0, then the decision rule (17.3.9) reduces to rule (17.3.8) for testing the null hypothesis

HT
0 : σ2

T = 0 against its alternative hypothesis HT
A : σ2

T > 0.

Example 17.3.2 Ice cream experiment, continued

The analysis of variance table for the ice cream experiment of Example 17.3.1 is shown in Table 17.4.

If we test the null hypothesis that the variance of melting times in the population of ice creams is

negligible against the alternative hypothesis that it is not (that is, HT
0 : σ2

T = 0 versus HT
A : σ2

T > 0)

with a Type I error probability of α = 0.05, we would reject HT
0 , since

msT/msE = 12.76 > F2,30,0.05 = 3.32 ,

or equivalently, the p-value is less than 0.05.

In such an experiment there will clearly be considerable error variability in the data due to fluctuations

of room temperature and the difficulty of determining the exact time at which the ice cream has melted

completely. Variability in the melting time of different flavors is unlikely to be of interest to the

experimenter unless it is larger than the error variability. Suppose, therefore, instead of testing the

hypothesis HT
0 against HT

A , we test the null hypothesis H
γT
0 : {σ2

T ≤ σ2} against H
γT
A : {σ2

T > σ2}.

Since there are r = 11 observations on each ice cream, the constant is c = 11, and the hypothesis-

testing rule (17.3.9) with γ = 1.0 becomes

reject H
γT
0 if

msT

msE
> (11 + 1)F2,30,α ,

that is,

reject H
γT
0 if 12.76 > 12 F2,30,α.

Table 17.4 Analysis of variance table for the ice cream experiment

Source of

variation

Degrees of

freedom

Sum of squares Mean squares Ratio p-value

Flavor 2 173009.8788 86504.9394 12.76 0.0001

Error 30 203456.1818 6781.8727

Total 32 376466.0606
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It can be seen from the table in Appendix A.6 that for any practical choice of α, there is not sufficient

evidence to reject the null hypothesis. Thus, although the variation in the melting times of the different

flavors is significant, so apparently σ2
T > 0, sufficient evidence has not been gathered to be able to

claim that the variation is significantly larger than the error variation in the data. �

17.3.5 Confidence Intervals for Variance Components

We showed in Sect. 17.3.1, p. 618, that the response variable Yit in a random-effects one-way

model (17.3.1) has a normal distribution with variance σ2 + σ2
T , where σ2 is the variance of the

error variables and σ2
T is the variance of the treatment effects in the population. In order to assess the

variability of the treatment-effect population, we may wish to calculate a confidence interval for σ2
T or,

alternatively, for σ2
T /σ2 if we want to assess the treatment variability relative to the error variability.

Since the latter is the easier calculation, we investigate this first.

Confidence Intervals for σ
2
T
/σ2

From (17.3.7), p. 623, we know that

MST

MSE(cσ2
T /σ2 + 1)

∼ Fv−1,n−v , (17.3.10)

where c = (n2 − �r2
i )/(n(v − 1)), and if the ri are all equal to r, then c = r. From this, we can write

down an interval in which MST/MSE lies with probability 1 − α; that is,

P

(
Fv−1,n−v,1−α/2 ≤

MST

MSE(cσ2
T /σ2 + 1)

≤ Fv−1,n−v,α/2

)
= 1 − α.

If we rearrange the left-hand inequality, we find that

cσ2
T /σ2 ≤

MST

MSE Fv−1,n−v,1−α/2
− 1 ,

and similarly for the right-hand inequality,

cσ2
T /σ2 ≥

MST

MSE Fv−1,n−v,α/2
− 1 .

So, replacing the random variables by their observed values, we obtain a 100(1 − α)% confidence

interval for σ2
T /σ2 as

1

c

[
msT

msE Fv−1,n−v,α/2
− 1

]
≤

σ2
T

σ2
≤

1

c

[
msT

msE Fv−1,n−v,1−α/2
− 1

]
.

(17.3.11)

A drawback of this interval is that if msT is not much larger than msE (or perhaps smaller), then it is

possible for the left-hand end of the interval to be negative even though σ2
T /σ2 can never be negative.

Although we could replace a negative lower bound by zero, we will not do so, since it can result in a
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short interval, giving the misleading impression that the experiment was more accurate than it actually

was.

For calculation of the interval, remember that Fv−1,n−v,α/2 denotes the percentile of the Fv−1,n−v

distribution corresponding to a probability of α/2 in the right-hand tail. Also, Fv−1,n−v,1−α/2 denotes

the percentile corresponding to a probability of α/2 in the left-hand tail, that is, 1 − α/2 in the right-

hand tail. Since Fv−1,n−v,1−α/2 is not tabulated in Appendix A.6, it is important to note that

Fv−1,n−v,1−α/2 = (Fn−v,v−1,α/2)
−1. (17.3.12)

Example 17.3.3 Ice cream experiment, continued

In the ice cream experiment of Examples 17.3.1 and 17.3.2, pp. 621 and 624, the variance σ2
T in the

melting times (in seconds) of the population of different flavors of ice cream is substantially greater

than zero but not substantially greater than the error variance σ2. A confidence interval for σ2
T /σ2 can

be obtained using (17.3.11). The values msT = 86504.9394, msE = 6781.8727, v = 3, c = r = 11,

and n = 33 are obtained from Example 17.3.2. From the table in Appendix A.6, we have

F2,30,.05 = 3.32 and F2,30,.95 = (F30,2,.05)
−1 = (19.5)−1 = 0.0513 .

Therefore, the confidence interval (17.3.11) becomes

1

11

(
86504.9394

(6781.8727)(3.32)
− 1

)
≤

σ2
T

σ2
≤

1

11

(
86504.9394

(6781.8727)(0.0513)
− 1

)
,

that is,

σ2
T /σ2 ∈ (0.258, 22.513) .

This interval is too wide to be of much practical use, since it says that with 95% confidence, σ2
T

could be 4 times smaller or as much as 22 times bigger than σ2. However, the result does agree

with the test of the null hypothesis H
γT
0 in Example 17.3.2, since the interval includes the value

σ2
T/σ2 = 1.0. �

As can be seen from Example 17.3.3, a confidence interval for σ2
T /σ2 can be very wide. Not only

do we need sufficient numbers of observations on each treatment in the experiment in order to keep

a confidence interval narrow, but we also need a sufficiently large selection of treatments to represent

the population. In Example 17.3.3, there were only v = 3 treatments to represent an entire population

of ice cream flavors, and this has contributed to the lack of precision in the experiment. Calculation of

sample sizes will be discussed in Sect. 17.4.

Confidence Intervals for σ
2
T

There are various methods of obtaining approximate 100(1 − α)% confidence intervals for σ2
T . The

only method that we shall give here is one that is useful when σ2
T is not close to zero and that can be

easily adapted when we have more complicated models.

First, remember that an unbiased estimator for σ2
T was obtained in Eq. (17.3.5), p. 621, as

U = c−1(MST − MSE) , (17.3.13)

where c = (n2 − �r2
i )/(n(v − 1)), and c = r when the sample sizes are equal. If we can determine

the distribution of U, then we can easily find a confidence interval for σ2
T . We know that for the
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random-effects one-way model, SST/(cσ2
T + σ2) ∼ χ2

v−1 and SSE/σ2 ∼ χ2
n−v and that SST and SSE

are independent. The exact distribution of U is therefore based on the difference of two chi-squared

distributions each multiplied by a constant of unknown value, and this is not a standard tabulated

distribution. However, it can be shown that a reasonable approximation to the true distribution of

U/σ2
T is a chi-squared distribution divided by its degrees of freedom x, where x is estimated by

x =
(msT − msE)2

msT2/(v − 1) + msE2/(n − v)
. (17.3.14)

In other words, the distribution of xU/E[U] is approximately χ2
x . This result is related to the

Satterthwaite approximation that we used in Sect. 5.6.3, p. 115 (Scheffé 1959, Sect. 7.5, gives the

general result). Using this approximation, we can write down the approximate probability statement

P

(
χ2

x,1−α/2 ≤
xU

σ2
T

≤ χ2
x,α/2

)
≈ 1 − α .

If we rearrange the left-hand inequality, we obtain

σ2
T ≤

xU

χ2
x,1−α/2

,

and if we rearrange the right-hand inequality, we obtain

xU

χ2
x,α/2

≤ σ2
T .

Consequently, we obtain an approximate 100(1−α)% confidence interval for σ2
T as

xu

χ2
x,α/2

≤ σ2
T ≤

xu

χ2
x,1−α/2

, (17.3.15)

where u is the observed value of U; that is,

u = c−1(msT − msE) . (17.3.16)

Example 17.3.4 Ice cream experiment, continued

Suppose we require a 90% confidence interval for the variance of the melting times of the population

of ice creams in the ice cream experiment of Examples 17.3.1 and 17.3.2, pp. 621 and 624. Using

the information in those examples, we obtain the unbiased estimate (17.3.16) of σ2
T as u = 7247.5526

seconds2. The degrees of freedom x of the approximate distribution of U are calculated using (17.3.14),

that is,

x =
(86504.9394 − 6781.8727)2

(86504.9394)2/2 − (6781.8727)2/30
≈ 1.7.

From Table A.5 we can guess at the approximate values of χ2
x,.05 and χ2

x,.95 as

χ2
1.7,.05 ≈ 5.3 and χ2

1.7,.95 ≈ 0.07 .

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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So a 90% confidence interval for σ2
T is roughly

σ2
T ∈

(
(1.7)(7247.5515)

5.3
,

(1.7)(7247.55)

0.07

)

= (2,324.69, 176,011.97)

Taking square roots and converting to minutes, we obtain the approximate 90% confidence interval for

the standard deviation of melting times as

σT ∈ (0.8, 7.0) minutes.

Again, this interval is too wide for practical use, due to the small number of flavors examined from the

population. �

17.4 Sample Sizes for an Experiment with One Random Effect

For the fixed-effects one-way analysis of variance model, we looked at two different ways of deter-

mining sample sizes. The first method (Sect. 3.6) was based on the required power of the hypothesis

test for detecting whether two treatment effects differ by more than a chosen quantity �. The second

method (Sect. 4.5) was based on the required length of confidence intervals for one or more treatment

contrasts.

For the random-effects one-way model, we need to determine both the number v of levels of the

treatment factor to be observed in the experiment and the number r of observations to be taken on

each of these levels. A glance at the formulae (17.3.11) and (17.3.15) shows that a calculation of v and

r based on the lengths of confidence intervals will not be straightforward. Both formulae depend not

only on the value of msE, but also on that of msT, both of which are unknown prior to the experiment.

However, consideration of the variances of the estimators used to develop the confidence intervals

helps us determine an appropriate balance between “more treatments” and “more replication.”

Consider first the confidence interval for σ2
T given in (17.3.15). The confidence interval should

be tight if the variance of the unbiased estimator U is small. Assuming equal sample sizes, U =

r−1(MST − MSE) has variance

Var(U) =
2n2(nσ2

T /v + σ2)2

v2(v − 1)
+

2n2σ4

v2(n − v)

for n > v. (This follows because MST and MSE are independent, SST/(rσ2
T + σ2) ∼ χ2(v − 1),

SSE/σ2 ∼ χ2(n − v), and the variance of a chi-squared random variable is twice its degrees of free-

dom.) We want this variance to be as small as possible. Suppose that the total number of observations

n = rv is fixed by budget considerations and we require r ≥ 2 since replication is needed to estimate

σ2, so v ≤ n/2. To minimize the first term of this variance, we require v as large as possible, corre-

sponding to v = n/2. It can be shown that the second term is minimized by taking v = 2n/3, or by

taking v = n/2 if we require equal sample sizes and r ≥ 2.

In summary, assuming equal replication with r ≥ 2, the variance of U is minimized by taking

v = n/2 and r = 2. In this case, our estimator would be U = (1/2)(MST − MSE), for which Var(U) =

8[(2σ4
T + σ2)2/(v − 1) + σ4/v] is as small as possible given equal replication with r ≥ 2.

We find a similar requirement resulting from a confidence interval for σ2
T /σ2. The mean of an

F-distribution with v − 1 and n − v degrees of freedom is (n − v)/(n − v − 2). So, from (17.3.10),

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
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p. 625, with c = r, an unbiased estimator of σ2
T/σ2 is given by

U =
1

r

[
(n − v − 2)

(n − v)

MST

MSE
− 1

]
,

and a narrow confidence interval should be obtained if we choose v and r to make Var(U) small. The

variance of an F-distribution with m and p degrees of freedom is

2p2(m + p − 2)

m(p − 2)2(p − 4)
.

It follows from (17.3.10), the definition of U, and m = v − 1 and p = n − v that when the sample

sizes are all equal to r,

Var(U) =

(
r
σ2

T

σ2
+ 1

)2
1

r2

(
2(n − v)2(n − 3)(n − v − 2)2

(v − 1)(n − v − 2)2(n − v − 4)(n − v)2

)

=

(
σ2

T

σ2
+

1

r

)2 (
2(n − 3)

(v − 1)(n − v − 4)

)
.

So, if the number of observations n is fixed with n = rv and r ≥ 2, and if we expect that σ2
T /σ2 > 1/2,

say, then the squared term (σ2
T/σ2)2 from the first set of parentheses will be most important for

determining the size of the variance—more important that the term (1/r)2 or the cross-product term—

and we need to minimize its coefficient, which is 2(n − 3)/((v − 1)(n − v − 4)). This requires that

v = (n − 3)/2, or v = n/2 and r = 2 in the equireplicate case. On the other hand, in the more unusual

case when σ2
T is expected to be much smaller than σ2, then the squared term (1/r)2 from the first set of

parentheses will be most important for determining the size of the variance, and we need the minimum

value of
1

r2

(
2(n − 3)

(v − 1)(n − v − 4)

)
=

2v2(n − 3)

n2(v − 1)(n − v − 4)
,

and this occurs when v is as small as possible. However, it is unusual to be interested in σ2
T /σ2 if this

ratio is expected to be very small, so we discount this case.

In summary, the general recommendation again is to set v = n/2 and r = 2. The exception is the

extraordinary case where one plans such an experiment to study σ2
T /σ2 but expects σ2

T to be much

smaller than σ2, in which case one should choose v to be small.

We can get a feel for how many observations n = rv are needed in total if we examine the power

of the hypothesis test for testing H
γT
0 : σ2

T ≤ γσ2 against the alternative hypothesis H
γT
A : σ2

T > γσ2

(for a chosen γ ≥ 0). The decision rule was given in (17.3.9), p. 624, as

reject H
γT
0 if

msT

msE
> (cγ + 1)Fv−1,n−v,α = k, say. (17.4.17)

What is the probability of rejecting H
γT
0 if the true value of σ2

T /σ2 is �? In other words, what is the

probability that MST/MSE > k, when σ2
T/σ2 is equal to �? This is the power of the test at the value

�. We can calculate the power from the knowledge that
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MST

MSE(cσ2
T /σ2 + 1)

∼ Fv−1,n−v ,

see (17.3.12), p. 626. If σ2
T/σ2 is equal to �, then

P

(
MST

MSE
> k

)
= P

(
MST

MSE(c� + 1)
>

k

c� + 1

)
.

Suppose we stipulate that the power must be π when σ2
T /σ2 = �. Then, we must have that

k

c� + 1
= Fv−1,n−v,π.

Remembering from (17.4.17) that k = (cγ + 1)Fv−1,n−v,α, and that (n − v) = v(r − 1) and c = r for

equal sample sizes, we obtain the equality

Fv−1,v(r−1),α

Fv−1,v(r−1),π
=

r� + 1

rγ + 1
.

So, we need to select γ and α for testing H
γT
0 together with � and π. Then we can try to determine

v and r by trial and error as illustrated in Example 17.4.1. Since Fv−1,v(r−1),π = (Fv(r−1),v−1,1−π)−1,

we try to find values of v and r such that

(Fv−1,v(r−1),α)(Fv(r−1),v−1,1−π) ≤
r� + 1

rγ + 1
. (17.4.18)

Example 17.4.1 Ice cream experiment, continued

In Example 17.3.2, p. 624, we were unable to reject the hypothesis H
γT
0 : σ2

T ≤ σ2 in favor of the

hypothesis H
γT
A : σ2

T > σ2 at a significance level of α = 0.05. Suppose we wish to repeat this exper-

iment, still with γ = 1.0 and a Type I error probability of α = 0.05. Suppose further that we would

like to reject the hypothesis with high probability (say π = 0.95) if the true value of σ2
T /σ2 is at least

� = 2.0. How many ice cream flavors should we look at and how many observations should we take

on each?

From (17.4.18), we need to find v and r such that

(Fv−1,v(r−1),.05)(Fv(r−1),v−1,.05) ≤ (2r + 1)/(r + 1) .

For the moment set r = 11, which is the value used by the experimenter in the ice cream experiment.

Then (2r + 1)/(r + 1) = 23/12 ≈ 1.92, and we have

v Fv−1,10v,.05 F10v,v−1,.05 Product 2r+1
r+1

Action

4 2.84 8.59 24.40 > 1.92 Increase v

100 1.26 1.30 1.64 < 1.92 Decrease v

80 1.30 1.34 1.74 < 1.92 Decrease v

60 1.34 1.41 1.89 ≈ 1.92 Stop

So, v around 60 should be reasonable, requiring 660 observations in total, including 60 ice cream

varieties.
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Let us now reduce r to 3 and compute the required value of v. Then (2r + 1)/(r + 1) = 1.75, so

v Fv−1,2v,.05 F2v,v−1,.05 Product 2r+1
r+1

Action

80 1.37 1.39 1.90 > 1.75 Increase v

100 1.32 1.34 1.78 > 1.75 Increase v

105 1.31 1.33 1.75 = 1.75 Stop

So v in the region of 105 would be fine, requiring only n = 315 observations. In Exercise 2, the reader

is asked to determine whether the use of r = 2 would require a smaller total number of observations.

To greatly reduce the required number of observations, we would need to relax our requirement of

such a high power to reject H
γT
0 : σ2

T ≤ σ2 when σ2
T = 2σ2. �

17.5 Checking Assumptions on the Model

The simplest way to check the assumptions on the one-way random-effects model is to use residual

plots in much the same way as for a fixed-effects one-way model. We need to check that the error

assumptions are valid, that is,

ǫit ∼ N(0,σ2), t = 1, . . . , ri ,

for each treatment factor level i (i = 1, . . . , v), and also that the assumptions on the random effect Ti

are valid, that is,

Ti ∼ N(0,σ2
T ), i = 1, . . . , v ,

and that all random variables are mutually independent.

Checking the error assumptions is straightforward, since we proceed in exactly the same way as for

the fixed-effects one-way model. We replace Ti in the model, temporarily, by the fixed effect τi. Then

the residuals are defined as usual as

êit = yit − ŷit = yit − yi. .

These are then standardized to obtain the standardized residuals zit with standard deviation 1.0. We plot

the standardized residuals versus treatment-factor levels, versus ŷit , versus order, and versus normal

scores, as in Chap. 5, to check for outliers, independence, constant variance, and normality. Non-

independence between the ǫit’s and the Ti’s is not easy to detect, but unequal variances of the ǫit’s

indicates one form of the problem.

The normality assumption on the random effect Ti can be checked when the sample sizes are equal,

unless v is too small. The treatment averages Y i. should have a N(μ,σ2
T + σ2/r) distribution. So, if

we standardize the observed averages yi. to have average value zero and sample standard deviation

one, and we plot these standardized averages against their corresponding normal scores, we should

roughly obtain a straight line—one that cuts the vertical axis at about zero and that has slope about

one. It is important to check the normality assumption, since the analysis for random-effects models

is not robust to nonnormality of the random effects. We can also use this normal probability plot to

check for treatment effect outliers among the observed treatments. In an experiment such as the ice

cream experiment, where only v = 3 levels of the treatment factor were observed, there is not enough

data to be able to examine the distribution of the Ti’s in any detail. In Sects. 17.10 and 17.11 we will

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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illustrate the assumption-checking procedures using the SAS and R software packages, respectively,

and the data from the clean wool experiment that was described in Sect. 17.2.2, p. 615.

17.6 Two or More Random Effects

17.6.1 Models and Examples

In the ice cream experiment of Example 17.3.1, p. 621, we modeled the ice cream effect as a random

effect, since we were interested in the variability of the melting rates of varieties of a large population

of all possible ice creams with similar ingredients. If the experimenter had also been interested in

whether or not the container affects the melting time, then she might have randomly selected a number

b of containers from the population of all possible containers. If one ice cream melts faster than another

ice cream in one container, then it might be safe to assume that it melts faster, and by the same amount,

in another container. In other words, the assumption of no ice cream×container interaction might be

reasonable. In this case a random two-way main-effects model (with no interaction) would be a possible

model; that is,

Yijt = μ + Ai + Bj + ǫijt , (17.6.19)

Ai ∼ N(0,σ2
A), Bj ∼ N(0,σ2

B), ǫijt ∼ N(0,σ2) ,

Ai’s, Bj’s and ǫijt’s are all mutually independent

t = 1, . . . , rij, i = 1, . . . , a, j = 1, . . . , b.

where Ai is the effect of the ith ice cream randomly selected from the population of ice creams whose

effects on melting times follow a normal distribution with variance σ2
A for each container, and where

Bj is the effect of the jth container randomly selected from the population of containers whose effects

on the melting times follow a normal distribution with variance σ2
B for each ice cream. The number

of observations rij to be taken on the (ij)th ice cream–container combination needs to be determined.

Normally, we would select the rij’s to be equal if possible.

Alternatively, it may be expected that a slightly thicker container would show a greater difference

in melting times of ice creams than would a thinner container. In other words, an interaction may be

expected. In this case, we would add to model (17.6.19) a random effect representing the interaction,

as shown in the random-effects two-way complete model (17.6.20):

Yijt = μ + Ai + Bj + (AB)ij + ǫijt (17.6.20)

Ai ∼ N(0,σ2
A), Bj ∼ N(0,σ2

B)

(AB)ij ∼ N(0,σ2
AB), ǫijt ∼ N(0,σ2)

Ai’s, Bj’s, (AB)ij’s and ǫijt’s are mutually independent

t = 1, . . . , rij, i = 1, . . . , a, j = 1, . . . , b.

If σ2
AB is positive, then there are AB effects present—namely, main effects and interactions for the

factors A and B. If σ2
A or σ2

B is positive, then the corresponding main effects are present.

Example 17.6.1 Ammunition experiment

W.A. Thompson, Jr. and J.R. Moore in the 1963 volume of Technometrics describe an experiment

concerning the muzzle velocity characteristics of ammunition for a field artillery weapon. They describe

the ammunition as follows:
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Table 17.5 Data for the ammunition experiment

Charge lot

1 2 3 4

Projectile lot 1 63 56 69 78

78 58 63 79

2 71 60 64 65

70 65 68 77

3 72 58 69 63

55 55 71 72

4 70 60 66 73

64 71 68 79

Source Thompson and Moore (1963). Copyright © 1963 American Statistical Association. Reprinted with permission

Propelling charges and projectiles for this type of weapon are manufactured and stored separately in a such a

way that any charge might be employed by the user to propel any projectile…. Both projectiles and charges are

grouped into lots at the time of manufacture, each lot consisting of a large number of individual units assembled

during a short period of time using essentially uniform components. Thus, it is hoped that the round to round

dispersion [variability] in velocity will be reduced by using charges and projectiles from within lots.

The experiment involved the examination of a random sample of four charge lots (factor A with

levels 1, 2, 3, 4) selected at random from a large population of charge lots, and four projectile lots

(factor B with levels 1, 2, 3, 4) selected at random from a large population of projectile lots. A weapon

surveillance test was conducted using one weapon under uniform ballistic conditions. The muzzle

velocities were measured to the nearest foot per second. These are shown in Table 17.5, except that a

constant has been added to each recorded velocity.

Since the lots involved in the experiment were randomly selected from large populations, a random-

effects two-way complete model (17.6.20) was used in the analysis. �

In an experiment with more than two random-effects treatment factors, variables representing all

of the main effects of the factors and some or all of their interactions would be included in the model

in the obvious way. For example, an experiment with five random-effects treatment factors A, B, C,

D, G, in which interactions AB, AC, BC, CD, and ABC were thought to be nonnegligible, would be

modeled as follows:

Yijklmt = μ + Ai + Bj + Ck + Dl + Gm

+ (AB)ij + (AC)ik + (BC)jk + (CD)kl + (ABC)ijk + ǫijklmt ,

Ai ∼ N(0,σ2
A), Bj ∼ N(0,σ2

B), Ck ∼ N(0,σ2
C), Dl ∼ N(0,σ2

D), Gm ∼ N(0,σ2
G),

(AB)ij ∼ N(0,σ2
AB), (AC)ik ∼ N(0,σ2

AC), (BC)jk ∼ N(0,σ2
BC), (CD)kl ∼ N(0,σ2

CD),

(ABC)ijk ∼ N(0,σ2
ABC), ǫijklmt ∼ N(0,σ2),

all random variables on the right-hand side

of the model are mutually independent,

t = 1, . . . , rijklm, i = 1, . . . , a, j = 1, . . . , b,

k = 1, . . . , c, l = 1, . . . , d, m = 1, . . . , g.

As for the fixed-effects models, if a high-order interaction is included in the model, then so are all

of its “subinteractions” and constituent main effects; that is, if (ABC)ijk is in the model, so are (AB)ij,

(AC)ik , (BC)jk , Ai, Bj, and Ck .
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17.6.2 Checking Model Assumptions

We may check the error assumptions by replacing temporarily all of the random effects by fixed effects,

calculating the standardized residuals, and examining the residual plots in the usual way. Checking

the assumptions of each random effect is not easy, since in a two-way or higher-way model there

are generally few levels of each treatment factor observed, and the cell averages are not independent.

Consequently, we will omit the model checks for the random-effect assumptions, and hope that any

severe problems will show up through the analysis of the residuals.

17.6.3 Estimation of σ
2

In Sect. 17.3.2 we found that for the one-way random-effects model, an unbiased estimate of σ2 was

given by msE, where msE was calculated exactly as for the fixed-effects one-way model. Perhaps this

should not be surprising, since msE measures the variability in the data that is not accounted for by

those sources of variation that were ignored in the experiment. An unbiased estimate for σ2 in any

random-effects model can be obtained from its fixed-effects model counterpart.

Example 17.6.2 Unbiased estimate of σ2

We will show that an unbiased estimate of σ2 in the random-effects two-way complete model is

msE = ssE/(n − v), where

ssE =

⎡
⎣∑

i

∑

j

∑

t

y2
ijt −

∑

i

∑

j

rijy
2
ij.

⎤
⎦ ,

as in (6.4.16) for the fixed-effects two-way complete model. First, note that

E[Yijt] = μ and Var(Yijt) = σ2
A + σ2

B + σ2
AB + σ2

for the random-effects two-way complete model. Also,

Y ij. = μ + Ai + Bj + (AB)ij +
∑

t

ǫijt/rij .

So,

E[Y ij.] = μ and Var(Y ij.) = σ2
A + σ2

B + σ2
AB + σ2/rij.

Thus, the expected value of the random variable SSE is

E [SSE] = E

⎡
⎣∑

i

∑

j

∑

t

Y2
ijt −

∑

i

∑

j

rijY
2

ij.

⎤
⎦

=

a∑

i=1

b∑

j=1

rij∑

t=1

(Var(Yijt) + E[Yijt]
2)

http://dx.doi.org/10.1007/978-3-319-52250-0_6
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−

a∑

i=1

b∑

j=1

rij(Var(Y ij.) + E[Y ij.]
2)

=

⎛
⎝

a∑

i=1

b∑

j=1

rij

⎞
⎠ σ2 −

a∑

i=1

b∑

j=1

σ2 = (n − v)σ2 ,

where n = ��rij and v = ab. Consequently,

E[MSE] = E[SSE/(n − v)] = σ2.

�

17.6.4 Estimation of Variance Components

In Sect. 17.3.3, p. 620, we found that for the random-effects one-way model,

E[MST] = cσ2
T + σ2 , where c =

n2 −
∑

r2
i

n(v − 1)
,

where MST is the mean square for treatments from the fixed-effects one-way model, and where c = r

if all the sample sizes are equal. From this, we were able to find an unbiased estimator for σ2
T , namely

(MST − MSE)/c.

For more complicated models, we will also be able to find unbiased estimators for the variance

components using the fixed-effects mean squares, but each estimator must be calculated individually.

Example 17.6.3 Unbiased estimate of σ2
B

Suppose an experiment involves three random-effects treatment factors A, B, and D having a, b, and d

levels, respectively, and suppose r observations are taken on each of the v = abd combinations. If the

only interactions that are expected to be nonnegligible are AB and BD, then, the model is

Yijk = μ + Ai + Bj + Dk + (AB)ij + (BD)jk + ǫijkt ,

t = 1, . . . , r, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , d

with the usual assumptions about the distributions of the random treatment effects and error variables.

Suppose we want an unbiased estimator for σ2
B. We start by investigating E[MSB], where MSB =

SSB/(b − 1). Using rule 4, p. 209, the sum of squares for B is

ssB = adr

b∑

j=1

y2
.j.. − abdry2

.... .

Now,

E[Y .j..] = E[Y ....] = μ
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and

Var[Y .j..] =
σ2

A

a
+ σ2

B +
σ2

D

d
+

σ2
AB

a
+

σ2
BD

d
+

σ2

adr
,

Var[Y ....] =
σ2

A

a
+

σ2
B

b
+

σ2
D

d
+

σ2
AB

ab
+

σ2
BD

bd
+

σ2

abdr
.

Consequently,

E[SSB] = adr
∑

j

[
V ar(Y .j..) + E[Y .j..]

2
]

− abdr
[
V ar(Y ....) + E[Y ....]

2
]

= adr(b − 1)σ2
B + dr(b − 1)σ2

AB + ar(b − 1)σ2
BD + (b − 1)σ2 .

So,

E[MSB] = adrσ2
B + drσ2

AB + arσ2
BD + σ2 . (17.6.21)

Thus, if we wish to find an unbiased estimator for σ2
B, we must find unbiased estimators also for σ2

AB

and σ2
BD. The logical place to look for these is at E[MS(AB)] and E[MS(BD)]. We have

ss(AB) = dr

a∑

i=1

b∑

j=1

y2
ij.. − bdr

a∑

i=1

y2
i... − adr

b∑

j=1

y2
.j.. + abdry2

.... ,

ss(BD) = ar

b∑

j=1

d∑

k=1

y2
.jk. − adr

b∑

j=1

y2
.j.. − abr

d∑

k=1

y2
..k. + abdry2

.... ,

and

E[Y ij..] = E[Y i...] = E[Y .j..] = E[Y .jk.] = E[Y ..k.] = [Y ....] = μ ,

Var[Y ij..] = σ2
A + σ2

B +
σ2

D

d
+ σ2

AB +
σ2

BD

d
+

σ2

dr
,

Var[Y i...] = σ2
A +

σ2
B

b
+

σ2
D

d
+

σ2
AB

b
+

σ2
BD

bd
+

σ2

bdr
,

Var[Y .jk.] =
σ2

A

a
+ σ2

B + σ2
D +

σ2
AB

a
+ σ2

BD +
σ2

ar
,

Var[Y ..k.] =
σ2

A

a
+

σ2
B

b
+ σ2

D +
σ2

AB

ab
+

σ2
BD

b
+

σ2

abr
,

as well as

E[SS(AB)] =

⎛
⎝dr

∑

i

∑

j

Y
2

ij.. − bdr
∑

i

Y
2

i...

⎞
⎠ − (E[SSB])

= adr(b − 1)σ2
B + adr(b − 1)σ2

AB + ar(b − 1)σ2
BD + a(b − 1)σ2

− adr(b − 1)σ2
B − dr(b − 1)σ2

AB − ar(b − 1)σ2
BD − (b − 1)σ2

= dr(a − 1)(b − 1)σ2
AB + (a − 1)(b − 1)σ2 .
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So,

E[MS(AB)] = drσ2
AB + σ2.

Similarly,

E[MS(BD)] = arσ2
BD + σ2 .

Thus, an unbiased estimator for σ2
B is

U = (MSB − MS(AB) − MS(BD) + MSE)/(adr) ,

and an unbiased estimate for σ2
B is therefore

u = (msB − ms(AB) − ms(BD) + msE)/(adr) .

�

Calculation of expected mean squares is quite time-consuming, as was seen in Example 17.6.3.

However, when sample sizes are all equal, we can exploit the pattern that emerges in studying such

examples. All of the variance components that are involved in E[MSB] in (17.6.21) are those whose

random effects include the same subscript as for B in the model. Specifically, B has subscript j in the

model, and a j also occurs as subscript in (AB)ij, (BD)jk , and ǫijkt . The constant in front of each variance

component is the number of observations taken on each combination of subscripts; that is, there are

adr observations on each of the b levels of B, there are dr observations on each of the ab levels of AB,

and so on.

A similar pattern can be seen for E[MS(AB)] and E[MS(BD)]. This gives us a general rule when

sample sizes are equal (which we add to the 16 rules in Chap. 7):

17. To obtain the expected mean square for a main effect or interaction in a random-effects model,

first note the subscripts on the term representing that effect in the model. Write down a variance

component σ2 for the effect of interest, for the error, and for every interaction whose term in the

model includes the noted set of subscripts. Multiply each variance component except σ2 by the

number of observations taken on each level or combination of levels of the corresponding main

effect or interaction. Add up the terms.

17.6.5 Confidence Intervals for Variance Components

In the previous subsection a rule was given for calculating the expected mean square corresponding to

each term in the model, when the sample sizes are equal. For unequal sample sizes, the mean squares

and expected mean squares are best calculated by a computer program.

From the list of expected mean squares, we can find an unbiased estimator for any given variance

component, say σ2
∗. Again, this was illustrated in Example 17.6.3. The estimator can always be a

linear combination of mean squares, which, in general, we can write as U = �ki(MS)i, where ki is

the constant in front of the ith mean square in the linear combination. Then, an approximation to the

distribution of xU/σ2
∗ is a chi-squared distribution with x degrees of freedom, where

x =
(�ki(ms)i)

2

�k2
i (ms)2

i /xi

(17.6.22)

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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and where xi is the number of degrees of freedom corresponding to the ith mean square and (ms)i is

the observed value of the ith mean square in the linear combination. An example of this formula was

given in Sect. 17.3.5, p. 625, for the one-way model. A more complicated example is given below.

Example 17.6.4 Calculation of degrees of freedom

We continue Example 17.6.3, which involved a random-effects model with five random effects Ai, Bj,

and Dk (corresponding to main effects of factors A, B, and D), and (AB)ij and (BD)jk (corresponding

to interactions AB and BD). An unbiased estimator for σ2
B was shown to be

U = �ki(MS)i = MSB/(adr) − MS(AB)/(adr) − MS(BD)/(adr) + MSE/(adr).

An approximation to the distribution of xU/σ2
B is a χ2

x distribution, where x is given by (17.6.22),

that is,

x =
[(msB − ms(AB) − ms(BD) + msE)/(adr)]2

msB2

(adr)2(b−1)
+ ms(AB)2

(adr)2(a−1)(b−1)
+ ms(BD)2

(adr)2(b−1)(d−1)
+ msE2

(adr)2df

=
[msB − ms(AB) − ms(BD) + msE]2

msB2

(b−1)
+ ms(AB)2

(a−1)(b−1)
+ ms(BD)2

(b−1)(d−1)
+ msE2

df

,

where df is the number of degrees of freedom for error, which can be obtained, as usual, by subtraction.

In this example, df is equal to

df = (abdr − 1) − (a − 1) − (b − 1) − (d − 1)

− (a − 1)(b − 1) − (b − 1)(d − 1)

= ab(dr − 1) − b(d − 1) + 1 .

�

Once we know an approximate distribution for a variance component estimator, we can easily write

down a probability statement and convert it to a confidence interval. Suppose that U = �ki(MS)i is

an unbiased estimator for σ2
∗ and that xU/σ2

∗ has approximately a χ2
x distribution; then

P
(
χ2

x,1−α/2 ≤ xU/σ2
∗ ≤ χ2

x,α/2

)
≈ 1 − α.

Then, if we observe the value of U to be u = �ki(ms)i, by manipulating the two inequalities in the

probability statement we can obtain the following approximate 100(1 − α)% confidence interval:

xu

χ2
x,α/2

≤ σ2
∗ ≤

xu

χ2
x,1−α/2

, (17.6.23)

where x is calculated as in (17.6.22). If the estimate u is negative or the calculated degrees of freedom

x is extremely small, then this approximate confidence interval procedure should not be used.

Example 17.6.5 Ammunition experiment, continued

The ammunition experiment was described in Example 17.6.1, p. 632, and the data were given in

Table 17.5. A random-effects two-way complete model (17.6.20) was used. The mean squares for this
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Table 17.6 Two-way analysis of variance table for the ammunition experiment

Source of variation Degrees of

freedom

Sum of

squares

Mean

squares

Expected mean square

Charge (A) 3 669.12 223.04 8σ2
A + 2σ2

AB + σ2

Projectile (B) 3 92.12 30.71 8σ2
B + 2σ2

AB + σ2

Interaction (AB) 9 257.63 28.63 2σ2
AB + σ2

Error 16 516.00 32.25 σ2

Total 31 1534.87

model are calculated in exactly the same way as for the fixed-effects two-way complete model, and

these are shown in the analysis of variance table, Table 17.6. Also listed in the table are the expected

mean squares calculated as in rule 17, p. 637.

For example, to calculate the expected mean square for A, we note that the subscript for the term

Ai in the model is i, and also that i is included among the subscripts of the terms (AB)ij and ǫijt . This

means that the expected mean square must include the three variance components

σ2
A, σ2

AB, and σ2 .

The constant in front of σ2
A is 8, the number of observations on each charge lot, whereas the constant

in front of σ2
AB is 2, the number of observations on each combination of charge lot and projectile lot.

The expected mean square for AB, E[MS(AB)] = 2σ2
AB + σ2, contains only two terms, since only

the two terms (AB)ij and ǫijt in the model contain both i and j as subscripts. An unbiased estimator for

σ2
A is given by U = (MSA − MS(AB))/8. Also, xU/σ2

A has approximately a χ2
x distribution, where x

is calculated as in (17.6.22). Thus, an unbiased estimate of σ2
A from this experiment is

u = (msA − ms(AB))/8 = (223.04 − 28.63)/8 = 24.30 ,

and the number of degrees of freedom of the associated chi-squared distribution is

x =
24.302

223.042

(82)(3)
+ 28.632

(82)(9)

= 2.27 .

Therefore, an approximate 90% confidence interval (17.6.23) for σ2
A, the variance of velocities arising

from the population of charge lots, is

(2.27)(24.3)

χ2
2.27,0.05

≤ σ2
A ≤

(2.27)(24.3)

χ2
2.27,0.95

,

and since χ2
2.27,0.05 ≈ 6.5 and χ2

2.27,0.05 ≈ 0.17, the approximate 90% confidence interval, in units of

(feet per second)2, is

8.49 ≤ σ2
A ≤ 324.48 .

An approximate 90% confidence interval for the standard deviation of the velocity (in feet per second),

obtained by taking square roots, is

2.91 ≤ σA ≤ 18.01 .
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Fig. 17.2 Plot of average

velocity against charge lot

by projectile lot for the

ammunition experiment
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Before leaving this example, we note that an unbiased estimate for σ2
AB calculated in this way is

actually negative, since

u = (ms(AB) − msE)/2 = − 1.81 ,

and the calculation for x, the number of degrees of freedom of the associated χ2 distribution, is

x =
(−1.81)2

28.632

(22)(9)
+ 32.252

(22)(16)

= 0.084 .

Thus, we are not able to say anything sensible about the variance of the interaction, other than that

it appears to be very small. The interaction plot in Fig. 17.2 for the lots included in the experiment

supports this conclusion. �

17.6.6 Hypothesis Tests for Variance Components

In order to focus the discussion, we will use the random-effects model of Example 17.6.3, p. 635; that

is,

Yijkt = μ + Ai + Bj + Dk + (AB)ij + (BD)jk + ǫijkt ,

t = 1, . . . , r ; i = 1, . . . , a ; j = 1, . . . , b ; k = 1, . . . , d ,

together with the usual assumptions about the distributions of the random variables. Some of the

expected mean squares for this model were calculated in Example 17.6.3 and are listed, together with

the remaining mean squares, in Table 17.7.

Testing the hypothesis HAB
0 : {σ2

AB = 0} against its alternative hypothesis HAB
A : {σ2

AB > 0} is

straightforward, since the corresponding expected mean square looks very similar to the situation

that we had in the one-way model. If HAB
0 is true, then the numerator of the ratio ms(AB)/msE is

expected to be σ2, the same as the denominator. Otherwise, the numerator is expected to be larger.

Consequently, the decision rule is

reject HAB
0 if

ms(AB)

msE
> F(a−1)(b−1),df,α
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Table 17.7 Expected mean squares and degrees of freedom for a random-effects three-way model with two interactions

Effect Degrees of freedom Expected mean square

A a − 1 bdrσ2
A + drσ2

AB + σ2

B b − 1 adrσ2
B + drσ2

AB + arσ2
BD + σ2

D d − 1 abrσ2
D + arσ2

BD + σ2

AB (a − 1)(b − 1) drσ2
AB + σ2

BD (b − 1)(d − 1) arσ2
BD + σ2

Error df σ2

as usual, where the number of error degrees of freedom is

df = ab(dr − 1) − b(d − 1) + 1 .

We could modify this test as in (17.3.9), p. 624, so that the decision rule for testing H
γAB

0 : {σ2
AB ≤

γσ2} against H
γAB

A : {σ2
AB > γσ2} is

reject H
γAB

0 if
ms(AB)

msE
> (1 + drγ)F(a−1)(b−1),df,α.

We have similar tests for HBD
0 against HBD

A , and H
γBD

0 against H
γBD

A .

Testing HA
0 : σ2

A = 0 against HA
A : σ2

A > 0 is more complicated. Until now, we have used the same

test statistics as we used in the fixed-effects case. But if we try to use msA/msE to test HA
0 , we have a

problem. If HA
0 is true, so that σ2

A = 0, the expected value of the numerator is E[MSA] = drσ2
AB + σ2,

while that of the denominator is E[msE] = σ2. This suggests two things:

(i) we should use ms(AB) as the denominator, not msE, and

(ii) we should question whether it makes sense to test HA
0 if the interaction AB is significant.

The second point is, of course, exactly the same point that arose in the fixed-effects model, and the

answer is usually “no, it makes no sense.” Consequently, we generally test a main effect only when

that factor is not involved in any significant interactions. Nevertheless, we shall still use the interaction

mean square as the denominator in case an incorrect decision was made regarding the interaction.

Consequently, the decision rule for testing HA
0 against HA

A is

reject HA
0 if MSA/MS(AB) > Fa−1,(a−1)(b−1),α.

Notice that the second set of degrees of freedom for the F-distribution is the degrees of freedom

corresponding to the denominator of the ratio. The test for HD
0 : {σ2

D = 0} is similar.

Obtaining a suitable denominator for testing the null hypothesis HB
0 : {σ2

B = 0} versus the alternative

hypothesis HB
0 : {σ2

B > 0} is harder again. If HB
0 is true, so that σ2

B = 0, then the expected value of

MSB is

E[MSB] = drσ2
AB + arσ2

BD + σ2 .

We would generally want to test this hypothesis only if we believed that the interactions AB and BD

were both negligible. Yet to be on the safe side, we would like a denominator with the same expected

value. It can be verified that
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E[U] = E[MS(AB) + MS(BD) − MSE] = drσ2
AB + arσ2

BD + σ2.

As in Sect. 17.3.5, xU/(drσ2
AB + arσ2

BD + σ2) has approximately a chi-squared distribution with

degrees of freedom x calculated as in (17.6.22), p. 637; that is,

x =
[ms(AB) + ms(BD) − msE]2

[ms(AB)]2

(a−1)(b−1)
+ [ms(BD)]2

(b−1)(d−1)
+ [msE]2

df

.

Therefore, if H0 is true, msB/U has approximately an Fb−1,x distribution. So to test HB
0 against HB

A ,

the decision rule is

reject HB
0 if

msB

ms(AB) + ms(BD) − msE
> F(b−1),x,α.

Example 17.6.6 Ammunition experiment, continued

An unbiased estimate for the variance of the muzzle velocities due to the population of charge lots

(factor A) was calculated to be u = 24.3 (feet per second)2 in Example 17.6.5 for the ammunition

experiment. A question is whether this value could be due to random error or whether the variance is

really sizable; that is, we wish to test the hypothesis HA
0 : {σ2

A = 0} against the alternative hypothesis

HA
A : {σ2

A > 0}. The interaction variability was found to be very small in Example 17.6.5, so the main-

effect hypothesis makes sense. The expected mean squares for A and AB are listed in Table 17.6 as

E[MSA] = 8σ2
A + 2σ2

AB + σ2

and

E[MS(AB)] = 2σ2
AB + σ2 ,

with 3 and 9 corresponding degrees of freedom, respectively. The decision rule, therefore, is

reject HA
0 if

msA

ms(AB)
> F3,9,α .

If we select a Type I error probability of α = 0.05, then F3,9,0.05 = 3.86. Since msA/ms(AB) =

223.04/28.63 = 7.79, we can conclude that σ2
A > 0. �

17.6.7 Sample Sizes

If we test main effects and interactions only when the higher-order interactions involving those factors

are negligible, then we can adapt (17.4.18) by changing the degrees of freedom to match those in the

decision rule being used.

17.7 Mixed Models

Models that contain both random and fixed treatment effects are called mixed models. The analysis

of random effects proceeds in exactly the same way as described in the previous sections. All that is

needed is a way to write down the expected mean squares. The fixed effects can be analyzed as in

Chaps. 3–7, except that, here, too, we may need to replace the mean square for error by a different

http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_7
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appropriate mean square. We show how to calculate the expected mean squares for a mixed model in

Sect. 17.7.1.

An interaction between two or more factors any of which has random effects will be regarded as a

random effect, since the combination of levels observed in the experiment depends upon the random

selection of levels of those factors that have random effects.

17.7.1 Expected Mean Squares and Hypothesis Tests

Expected mean squares can be obtained for a mixed model when the sample sizes are equal by modifying

rule 17 on p. 637. We start by writing out the expected mean squares as though all the factors were

random. We then collect all of the fixed effects and list them together as one “quadratic form.” The

quadratic form is a function of fixed-effect parameters such as α∗
i = αi + (αβ)i. (see Example 17.7.1)

that typically feature in fixed-effects models.

As an example, consider a model containing the main effects of factors A, B, and D and the inter-

actions AB and BD. Suppose that factors A and B have fixed effects, so that all of their levels of

interest are observed in the experiment, and factor D has random effects, so that its levels form a large

population of which only a random selection are observed in the experiment. Then interaction AB is

a fixed effect, but interaction BD is a random effect.

We use αi to represent the effect of the ith level of A, βj to represent the effect of the jth level

of B, and (αβ)ij to represent their interaction. The effect of the kth randomly selected level of D is

represented by the random variable Dk , and the effect of the interaction between the jth specifically

selected level of B and the kth randomly selected level of D is denoted by the random variable (βD)jk .

The model is then as follows:

Yijkt = μ + αi + βj + Dk + (αβ)ij + (βD)jk + ǫijkt , (17.7.24)

Dk ∼ N(0,σ2
D), (βD)jk ∼ N(0,σ2

BD), ǫijkt ∼ N(0,σ2) ,

Dk’s, (βD)jk’s and, ǫijkt’s are all mutually independent,

t = 1, . . . , r, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , d.

The expected mean squares for the corresponding random-effects model were calculated in Exam-

ple 17.6.3 and are reproduced in the second column of Table 17.8. The expected mean squares for the

above mixed model are given in the third column of Table 17.8 and are obtained by collecting the terms

in the expected mean squares corresponding to the fixed effects into one quadratic form.

Table 17.8 Expected mean squares for a three-way mixed model

Effect For random-effects model For mixed model

A bdrσ2
A + drσ2

AB + σ2 Q(A, AB) + σ2

B adrσ2
B + drσ2

AB + arσ2
BD + σ2 Q(B, AB) + arσ2

BD + σ2

D abrσ2
D + arσ2

BD + σ2 abrσ2
D + arσ2

BD + σ2

AB drσ2
AB + σ2 Q(AB) + σ2

BD arσ2
BD + σ2 arσ2

BD + σ2

Error σ2 σ2
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The expected mean squares can all be verified by direct calculation. We illustrate the calculation for

B in the following example. The term Q(B, AB) in E[MSB] corresponds to a quadratic (i.e., squared)

function of β∗
j = βj + (αβ).j, a quantity that we are used to dealing with in fixed-effects models.

Example 17.7.1 Calculation of expected mean squares

Consider an experiment with two fixed-effects treatment factors A and B, and one random-effects

treatment factor D, and suppose that (17.7.24) is thought to be a reasonable model. Using rule 4 of

Chap. 7, the fixed-effect sum of squares for B is

SSB = adr

b∑

j=1

Y
2

.j.. − abdrY
2

.... .

Now,

Y .j.. =

a∑

i=1

d∑

k=1

r∑

t=1

Yijkt/adr

= μ + α. + βj + D. + (αβ).j + (βD)j. + ǫ.j.. .

So,

E[Y .j..] = μ + α. + βj + (αβ).j and Var(Y .j..) =
σ2

D

d
+

σ2
BD

d
+

σ2

adr
.

Similarly,

E[Y ....] = μ + α. + β. + (αβ).. and Var(Y ....) =
σ2

D

d
+

σ2
BD

bd
+

σ2

abdr
.

Using the facts that MSB = SSB/(b − 1) and E[X2] = Var(X) + (E[X])2, we obtain

E[MSB] =
adr

(b − 1)

b∑

j=1

(
σ2

D

d
+

σ2
BD

d
+

σ2

adr
+ [μ + α. + βj + (αβ).j]

2

)

−
abdr

(b − 1)

(
σ2

D

d
+

σ2
BD

bd
+

σ2

abdr
+ [μ + α. + β. + (αβ)..]

2

)

= arσ2
BD + σ2 + Q(B, AB) ,

where

Q(B, AB) =
adr

(b − 1)

∑

j

[
(βj + (αβ).j) − (β. + (αβ)..)

]2
.

�

Notice that in Example 17.7.1, the quadratic form Q(B, AB) is equal to zero when all the β∗
j =

βj + (αβ).j are equal. We can make use of this fact when looking for an appropriate denominator for

the test ratio for testing HB
0 : {βj + (αβ).j are all equal}. If this hypothesis is true, then

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 17.9 Test ratios for

a three-way mixed model
Effect E[MS] Ratio

A Q(A, AB) + σ2 msA/msE

B Q(B, AB) + arσ2
BD + σ2 msB/ms(BD)

D abrσ2
D + arσ2

BD + σ2 msD/ms(BD)

AB Q(AB) + σ2 ms(AB)/msE

BD arσ2
BD + σ2 ms(BD)/msE

E[MSB] = arσ2
BD + σ2 .

Consequently, a sensible denominator would be MS(BD), which has the same expected value (see

Table 17.8). Thus, the decision rule for testing HB
0 against the alternative hypothesis that the β∗

j are not

all equal is

reject HB
0 if

msB

ms(BD)
> F(b−1),(b−1)(d−1),α.

From Table 17.8 we can construct tests for the other relevant hypotheses in a similar manner. For

example, to test the hypothesis

HAB
0 : {(αβ)ij − (αβ)i. − (αβ).j + (αβ).. = 0 , for all i, j}

against the alternative hypothesis that the interaction contrasts are not all zero, the decision rule is

reject HAB
0 if

ms(AB)

msE
> F(a−1)(b−1),df,α ,

where df is the number of error degrees of freedom.

To test the hypothesis HD
0 : {σ2

D = 0} against the alternative hypothesis HD
A : {σ2

D > 0}, the decision

rule is

reject HD
0 if

msD

ms(BD)
> Fd−1,(b−1)(d−1),α.

The test ratios are summarized in Table 17.9. Generally, we would not test a main-effect or interaction

hypothesis unless all higher-order interactions involving these same factors were believed to be negli-

gible. For some mixed models, as for random-effects models, the appropriate denominator for the test

statistic may not be listed among the expected mean squares for the factors in the model. In this case, it

would be necessary to calculate it, and the corresponding degrees of freedom, using (17.6.22), p. 637.

17.7.2 Confidence Intervals in Mixed Models

Confidence Intervals for Fixed Effects

For fixed effects in a mixed model with equal sample sizes, we may use all of the rules of Sect. 7.3,

p. 209, exactly as if there were no random effects in the model, except that we replace msE by the

same mean square that was identified for hypothesis testing—namely, used in the denominator of the

test ratio—and the error degrees of freedom are also replaced. The necessity of doing this replacement

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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is highlighted in Example 17.7.2. Apart from this, we may use the Bonferroni, Scheffé, Tukey, and

Dunnett methods of multiple comparisons in the usual way. When the sample sizes are unequal,

computing least squares estimates and appropriate standard errors is more complicated. Appropriate

methods will be illustrated in Chaps. 18 and 19 using PROC MIXED in SAS software and using the

lmer and lsmeans functions in R.

Example 17.7.2 Calculation of confidence intervals

Consider an experiment with two fixed-effects treatment factors and a third treatment factor with

random effects, for which the following model is thought to be reasonable (this is the same model that

has been discussed throughout this subsection):

Yijkt = μ + αi + βj + Dk + (αβ)ij + (βD)jk + ǫijkt .

The fixed part of the model is

μ + αi + βj + (αβ)ij ,

which looks exactly like one of the two-way analysis of variance models that was studied in Chap. 6.

Suppose we need confidence intervals for pairwise comparisons in the levels of A and of B. Then,

as usual, the least squares estimates for pairwise differences are

α̂∗
i − α̂∗

p =

(
α̂i +

̂
(αβ)i.

)
−

(
α̂p −

̂
(αβ)p.

)
= yi... − yp...

and

β̂∗
j − β̂∗

u =

(
β̂j +

̂
(αβ).j

)
−

(
β̂u +

̂
(αβ).u

)
= y.j.. − y.u.. .

Tables 17.8 (p. 643) and 17.9 (p. 645) suggest that msE should be used in the formulae for confidence

intervals for α∗
i − α∗

p, as usual, but that ms(BD) should be used in place of msE in the formulae for

confidence intervals for β∗
j − β∗

u . All confidence intervals are of the form

(least squares estimate) ± (w) × (standard error) .

The standard error is the square root of the estimated variance of the least squares estimator. Now,

Var(Yijkt) = σ2
D + σ2

BD + σ2 and Var(Y .j..) =
σ2

D

d
+

σ2
BD

d
+

σ2

adr
.

The Yijkt’s are not independent. Observations on the same level of D are correlated. If two observations

are taken on the same levels of B and D, we have

Cov(Yijkt , Ypjks) = σ2
D + σ2

BD .

If two observations are taken on the same level of D, but different levels of B, then

Cov(Yijkt , Ypuks) = σ2
D .

http://dx.doi.org/10.1007/978-3-319-52250-0_18
http://dx.doi.org/10.1007/978-3-319-52250-0_19
http://dx.doi.org/10.1007/978-3-319-52250-0_6
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All other pairs of response variables are independent. Consequently,

Cov(Y .j.. , Y .u..) =
1

a2d2r2

⎡
⎣

a∑

i=1

a∑

p=1

d∑

k=1

r∑

t=1

r∑

s=1

Cov(Yijkt, Ypuks)

⎤
⎦

=
1

a2d2r2

[
a2dr2σ2

D

]

=
σ2

D

d
,

and

Var(Y .j.. − Y .u..) = Var(Y .j..) + Var(Y .u..) − 2Cov(Y .j.. , Y .u..)

= 2

(
σ2

D

d
+

σ2
BD

d
+

σ2

adr

)
− 2

(
σ2

D

d

)

=
2

adr

(
arσ2

BD + σ2
)

,

which is of the form (�c2
i /(adr))(arσ2

BD + σ2). Thus, we need to estimate (arσ2
BD + σ2) rather than

σ2, and an unbiased estimate is given by ms(BD). So, the standard error for β̂∗
j − β̂∗

u = Y .j.. − Y .u.. is

((2/(adr)) ms(BD))1/2 with corresponding degrees of freedom (b − 1)(d − 1). �

In some models, the necessary mean square will not be listed in the expected mean squares table,

and (17.6.22), p. 637, and methods discussed there will need to be used to find an approximate mean

square and degrees of freedom.

Confidence Intervals for Variance Components

In obtaining confidence intervals for variance components, only the random part of the model is used,

or, equivalently, only the mean squares corresponding to random effects. Consequently, the formulae

of Sect. 17.6.5 are used exactly as described for random-effects models.

17.8 Rules for Analysis of Random-Effects and Mixed Models

Rules 1–7 of Sect. 7.3, p. 209, are valid for calculating degrees of freedom, sums of squares, and mean

squares in random-effects and mixed models as well as in fixed-effects models. In addition, rules 8–16

are valid for analyzing fixed effects, except that σ2 and msE may need to be replaced. Rules 17–22

below summarize the results of this chapter. Rule 17 is an expanded version of rule 17 on p. 637.

17.8.1 Rules—Equal Sample Sizes

17. To obtain the expected mean square for a particular main effect or interaction, first make a note

of the subscripts on the term representing that particular effect in the model. Write down variance

components for the effect of interest, for the error, and for every interaction whose term in the

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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model includes the noted set of subscripts. Gather up all variance components corresponding to

fixed effects into one quadratic form Q. Multiply any remaining variance component except σ2

by the number of observations taken on each level or combination of levels of the corresponding

effect (main effect or interaction). Add up the terms.

18. To obtain the denominator of the test statistic for testing the null hypothesis that a main effect

or interaction effect is zero, write down the expected mean square for the effect of interest (see

rule 17). Cross out the term that would be zero if the null hypothesis were true. The denominator

of the test statistic is the mean square, or linear combination of mean squares, u, whose expected

value is equal to the remaining expression.

19. For a random effect, let U = �kiMSi be the mean square or linear combination of mean squares

whose expected value is equal to the variance component corresponding to the random effect. An

exact or approximate 100(1 − α)% confidence interval for this variance component is

(
xu

χ2
x,α/2

,
xu

χ2
x,1−α/2

)
,

where

x =
[�ki(msi)]

2

�[ki(msi)]2/xi

and where u is the observed value of U, msi is the observed value of MSi, and xi is the number of

degrees of freedom corresponding to msi.

20. For a fixed effect, confidence intervals are obtained as in rule 14, p. 211, except that msE is replaced

by the denominator u from rule 18, and the number of error degrees of freedom is replaced by x

in rule 19.

21. For a fixed effect, the decision rule for testing the hypothesis that the effect is zero is the same as

that in rule 8, p. 210, for fixed-effects models, except that msE is replaced by the denominator u

from rule 18, and the number of error degrees of freedom is replaced by x in rule 19.

22. For a random effect, the decision rule for testing the hypothesis H0 that the corresponding variance

component is zero against the alternative hypothesis that it is not zero is

reject H0 if
ms

u
> Fν,x,α ,

where ms is the mean square for the effect of interest and ν the corresponding degrees of freedom,

u is the observed value of the denominator as in rule 18, and x is the corresponding degrees of

freedom calculated as in rule 19.

17.8.2 Controversy (Optional)

Before proceeding, we should mention that some other textbooks may present slightly different tables

of expected mean squares. For example, the expected mean square for D in Table 17.8, which we have

calculated as

E[MSD] = abrσ2
D + arσ2

BD + σ2,

may in other texts be listed as

E[MSD] = abrσ2
D + σ2 .
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This alternative listing occurs when constraints are placed on the model parameters involving fixed-

effects factors, and it suggests use of the denominator msE rather than ms(BD) in testing HD
0 : {σ2

D = 0}

against HD
A : {σ2

D > 0}. A number of articles in the statistical literature have been written advocating

one denominator rather than the other, and there still appears to be no consensus.

If we follow the line of reasoning that we have followed to this point, that normally we will examine

main effects only when there is no interaction, then some of the controversy disappears. If σ2
BD is really

zero, then E[MSD] = abrσ2
D + σ2 in both cases. Of course, due to variability of the data and uncertainty

about whether or not σ2
BD is really zero (or close to it), we still have to make the choice in practice. We

have recommended using ms(BD) as the denominator if the objective is to test HD
0 : σ2

D = 0. However,

if interest is really in testing

HD+BD
0 : {σ2

D + b−1σ2
BD = 0} ,

or equivalently

HD+BD
0 : {σ2

D = σ2
BD = 0} ,

then we would use msE as the denominator.

The controversy originally arose from the formulation of the model. In our example, the model

was given in (17.7.24), p. 643, and the controversy surrounds the random effect (βD)jk . We have

modeled this as a normally distributed random variable. Some authors add to the model the restriction

�j(βD)jk = 0, and this leads to the canceling of the term in σ2
BD when the expected mean square of D

is calculated.

Hocking (1996, p. 569) shows that under this restriction, the hypothesis HD
0 is actually our hypothesis

HD+BD
0 . An explanation for this is as follows. If constraints are placed on the parameters, then the (βD)jk

effects truly represent interaction effects, and σ2
BD measures precisely variability in BD-interaction

effects. However, if no constraints are placed on the parameters, then σ2
BD being positive implies the

presence of main effects of B and D as well as the presence of BD-interaction effects. In other words,

the parameters (βD)jk represent “BD effects” in model (17.7.24), though we have referred to them as

BD-interaction effects. Thus, under our model (17.7.24), the hypothesis HD+BD
0 : {σ2

D = σ2
BD = 0} is

that there are no main effects of D (or BD interactions). Also, there are no BD interactions if σ2
BD = 0,

and there are no main effects of B (or BD interactions) if β1 = β2 = · · · = βb and σ2
BD = 0. From this

viewpoint, the hypothesis HD
0 : σ2

D = 0 is that there are no main effects of D if σ2
BD is believed to be

zero; otherwise, it is the hypothesis that main effects of D are no less negligible than BD interactions.

Since there are problems inherent in placing restrictions on the model parameters, we prefer not to

do so, and we prefer to use the set of expected mean squares in Table 17.7. If the parameters in the

model are properly interpreted, then there is no controversy, and the appropriate test is determined by

what is most sensible for the experiment at hand.

17.9 Block Designs and Random Block Effects

In certain types of experiments, it is extremely common for the levels of a blocking factor to be randomly

selected. For example, in medical, psychological, educational, or pharmaceutical experiments, blocks

frequently represent subjects that have been selected at random from a large population of similar

subjects. In agricultural experiments, blocks may represent different fields selected from a large variable

population of fields. In industrial experiments, different machine operators may represent different

levels of the blocking factor and may be similar to a random sample from a large population of

possible operators. Raw material may be delivered to the factory in batches, a random selection of

which are used as blocks in the experiment.
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Since we are not interested in the blocking factor itself, its designation as random rather than fixed

will affect the analysis only if the model includes a block×treatment interaction. For example, suppose

that factor D in Table 17.8 represents a random-effects blocking factor, and that A and B are two fixed-

effects treatment factors. The analysis of factor A, which has no interaction with D, is unaffected by

the designation of D as a random effect. However, the analysis of factor B, which interacts with blocks,

is affected, since msE in hypothesis tests and confidence intervals for contrasts in the levels of B will

be replaced by ms(BD).

Example 17.9.1 Temperature experiment

The temperature experiment was run by M. Bowe, J. Cooper, J. Donato, S. Giust, and H. Schieman in

1994 to compare the times required for three different digital thermometers (factor A at a = 3 levels) to

register body temperature at two different sites—in the mouth and under the arm—(factor B at b = 2

levels). Thus, there were six treatment combinations. Four subjects were selected at random from the

American statistics graduate students at The Ohio State University, and each treatment combination

was measured once for each subject. The experiment was designed as a randomized complete block

design, with subjects representing blocks. The recorded times are shown in Table 17.10.

The four subjects used in the experiment are not themselves of interest. Of more interest is how

the thermometers react on average over a large population of subjects. The population of American

statistics graduate students at the university is large, but not infinite. However, the four subjects used

in the experiment are, hopefully, representative of all possible American graduate students, and it is

reasonable to model the subject (block) effect as a random effect.

Since subjects vary in body heat, it is possible that factor B (site) might interact with subject. It is

also possible that different thermometers might act differently at the two different sites. Consequently

the following model might be reasonable for this experiment.

Yhij = μ + Sh + αi + βj + (αβ)ij + (Sβ)hj + ǫhij , (17.9.25)

h = 1, 2, 3, 4, i = 1, 2, 3, j = 1, 2,

Sh ∼ N(0,σ2
S), (Sβ)hj ∼ N(0,σ2

SB), ǫhij ∼ N(0,σ2) ,

Sh’s, (Sβ)hj’s and ǫhij’s are all mutually independent ,

(17.9.26)

where all random variables on the right-hand side of the model are mutually independent, and where

Sh represents the effect of the hth randomly selected subject (block), αi represents the effect of the

ith specifically selected thermometer, and βj represents the effect of the ith specifically selected site.

This model is similar to mixed model (17.7.24) with Sh replacing Dk . Consequently, the expected

mean squares will be similar to those in Table 17.8, p. 643. The analysis of variance table is shown in

Table 17.11.

Table 17.10 Data (in seconds) for the temperature experiment

Subject Treatment combination

11 12 21 22 31 32

1 62.16 61.53 154.42 310.46 95.98 225.65

2 65.63 63.70 132.30 284.64 98.50 241.63

3 63.12 61.34 105.52 315.61 110.05 364.07

4 61.51 61.54 94.88 294.16 107.93 304.58
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Table 17.11 Analysis of variance table for the mixed model temperature experiment

Source of variation Degrees of

freedom

Mean square p-value Expected mean square

Subject (block) 3 570.04 − −

Thermometer (A) 2 52879.34 0.0001 Q(A, AB) + σ2

Site (B) 1 86029.60 0.0035 Q(B, AB) + 3σ2
SB + σ2

Therm*Site (AB) 2 21897.23 0.0001 Q(AB) + σ2

Subject*Site (SB) 3 1210.67 0.2625 3σ2
SB + σ2

Error 12 802.57 σ2

Total 23

We start by testing the two interaction hypotheses. To test the hypothesis HSB
0 : {σ2

SB = 0}, that

the subject by site interaction variance is negligible, against the alternative hypothesis that it is not

negligible, using a significance level of 0.01 (so that the overall significance level will be at most 0.05),

we

reject HSB
0 if

ms(SB)

msE
> F3,12,0.01 = 5.95 .

Since ms(SB)/msE = 1.51, there is not sufficient evidence to conclude that the interaction variance is

greater than zero (equivalently, the p-value is greater than 0.01). Before we can examine the site main

effect, however, we also need to look at the thermometer by site interaction.

To test the hypothesis

HAB
0 : {(αβ)ij − (αβ)ip − (αβ)uj + (αβ)up, for all i, j, u, p}

against the alternative hypothesis that the interaction is not negligible, we

reject HAB
0 if

ms(AB)

msE
> F2,12,0.01 = 6.93 .

Since ms(AB)/msE = 27.28, we reject HAB
0 and conclude that there is a thermometer×site interaction.

Thus, it is unlikely that the thermometer and site main effects are of interest. However, for illustration

purposes, we ask whether the average time taken for these three digital thermometers to register is the

same whether used in the mouth or under the arm. Thus, we will test the hypothesis

HB
0 : {β1 + (αβ).1 = β2 + (αβ).2} .

To test this hypothesis at significance level 0.01, we

reject HB
0 if

msB

ms(SB)
> F1,3,0.01 = 29.5 .

Since msB/ms(SB) = 71.06, we reject HB
0 and conclude that it does make a difference in registering

temperature (on average for these three thermometers) as to whether the thermometer is used in the

mouth or under the arm. This conclusion is made on average over the three thermometers and over the

whole population of similar graduate students. �
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17.10 Using SAS Software

Section 17.10.1 illustrates the use of SAS software to check model assumptions on random effects.

Then in Sect. 17.10.2, the analysis of mixed models using PROC GLM and PROC MIXED is illus-

trated, followed by an example of analysis of covariance to deal with a quadratic time trend. Finally

in Sect. 17.10.3, the SAS DATA step and functions are used to do the sample size calculations of

Example 17.4.1.

17.10.1 Checking Assumptions on the Model

Using the data of Table 17.1, p. 617, for the clean wool experiment, we illustrate some methods of

checking model assumptions for a random-effects one-way model. The experimenters took observa-

tions on r = 4 cores of wool from each of v = 7 randomly selected wool bales.

We let the random variable Ti represent the true clean content of the ith randomly selected bale

of wool from the shipment, and let Yit = Ti + ǫit represent the observed clean content of the tth core

(observation) from the ith bale, where the error variable ǫit includes the deviation from the true average

clean content of the tth core from the ith bale, the measurement error, environmental conditions, etc.

First, we check the error assumptions by calculating and plotting the standardized residuals obtained

as though the bale effects were fixed. The standardized residuals are calculated in the usual way and

plotted against the levels of the treatment factor and the predicted values (see Sect. 5.8, p. 119). The

latter plot, obtained by PROC SGPLOT, is shown in Fig. 17.3.

The most noticeable feature is that bale 1 gives rise to one very large standardized residual (an

outlier). This means one of several things: Perhaps the data value is in error, so that this value is an

outlier, or perhaps bale 1 is extremely more variable than the other bales in the population, or perhaps

the error variables are not normally distributed. Let us suppose that we could go back to the original

experimenters and that indeed, something unusual happened at this point during the time at which the

observations were taken. If so, we could exclude this value. The new residual plot is shown in Fig. 17.4.

All standardized residuals now lie within the expected range for normally distributed errors. The

plot gives us quite a lot of information about our sample of bales and possibly about the shipment of

bales from which they were drawn. First, the average clean content of bale 1 is around 53, considerably

Fig. 17.3 Residuals versus

predicted values by bale

type for the clean wool

experiment

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Fig. 17.4 Residuals versus

predicted values for the

clean wool experiment,

excluding the outlier

Table 17.12 SAS program to plot standardized treatment averages against their normal scores

PROC SORT; BY BALE;

PROC MEANS NOPRINT; BY BALE;

VAR CONTENT;

OUTPUT OUT = WOOL2 MEAN = AVCONT;

PROC STANDARD STD = 1.0 MEAN = 0.0;

VAR AVCONT;

PROC RANK NORMAL = BLOM;

VAR AVCONT;

RANKS NSCORE;

PROC SGPLOT;

SCATTER X = NSCORE Y = AVCONT / GROUP = BALE;

below the others. This was the bale that had the supposed outlier. One might suspect that this bale either

did not come from the same shipment or was contaminated at some point before being measured. On

the other hand, the shipment may contain a number of “rogue bales,” and this ought to be investigated.

At the other end of the range, we see that bale 7 had the highest clean content and was least variable.

Perhaps this is not too surprising, since a bale with 100% clean content would probably show no

variability in the measurements taken on it. Thus, one might suspect that our model that includes

normally distributed errors is not ideal for this situation. However, the plot of standardized residuals

against normal scores does not show any anomalies (figure not shown).

In a one-way random-effects model, we can check the assumption that the treatment effects have

a normal distribution by making a normal probability plot of the standardized treatment averages Y i.

against their normal scores. (This cannot be done for models with more than one random effect, since

the treatment averages are not independent.) For the clean wool experiment, the normal probability plot

is obtained by means of the statements in Table 17.12, and the resulting plot is shown in Fig. 17.5. If

the normality assumption for the population of bales is satisfied, the standardized bale averages should

roughly lie along a line (with slope 1.0) through (0, 0). In Fig. 17.5, we see that this is roughly the case.

In summary, the random-effects one-way model with the standard distribution assumptions does not

fit these data too well, since variances apparently are not constant or there is an outlier. Nevertheless,

we have established that the population of bales in this shipment is extremely variable. Selected bales

1 and 7 appear to be somewhat different from the other five selected bales. Perhaps the shipment is
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Fig. 17.5 Normal

probability plot of the

standardized treatment

averages for the clean wool

experiment

Table 17.13 SAS program for the temperature experiment

DATA TEMPR;

INPUT THERM SITE SUBJ TIME;

LINES;

1 1 1 62.16

1 2 1 61.53

: : : :

3 2 4 304.58

;

PROC GLM;

ODS EXCLUDE LSMeanCL;

CLASS THERM SITE SUBJ;

MODEL TIME = SUBJ THERM SITE THERM*SITE SUBJ*SITE;

RANDOM SUBJ SUBJ*SITE / TEST;

CONTRAST ’SITE1-SITE2’ SITE 1 -1 / E = SUBJ*SITE;

LSMEANS SITE / CL PDIFF E = SUBJ*SITE;

made up of dissimilar subpopulations (perhaps from different sources). This should be checked, since

it may give a clue as to how to improve the wool clean content in the future.

17.10.2 Estimation and Hypothesis Testing

PROC GLM

Analysis of variance tables for random-effects and mixed models are obtained using PROC GLM in

exactly the same way as for fixed-effects models. The additional expected mean squares column can

be obtained very easily by inserting a RANDOM statement immediately after the model statement. All

random effects should be listed in the RANDOM statement, as shown, for example, in Table 17.13 for

the temperature experiment of Example 17.9.1, p. 650. The denominators, calculated as explained

throughout this chapter, can be obtained by adding the option TEST to the RANDOM statement, as

shown in the following example. The actual denominators are printed out as well as the p-values.

The output is shown in Fig. 17.6. The first few lines reproduce the expected mean squares that were

calculated by hand in Table 17.7, p. 641. The remainder of the output gives the TYPE III sums of
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squares, but instead of calculating the usual test ratios with msE as the denominator, the TEST option

on the RANDOM statement has caused the denominator ms(subj×site) to be used where appropriate.

All pairwise comparisons of fixed effects can be estimated using the LSMEANS statement, which

allows the correct variance estimator to be specified. For example, the statement

LSMEANS SITE / CL PDIFF E = SUBJ*SITE;

will use the subj×site interaction mean square as the variance estimate for comparing sites, rather

than the error mean square. The LSMEANS statement provides a confidence interval for the pairwise

comparison of sites, and also a p-value for testing equality of the two site effects. The ODS statement

is used to exclude printing of the confidence intervals (limits) for site level means, since the standard

errors would be incorrectly estimated using ms(subj×site); the reader is asked in Exercise 9 to verify

that Var(Y ..j) = (3σ2
S + 3σ2

SB + σ2)/12 for the jth site under model (17.9.25), p. 650.

Any contrast for the fixed effects can be estimated as usual using the ESTIMATE statement, though

the standard error is computed using MSE whether or not this is appropriate. Confidence intervals

can be calculated by hand and the mean squared error replaced by the denominator used in the test

procedures if necessary. For testing individual contrasts, the CONTRAST statement can be used and

the required denominator can be specified. For example, the statement

CONTRAST ’SITE1-SITE2’ SITE 1 -1 / E = SUBJ*SITE;

will use the subj×site interaction mean square as the variance estimate for comparing sites as appro-

priate.

The deficiencies of PROC GLM in computing standard errors are overcome by PROC MIXED,

introduced next.

PROC MIXED

The SAS package includes an alternative procedure PROC MIXED, explicitly designed to cope with

random-effects and mixed models. The statements that generate the same set of information as in

Fig. 17.6 are

PROC MIXED METHOD = TYPE3;

CLASS THERM SITE SUBJ;

MODEL TIME = THERM SITE THERM*SITE / DDFM = SAT;

RANDOM SUBJ SUBJ*SITE;

LSMEANS SITE / CL DIFF;

For PROC MIXED, the MODEL statement only contains fixed effects, with random effects specified

in the RANDOM statement. The option METHOD=TYPE3 causes the model to be fit by the method of

least squares, as used by PROC GLM. Estimates of the variance components are also calculated by this

procedure and, under the option METHOD=TYPE3, they match those one could compute by hand from

GLM output. An important advantage of PROC MIXED is that standard errors of means and contrasts

are automatically correctly estimated under mixed models, even if composite estimates are needed, as

is the case here for site treatment means, for example. The DDFM=SAT option in the MODEL statement

causes Satterthwaite’s approximation to be used to compute degrees of freedom associated with any

composite variance estimates, as may be needed for either F-statistic denominators or standard error

estimates.

Throughout this chapter we have discussed the analysis of mixed and random effects models using

the analysis of variance approach—namely, fitting the model by least squares as if all effects were

fixed, obtaining a corresponding analysis of variance table, then using the expected mean squares

to obtain unbiased estimates of the variance components and to determine appropriate F-statistic

denominators and standard error estimates. The variance component estimates so obtained are called

analysis of variance estimates. For balanced data under normality, the least squares estimates of any
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Fig. 17.6 SAS software

analysis of variance for the

temperature experiment

estimable fixed effects are best linear unbiased estimates, and the analysis of variance estimates of

variance components are minimum variance unbiased estimates, but the variance component estimates

can be negative, as happens in the above example where the subjects variance component estimate is

σ̂2
S = [ms(SUBJ) − ms(SITE*SUBJ)]/6 ≈ −106.77.

There are other more sophisticated statistical methods for estimating variance components that

prevent the estimates from ever being negative, and that are generally preferable for unbalanced data.

One such approach involves estimation of the variance components by restricted maximum likelihood

(ReML). This approach, implemented in PROC MIXED, will be discussed in Chap. 19.

Covariates

Before leaving this section, we will examine a more complicated model. The plot of standardized

residuals against order of observation by flavor for the ice cream experiment (Example 17.3.1, p. 621)

is shown in Fig. 17.7. This plot suggests that there may be a quadratic time trend in the data.

We define two extra variables X and X2 in the DATA statement as follows,

DATA ICE;

INPUT FLAVOR MELTTIME ORDER;

X=ORDER-16.5;

X2=X*X;

LINES;

1 924 1

: : :

http://dx.doi.org/10.1007/978-3-319-52250-0_19
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and we add these variables to the model statement, so the code for PROC GLM becomes

PROC GLM;

CLASS FLAVOR;

MODEL MELTTIME = X X2 FLAVOR;

RANDOM FLAVOR / TEST;

The variable X is just the same as ORDER, except that we have subtracted the average order 16.5. This

helps to reduce computational problems in the model fitting. The Type III sums of squares and the

expected mean squares are shown in Fig. 17.8. We see that the quadratic effect of time order is quite

substantial and that from the list of expected mean squares, our estimate of the variance of melting

times due to flavor (var(FLAVOR)) must be calculated as

σ̂2
T =

94179.139 − 4497.426

9.6478
= 9359.62 seconds2

or σ̂T = 96.75 seconds, which is a little larger than the estimate of σ̂T = 85.13 seconds that we

obtained in Example 17.3.4, p. 627. Examination of the residuals in the new model shows that the error

assumptions are fairly well satisfied. In Exercise 8, the reader is asked to recalculate the confidence

intervals for σ2
T and σ2

T /σ2 using the new model.

17.10.3 Sample Size Calculations

In this section, a program in the SAS DATA step is used to do the sample size calculations of Exam-

ple 17.4.1, p. 630, for the ice cream experiment. Recall, in testing the hypothesis H
γT
0 : σ2

T ≤ σ2 against

the hypothesis H
γT
A : σ2

T > σ2 at a significance level of α = 0.05, the goal is to be able to reject the null

hypothesis with probability π = 0.95 if the true value of σ2
T /σ2 is at least � = 2.0. In Example 17.4.1,

trial and error was used to determine the number v of ice cream flavors we should look at if we took

r = 11 or r = 3 observations on each. Recall, to achieve the desired power for given r, we need to find

v such that

(Fv−1,v(r−1),.05)(Fv(r−1),v−1,.05) ≤ (2r + 1)/(r + 1) .

The calculations are illustrated in the SAS program in Table 17.14, and the corresponding output is

displayed in Fig. 17.9. In the SAS program, for each value r = 11 and r = 3, the SAS function FINV

Fig. 17.7 Plot of the

standardized residuals

against order of

observation by flavor for

the ice cream experiment
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Fig. 17.8 SAS software

analysis of variance for the

ice cream experiment

Table 17.14 SAS program doing sample size calculations for the ice cream experiment

DATA POWER;

ALPHA=0.05; POWER=0.95;

DO R=11,3;

RATIO = (2*R+1)/(R+1);

RESULT="Need more data";

V=1;

DO WHILE (RESULT="Need more data" and V < 201);

V=V+1;

DF1=V-1; DF2=V*(R-1);

F1 = FINV(1-ALPHA,DF1,DF2); * Compute F(DF1,DF2,ALPHA);

F2 = FINV(POWER,DF2,DF1); * Compute F(DF2,DF1,1-POWER);

PRODUCT=F1*F2;

IF PRODUCT < RATIO THEN RESULT="Enough data";

END;

OUTPUT; * Output results to data set;

END; * End R loop;

;

PROC PRINT;

VAR R V RESULT POWER ALPHA F1 F2 PRODUCT RATIO DF1 DF2;

is used to compute the quantile values Fv−1,v(r−1),.05 and Fv(r−1),v−1,.05 for each value v = 2, 3, . . .,

either stopping when the above inequality is satisfied, giving the required value of v and the result

“Enough data”, or reaching v = 200 and giving the result “Need more data”. The results displayed in

Fig. 17.9 are a bit more precise than those given in Example 17.4.1.
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Fig. 17.9 SAS software sample size calculations for the ice cream experiment

17.11 Using R Software

Section 17.11.1 illustrates the use of R to check model assumptions on random effects. Then in

Sect. 17.11.2, the analysis of fixed effects in mixed models using aov is illustrated. Finally in

Sect. 17.11.3, an R function is defined to do the sample size calculations of Example 17.4.1.

17.11.1 Checking Assumptions on the Model

Using the data of Table 17.1, p. 617, for the clean wool experiment, we illustrate some methods of

checking model assumptions for a random-effects one-way model. The experimenters took observa-

tions on r = 4 cores of wool from each of v = 7 randomly selected wool bales.

We let the random variable Ti represent the true clean content of the ith randomly selected bale

of wool from the shipment, and let Yit = Ti + ǫit represent the observed clean content of the tth core

(observation) from the ith bale, where the error variable ǫit includes the deviation from the true average

clean content of the tth core from the ith bale, the measurement error, environmental conditions, etc.

First, we check the error assumptions by calculating and plotting the standardized residuals obtained

as though the bale effects were fixed. The standardized residuals are calculated in the usual way and

plotted against the levels of the treatment factor and the predicted values (see Sect. 5.9, p. 126). The

latter plot, obtained from the statements

plot(z ˜ ypred, data=wool.data, ylab="Standardized Residuals", las=1,

type="n") # Suppress plotting of circles

text(z ˜ ypred, bale, cex=0.75, data=wool.data) # Plot bale number

mtext("Plotting symbol is bale", side=3, adj=1, line=1) # Margin text

abline(h=0)

is shown in Fig. 17.10. The plotted symbols indicate the bales from which the residuals arose.

The most noticeable feature is that bale 1 gives rise to one very large standardized residual (an

outlier). This means one of several things: Perhaps the data value is in error, so that this value is an

outlier, or perhaps bale 1 is extremely more variable than the other bales in the population, or perhaps

the error variables are not normally distributed. Let us suppose that we could go back to the original

experimenters and that indeed, something unusual happened at this point during the time at which

the observations were taken. If so, we could exclude this value. The new residual plot is shown in

Fig. 17.11.

All standardized residuals now lie within the expected range for normally distributed errors. The

plot gives us quite a lot of information about our sample of bales and possibly about the shipment of

bales from which they were drawn. First, the average clean content of bale 1 is around 53, considerably

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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below the others. This was the bale that had the supposed outlier. One might suspect that this bale either

did not come from the same shipment or was contaminated at some point before being measured. On

the other hand, the shipment may contain a number of “rogue bales,” and this ought to be investigated.

At the other end of the range, we see that bale 7 had the highest clean content and was least variable.

Perhaps this is not too surprising, since a bale with 100% clean content would probably show no

variability in the measurements taken on it. Thus, one might suspect that our model that includes

normally distributed errors is not ideal for this situation. However, the plot of standardized residuals

against normal scores does not show any anomalies (figure not shown).

In a one-way random-effects model, we can check the assumption that the treatment effects have

a normal distribution by making a normal probability plot of the standardized treatment averages Y i.

against their normal scores. (This cannot be done for models with more than one random effect, since

the treatment averages are not independent.) For the clean wool experiment, the normal probability plot

is obtained by means of the statements in Table 17.15, and the resulting plot is shown in Fig. 17.12. If

the normality assumption for the population of bales is satisfied, the standardized bale averages should

roughly lie along a line (with slope 1.0) through (0, 0). In Fig. 17.12, we see that this is roughly the

case.

In summary, the random-effects one-way model with the standard distribution assumptions does not

fit these data too well, since variances apparently are not constant or there is an outlier. Nevertheless,

we have established that the population of bales in this shipment is extremely variable. Selected bales

1 and 7 appear to be somewhat different from the other five selected bales. Perhaps the shipment is

Fig. 17.10 Residuals

versus predicted values for

the clean wool experiment
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Table 17.15 R program to plot standardized treatment averages against their normal scores

AvgContent = by(wool.data$y, wool.data$bale, mean) # Col of means (by bale)

# Standardized treatment means

StdzdAvg = (AvgContent - mean(AvgContent))/sd(AvgContent - mean(AvgContent))

# Normal scores

nscore = qqnorm(StdzdAvg)$x

plot(StdzdAvg ˜ nscore, ylab="Standardized Trtmt Means", las=1)

qqline(StdzdAvg) # Line through 1st and 3rd quantile points

Fig. 17.12 Normal

probability plot of the

standardized treatment

averages for the clean wool

experiment

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

nscore

S
ta

n
d
a
rd

iz
e
d
 T

rt
m

t 
M

e
a
n
s

made up of dissimilar subpopulations (perhaps from different sources). This should be checked, since

it may give a clue as to how to improve the wool clean content in the future.

17.11.2 Estimation and Hypothesis Testing

Analysis of Fixed Effects in Mixed Models

Analysis of variance F-tests for fixed effects in mixed models are obtained in essentially the same way

as for fixed-effects models. The aov function is used to fit the linear model by least squares, but with

the following changes: random effects are entered into the model as error terms, and the summary

command is used to generate the analysis of variance F tests for fixed effects.

Sample R code is shown in Table 17.16 for the temperature experiment of Example 17.9.1, p. 650.

F-tests for fixed effects are generated by the second block of code. In the model specified for the aov

function, the term

Error(fSubj + fSubj:fSite)

calls the Error function in R, modeling subject main effects and subject–site interactions as random

effects, and allowing their use as error terms for tests and for estimating standard errors for confidence

intervals for means and fixed effect contrasts as appropriate. Each model can include only one Error

function call, but the call may include multiple random effects, with two in this example. The expected

mean squares are not displayed, but correct F-tests are generated for fixed effects. In particular, the

denominators, calculated as explained throughout this chapter, are automatically obtained by modeling

the random effects as error terms as in this sample code. Tests for fixed effects are provided, including

the appropriate test statistic denominator used.
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Table 17.16 R program for the temperature experiment

tempr.data = read.table("data/temperature.txt", header=T)

tempr.data = within(tempr.data, {

fTherm = factor(Therm); fSite = factor(Site); fSubj = factor(Subj) })

head(tempr.data, 3)

# Least squares anova, specifying random effects as error terms

options(contrasts = c("contr.sum", "contr.poly"))

model1 = aov(Time ˜ fTherm + fSite + fTherm:fSite

+ Error(fSubj + fSubj:fSite), data=tempr.data)

summary(model1)

# Means and contrasts: estimates, CIs, tests

library(lsmeans)

lsmSite = lsmeans(model1, ˜ fSite) # Compute and save lsmeans

confint(lsmSite, level=0.95) # Display lsmeans and 95% CIs

# Pairwise comparison

summary(contrast(lsmSite, method="pairwise"),

infer=c(T,T), level=0.95, side="two-sided")

Corresponding output is shown in Table 17.17. The first block of output code shows information for

subjects, though it is not used for any tests. The second block of output displays the F test for the main

effect of site, using the mean square for subject–site interaction as the denominator of the F statistic. In

the third block of output, thermometer main effects and thermometer–site interactions are each tested

using the usual mean squared error as the denominator of the corresponding F statistics.

Treatment means and pairwise comparisons of fixed effects can be estimated using the lsmeans

function of the lsmeans package, as illustrated by the last block of code in Table 17.16. The correct

variance estimators are automatically chosen. For example, for confidence limits for site level means,

the reader is asked in Exercise 9 to verify that Var(Y ..j) = (3σ2
S + 3σ2

SB + σ2)/12 for the jth site

under model (17.9.25), p. 650. R computes the corresponding estimate, using Satterthwaite’s method

to compute the corresponding number of degrees of freedom, and provides corresponding lower and

upper 95% confidence limits.

The last two lines of code in Table 17.16 concern the site main-effect contrast, providing informa-

tion for estimation and testing this pairwise comparison. The corresponding output, displayed last in

Table 17.17, correctly uses the subject–site interaction mean square to estimate the standard error for

comparing sites. If site had more than two levels, one could apply Tukey’s method, for example, by

including the option adjust="tukey" in the contrast function as follows.

summary(contrast(lsmSite, method="pairwise", adjust="tukey"),

infer=c(T,T), level=0.95, side="two-sided")

Also, any contrast for the fixed effects can be estimated using the following more generic syntax, and

the list could be expanded to included multiple named contrasts separated by commas.

summary(contrast(lsmSite, list(Pairwise=c( 1, -1))),

infer=c(T,T), level=0.95, side="two-sided

In each case, R will automatically compute an appropriate standard error estimate, which for the

pairwise site contrast involves the subject–site interaction mean square.
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Table 17.17 R analysis of fixed effects for the temperature experiment

> model1 = aov(Time ˜ fTherm + fSite + fTherm:fSite

+ + Error(fSubj + fSubj:fSite), data=tempr.data)

> summary(model1)

Error: fSubj

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 1710 570

Error: fSubj:fSite

Df Sum Sq Mean Sq F value Pr(>F)

fSite 1 86030 86030 71.1 0.0035

Residuals 3 3632 1211

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

fTherm 2 105759 52879 65.9 3.4e-07

fTherm:fSite 2 43794 21897 27.3 3.4e-05

Residuals 12 9631 803

> # Means and contrasts: estimates, CIs, tests

> library(lsmeans)

> lsmSite = lsmeans(model1, ˜ fSite) # Compute and save lsmeans

NOTE: Results may be misleading due to involvement in interactions

> confint(lsmSite, level=0.95) # Display lsmeans and 95% CIs

fSite lsmean SE df lower.CL upper.CL

1 96.00 8.6137 5.31 74.244 117.76

2 215.74 8.6137 5.31 193.986 237.50

Results are averaged over the levels of: fTherm

Confidence level used: 0.95

> # Pairwise comparison

> summary(contrast(lsmSite, method="pairwise"),

+ infer=c(T,T), level=0.95, side="two-sided")

contrast estimate SE df lower.CL upper.CL t.ratio p.value

1 - 2 -119.74 14.205 3 -164.95 -74.536 -8.43 0.0035

Results are averaged over the levels of: fTherm

Confidence level used: 0.95

Analysis of Random Effects

Tests for random effects are not provided by the code discussed above for analysis fixed effects in mixed

models. Still, the necessary means squares are provided, or they can be obtained by fitting a model

treating all effects, including random effects, as fixed. So, based on expected mean squares, one could

conduct the appropriate tests of random effects by hand for any balanced mixed- or random-effects

model. The following section mentions another approach.
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Other Approaches

Throughout this chapter we have discussed the analysis of mixed and random effects models using the

analysis of variance approach—namely, fitting the model by least squares as if all effects were fixed,

obtaining a corresponding analysis of variance table, then using the expected mean squares to obtain

unbiased estimates of the variance components and to determine appropriate F-statistic denominators

and standard error estimates. The variance component estimates so obtained are called analysis of

variance estimates. For balanced data under normality, the least squares estimates of any estimable

fixed effects are best linear unbiased estimates, and the analysis of variance estimates of variance

components are minimum variance unbiased estimates, but the variance component estimates can be

negative, as happens in the recently discussed temperature experiment, where the subjects variance

component estimate is σ̂2
S = [ms(fSubj) − ms(fSubj:fSite)]/6 ≈ −106.83.

There are other more sophisticated statistical methods for estimating variance components that

prevent the estimates from ever being negative, and that are generally preferable for unbalanced data.

One such approach involves estimation of the variance components by restricted maximum likelihood

(ReML). This approach will be discussed in Chap. 18.

17.11.3 Sample Size Calculations

In this section, an R function is defined to do the sample size calculations of Example 17.4.1, p. 630,

for the ice cream experiment. Recall, in testing the hypothesis H
γT
0 : σ2

T ≤ σ2 against the hypothesis

H
γT
A : σ2

T > σ2 at a significance level of α = 0.05, the goal is to be able to reject the null hypothesis

with probability π = 0.95 if the true value of σ2
T /σ2 is at least � = 2.0. In Example 17.4.1, trial and

error was used to determine the number v of ice cream flavors we should look at if we took r = 11 or

r = 3 observations on each. Recall, to achieve the desired power for given r, we need to find v such

that

(Fv−1,v(r−1),.05)(Fv(r−1),v−1,.05) ≤ (2r + 1)/(r + 1) .

Table 17.18 contains the R program and corresponding output. A user-defined function, compute.v.

given.r, is defined to do the computations. This function inputs an r value and the specified sig-

nificance level and power. Given this information, the new function uses the standard R function qf

to compute the quantile values Fv−1,v(r−1),.05 and Fv(r−1),v−1,.05 for each value v = 2, 3, . . ., either

stopping when the above inequality is satisfied, giving the required value of v and the result “Power

= 0.95” (for power = 0.95, say), or reaching v = 200 and giving the result “Power < 0.95”. Once

done, the function returns all pertinent information. After the new function compute.v.given.r

has been defined in Table 17.18, it is called first for r = 11 and then for r = 3, each time using signif-

icance level 0.05 and power 0.95. The results returned by the function calls, displayed in the bottom

of Table 17.18, are a bit more precise than those given in Example 17.4.1.

http://dx.doi.org/10.1007/978-3-319-52250-0_18
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Table 17.18 R function doing sample size calculations for the ice cream experiment

> # Create a user-defined function for sample size calculations

> compute.v.given.r = function(r=5,alpha=0.05,power=0.95){

+ # Initialize variables

+ ratio = (2*r+1)/(r+1);

+ result="Power <"

+ v=1;

+ while((result=="Power <")&(v<201)){

+ v=v+1;

+ df1=v-1; df2=v*(r-1);

+ F1 = qf(1-alpha,df1,df2) # Compute F(df1,df2,alpha)

+ F2 = qf(power,df2,df1) # Compute F(df2,df1,1-power)

+ product=F1*F2

+ if (product<ratio) {result="Power ="}

+ } # End while loop, either finding v or power less than target

+ data.frame(r,v,result,power,alpha,F1,F2,product,ratio,df1,df2)

+ } # end function

>

> compute.v.given.r(r=11,alpha=0.05,power=0.95) # Call the function

r v result power alpha F1 F2 product ratio df1 df2

1 11 58 Power = 0.95 0.05 1.3501 1.4193 1.9162 1.9167 57 580

>

> compute.v.given.r(r=3,alpha=0.05,power=0.95) # Call the function

r v result power alpha F1 F2 product ratio df1 df2

1 3 106 Power = 0.95 0.05 1.3113 1.3314 1.7459 1.75 105 212

Table 17.19 Data for the alcohol experiment

Bottle Concentration (mg/ml)

1 1.4357 1.4348 1.4336 1.4309

2 1.4244 1.4232 1.4213 1.4256

3 1.4153 1.4137 1.4176 1.4164

4 1.4331 1.4325 1.4312 1.4297

5 1.4252 1.4261 1.4293 1.4272

6 1.4179 1.4217 1.4191 1.4204

Exercises

1. Alcohol experiment

Solutions of alcohol are used for calibrating Breathalyzers. The data in Table 17.19 show the alcohol

concentrations (mg/ml) of samples of alcohol solutions taken from six bottles of alcohol solution

randomly selected from a large batch. Concentrations are determined by gas chromatography.

(a) Check the assumptions on the random-effects one-way model for these data.

(b) Calculate a 95% upper confidence bound for the error variance.

(c) Calculate a 95% confidence interval for the variance of the alcohol concentrations in the popu-

lation of bottles in this large batch.
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(d) Test the hypothesis that the variance of the alcohol concentrations is at most five times the error

variance versus the alternative hypothesis that it is not. Use a significance level of α = 0.05.

2. Ice cream experiment, continued

As in Example 17.4.1, p. 630, suppose the ice cream experiment is to be repeated, with γ = 1.0

and with a Type I error probability of α = .05. Suppose that we would like to reject the null

hypothesis H
γT
0 : {σ2

T ≤ σ2} with probability π = 0.95 if the true value of σ2
T /σ2 is greater than

� = 2.0. How many ice cream flavors should be included in the experiment if r = 2 observations

are to be taken on each? How many observations are needed? Is this an improvement over the

result in the example for r = 3? (Note: F150,150,.05 = 1.309, F160,160,.05 = 1.298, F170,170,.05 =

1.288, F180,180,.05 = 1.279).

3. Random effects model

Consider the following random-effects model:

Yijkmt = μ + Ai + Bj + Ck + Dm

+ (AB)ij + (BC)jk + (BD)jm + ǫijkmt ,

i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c,

m = 1, . . . , d, t = 1, . . . , r,

Ai ∼ N(0,σ2
A), Bj ∼ N(0,σ2

B), Ck ∼ N(0,σ2
C) ,

Dm ∼ N(0,σ2
D), (AB)ij ∼ N(0,σ2

AB), (BC)jk ∼ N(0,σ2
BC) ,

(BD)jm ∼ N(0,σ2
BD), ǫijkmt ∼ N(0,σ2) ,

where all random variables on the right hand side of the model are mutually independent.

(a) Write out the expected mean squares for all main effects and interactions in the model.

(b) How would you test the null hypothesis HA
0 : {σ2

A = 0} against the alternative hypothesis HA
A :

{σ2
A > 0}?

(c) How would you test the null hypothesis HB
0 : {σ2

B = 0} against the alternative hypothesis HB
A :

{σ2
B > 0}?

(d) Give formulae for unbiased estimates of σ2
BD and σ2

B.

(e) Give formulae for individual 95% confidence intervals for σ2
BD and σ2

B. What is the overall

confidence level?

4. Buttermilk biscuit experiment

The buttermilk biscuit experiment was run by Stacie Taylor in 1995 to find out which brands of

refrigerated buttermilk biscuit give rise to the fluffiest biscuits. Three brands were examined (factor

A, 3 levels, fixed effect), all of which had claims to be light, fluffy, or flaky in their advertising

campaigns. The biscuits were baked on a baking tray for 7 min in the center of an oven set to 425◦F.

Since only six biscuits could be baked at a time, the experiment was run as a general complete block

design with blocks of size k = 6.

(a) Use a mixed model with interaction to represent the data, where the random effect represents

the block (run of the oven) and the fixed effect represents the biscuit brand. Write out the model

including all of the assumptions.
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Table 17.20 Treatments and percentage change in height for the buttermilk biscuit experiment

Block Position

1 2 3 4 5 6

1 2 (150.0) 1 (188.2) 2 (177.8) 3 (166.7) 3 (187.5) 1 (182.4)

2 1 (183.3) 2 (183.3) 2 (183.3) 3 (176.5) 1 (160.0) 3 (187.5)

3 1 (178.9) 3 (182.4) 2 (193.8) 3 (176.5) 2 (188.9) 1 (188.9)

4 2 (177.8) 1 (145.5) 3 (155.0) 1 (173.7) 3 (200.0) 2 (187.5)

5 1 (205.6) 3 (188.2) 3 (142.9) 2 (161.9) 2 (177.8) 1 (159.1)

Table 17.21 Data for the candle experiment (seconds)

Person Color

Red White Blue Yellow

1 989 1032 1044 979 1011 951 974 998

1077 1019 987 1031 928 1022 1033 1041

2 899 912 847 880 899 800 886 859

911 943 879 830 820 812 901 907

3 898 840 840 952 909 790 950 992

955 1005 961 915 871 905 920 890

4 993 957 987 960 864 925 949 973

1005 982 920 1001 824 790 978 938

(b) The data collected by the experimenter are shown in Table 17.20. As far as possible, check the

assumptions on the model for these data.

(c) Write out the expected mean squares for all terms in the model.

(d) Draw a block×brand interaction plot for those blocks observed in the experiment.

(e) Test the hypothesis that the variance in height of the biscuits due the population of block×brand

interactions is negligible against the alternative hypothesis that it is not negligible. Interpret your

conclusions in terms of the plot in part (d).

(f) Calculate a set of 95% simultaneous confidence intervals for the pairwise comparisons between

the brands. State your conclusions.

5. Candle experiment

An experiment to determine whether different colored candles (red, white, blue, yellow) burn at

different speeds was conducted by Hsing-Chuan Tsai, Mei-Chiao Yang, Derek Wheeler, and Tom

Schultz in 1989. Each experimenter collected four observations on each color in a random order,

and “experimenter” was used as a blocking factor. Thus, the design was a general complete block

design with v = 4, k = 16, b = 4, and s = 4. The resulting burning times (in seconds) are shown in

Table 17.21. A pilot experiment indicated that treatments and blocks do interact. The candles used

in the experiment were cake candles made by a single manufacturer. Analyze the experiment as

though the experimenters represent a random sample from a large population of people who might

use these candles in practice. Use a two-way mixed model with interaction.
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6. Golf ball experiment

An experiment was planned by Tim Kelaghan in 1995 to examine whether different brands of golf

balls travel on average the same distances when hit by amateur golfers. The experiment was planned

with a specific selection of v = 3 golf balls and some number b of golfers to be determined. The

experiment was to be run as a general complete block design with fixed treatment effects and random

golfer effects. Since the golfer is aware of which brand of ball he or she is hitting, there may well be

a golfer×brand interaction. However, the differences between brands averaged over the interaction

is important here.

A small pilot experiment was conducted. There were only two golfers, and each hit s = 6 balls of

each brand in a random order. Mis-hits were ignored. The distances that the balls traveled were

recorded in yards and are shown in Table 17.22.

(a) Use the pilot experiment data to calculate a 95% upper bound for the error variance σ2.

(b) The experimenter wanted the main experiment to be able to calculate a set of simultaneous 95%

confidence intervals for the pairwise differences in the brands, and he wanted the widths of these

intervals to be at most 20 yards.

Assuming that each golfer would hit about 18 balls in total, as in the pilot experiment, how many

randomly selected golfers would be needed?

7. Mixed model

Consider the following mixed model:

Yijkmt = μ + αi + Bj + Ck + δm + (αB)ij + (αδ)im

+ (Bδ)jm + (Cδ)km + (αBδ)ijm + ǫijkmt ,

i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c,

m = 1, . . . , d, t = 1, . . . , r,

Bj ∼ N(0,σ2
B), Ck ∼ N(0,σ2

C), (αB)ij ∼ N(0,σ2
AB),

(Bδ)jm ∼ N(0,σ2
BD), (Cδ)km ∼ N(0,σ2

CD),

(αBδ)ijm ∼ N(0,σ2
ABD), ǫijkmt ∼ N(0,σ2) ,

where αi and δm are fixed effects, all other effects are random effects, and all random variables on

the right-hand side of the model are mutually independent.

Table 17.22 Distances (in yards) traveled by balls in the golf experiment

Golfer Brand Distance

1 2 3 4 5 6

1 1 209 204 179 230 233 245

2 188 211 242 222 187 233

3 219 204 247 215 197 161

2 1 240 207 192 190 226 188

2 216 195 240 215 219 238

3 195 221 205 192 183 230



Exercises 669

(a) Write out the expected mean squares for all main effects and interactions in the model.

(b) How would you test the hypothesis H0 : {δm + (αδ).m all equal} against the alternative hypothesis

that these parameters are not all equal?

(c) Give a formula for an unbiased estimate of σ2
B.

(d) Give a formula for a 95% confidence interval for σ2
B.

8. Ice cream experiment, continued

The ice cream experiment was described in Example 17.3.1, p. 621, and was analyzed in Exam-

ples 17.3.2–17.3.4 and 17.4.1. In Sect. 17.10, p. 657, a new model was suggested that involved a

quadratic time trend.

(a) What could account for a quadratic time trend?

(b) Investigate the assumptions on the models with and without the quadratic time trend.

(c) Redo the analyses of Examples 17.3.3 and 17.3.4 for the new model and compare your answers

with the original model.

(d) Which model do you prefer and why?

9. Temperature experiment, continued

The temperature experiment was described and analyzed in Example 17.9.1, with corresponding

SAS and R software analysis provided in Sects. 17.10.2 and 17.11.2, respectively. The experiment

was to compare the times required for three different digital thermometers (factor A at three levels)

to register body temperature at two different sites—in the mouth and under the arm—(factor B at two

levels). A randomized complete block design was used, with each of the six treatment combinations

observed once on each of four subjects (factor S at four levels). Using the mixed model (17.9.25),

p. 650, consider estimation of the treatment mean μ̄..j = μ + ᾱ. + βj + (αβ).j for the jth site.

(a) Verify that Var(Y ..j) = (3σ2
S + 3σ2

SB + σ2)/12.

(b) Provide an unbiased estimate of Var(Y ..j).

(c) Compute the number of degrees of freedom associated with the estimate in part (b).

(d) Given that y..1 = 96.00, construct a 95% confidence interval for μ̄..1.
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18.1 Introduction

A factor is said to be nested within a second factor if each of its levels is observed in conjunction with

just one level of the second factor. An example can be obtained from the clean wool experiment that was

discussed in the last chapter. There, the objective of the experiment was to examine the variability of the

“clean content” among bales of wool in a large shipment. Several bales were selected for examination,

and several cores were taken from each bale and measured. Each core was taken from only one bale,

so the cores (levels of the first factor) are observed in conjunction with only one bale (level of the

second factor). In the above language, the cores are nested within the bales. In the original experiment,

there was only one observation taken on each core. The variability of the different cores could not,

therefore, be distinguished from measurement error, and their effects were not included explicitly in

the model. Had there been more than one observation per core, we could have included in the model

separate effects due to bales, cores nested within bales, and experimental error.

In this chapter we discuss how to recognize nested factors, how to formulate the associated models,

and how to analyze the effects in these models. Many of the analysis techniques are similar to those in

the previous chapter.

In the next section we discuss some examples of hypothetical experiments involving nested effects,

and possible models to represent the data. In Sect. 18.3, we find the estimable contrasts for fixed-

effects nested models and develop tests of hypotheses and confidence intervals for these. The more

usual setting where the nested effects are random effects is discussed in Sect. 18.4 and, where possible,

we borrow the formulae from the fixed effects setting as we did in Chap. 17. The rules of Chaps. 7 and 17

for finding degrees of freedom, sums of squares and expected mean squares and variance components

are then extended to encompass nested models. The analysis of nested models using the SAS and R

computer packages is discussed in Sects. 18.5 and 18.6, respectively.

18.2 Examples and Models

Nested factors are usually, but not always, random effects, and they are usually, but not always, blocking

factors. In the following examples, we give a selection of different situations involving random effects

and suggest some reasonable models to represent the data.
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Example 18.2.1 Machine head experiment

Hicks (1956) describes a simple experiment to study the differences in the strain readings (the response)

of four different heads on each of five different machines. The heads on each machine were supposedly

all doing the same job and should have given rise to similar (nonvariable) readings.

Since each head was observed on only one machine, the heads were “nested within machines,”

giving twenty heads in total. Four observations were taken on each head. The usual two-way analysis

of variance model is not appropriate here, since it would read

Yi j t = μ + αi + β j + (αβ)i j + ǫi j t ,

ǫi j t ∼ N (0,σ2) ,

ǫi j t ’s are mutually independent,

t = 1, . . . , 4; i = 1, . . . , 5; j = 1, . . . , 4,

where, αi is the effect of the i th machine, β j is the effect of the j th head, and (αβ)i j is the extra

effect of observing the i th machine and j th head together. This suggests that every head is observed on

every machine, which was not the case. Instead, we need a notation that will clearly indicate the nested

nature of the factors. One popular notation, which we shall adopt here, is to replace β j + (αβ)i j by

β j (i), where the parentheses indicate that we are looking at the head that happens to be numbered as

the j th head on the i th machine. The two-way nested model is then

Yi j t = μ + αi + β j (i) + ǫi j t , (18.2.1)

ǫi j t ∼ N (0,σ2) ,

ǫi j t ’s are mutually independent,

t = 1, . . . , 4; i = 1, . . . , 5; j = 1, . . . , 4.

We note in passing that the response Yi j t could also be written as a nested effect Yt (i j), since this

represents the t th observation that is specific to the (i j)th machine head. However, since this represen-

tation is not crucial to the analysis, we will continue to use the notation Yi j t that we have used so far

throughout the book.

One final consideration is whether the machine effects and head effects should be fixed or random.

Let us first suppose that the five machines are the only machines of this type in the factory and that

they are not due for replacement. The experimenter would then be interested in these five machines

specifically, and their effects on the response would be modeled as fixed effects. Let us alternatively

suppose that machine heads wear out and are continually being replaced. The experimenter would

then be interested in the population of heads from which the particular twenty in the experiment were

drawn. Consequently, the nested head effect would be modeled as a random effect. The model would

be written as

Yi j t = μ + αi + B j (i) + ǫi j t , (18.2.2)

ǫi j t ∼ N (0,σ2) , B j (i) ∼ N (0,σ2
B(A)) ,

ǫi j t ’s and B j (i)’s are all mutually independent,

t = 1, . . . , 4; i = 1, . . . , 5; j = 1, . . . , 4,
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where αi is the effect of the i th machine, and σ2
B(A) is the variance of responses from the population

of machine heads that could be fitted on these five machines. Notice that all random variables on the

right-hand side of the model are assumed to be mutually independent. �

In the previous example there were two treatment factors, one of whose levels were nested within

those of the other. In the following experiment, there are two blocking factors, which are nested one

within the other.

Example 18.2.2 Efficiency experiment

An experiment was run in 1997 by Carina Dalton, Greg Krzys, Scott O’Dee, and Brad Welch to

examine the assertion that “a person works more efficiently when there is no one looking over his or

her shoulder.” Twelve subjects were recruited for the experiment, and three of these were assigned to

each of the four experimenters. Each subject was asked to complete a simple task—crossing through

every occurrence of the letter “e” on a page of prose. There were two levels of the treatment factor.

Level 1 required the assigned experimenter to look over the subject’s shoulder while the task was being

completed, and level 2 required the experimenter to be elsewhere in the room absorbed in a book. The

response was the time taken to complete the task. Each subject was assigned both treatments, but in a

randomized order.

The blocking factor in this experiment was subject. However, the subjects each worked with only

one experimenter, and so the subject effects were nested within the experimenter effects.

The subjects were graduate students at The Ohio State University. Although they were not selected

according to the rules of a simple random sample, let us suppose that they were a reasonable rep-

resentation of that population. Let us also suppose that the variation among the techniques of the

experimenters, who were also graduate students, was representative of a population of student experi-

menters. It might also be reasonable to assume that some subjects may be more perturbed than others

about an experimenter watching them complete the task. In this case, we might wish to include a

subject–treatment interaction in the model. However, there is only one observation per subject per

treatment, so the subject–treatment interaction could not be distinguished from the random error.

A second possible model would be to include an experimenter–treatment interaction instead of a

subject–treatment interaction. Such an interaction might occur if the actions of the four experimenters

were not all identical. In this case the model would be

Yhqi = μ + Eh + Sq(h) + αi + (αE)hi + ǫhqi ,

ǫhqi ∼ N (0,σ2) , Sq(h) ∼ N (0,σ2
S(E)) , (αE)hi ∼ N (0,σ2

EA) ,

ǫhqi ’s, Eh’s, Sq(h)’s and (αE)hi ’s are all mutually independent,

h = 1, . . . , 4; i = 1, 2, 3; i = 1, 2.

where Eh is the effect of the hth randomly selected experimenter, Sq(h) is the effect of the qth randomly

selected subject assigned to the hth experimenter, αi is the effect of the i th treatment, and (αE)hi is

the random effect representing the interaction between the hth experimenter and the i th treatment.

Lastly, we may also wish to include a time-order effect in the model, since the subjects may have

been able to complete the task faster on the second occasion just due to familiarity. So we could add

the extra term γxhqi , where xhqi is 1 or 2 according to whether the (hq)th subject is assigned treatment

i on the first or second occasion. �
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18.3 Analysis of Nested Fixed Effects

18.3.1 Least Squares Estimates

Consider first the simplest possible fixed-effects nested model—the two-way nested model (18.2.1)

that was suggested for the machine head experiment of Example 18.2.1; that is,

Yi j t = μ + αi + β j (i) + ǫi j t ,

ǫi j t ∼ N (0,σ2) ,

ǫi j t ’s are mutually independent,

t = 1, . . . , ri j ; i = 1, . . . , a; j = 1, . . . , b.

The error assumptions are examined in the same way as in Chap. 5 for the one-way analysis of

variance model. In any model, the estimable contrasts are functions of the expected values of the

response variables (see, for example, Sect. 3.4.1, p. 34). In the present model, E[Yi j t ] is equal to

E[Yi j t ] = μ + αi + β j (i) .

If we take an average over the subscripts t and j , we find that a comparison of the levels of A averaged

over the levels of B is estimable; that is, we can estimate pairwise comparisons such as

[

αi + β.(i)

]

−
[

αs + β.(s)

]

,

and we can estimate general contrasts such as

a
∑

i=1

ci

[

αi + β.(i)

]

, with

a
∑

i=1

ci = 0 .

We can also compare the effects of those levels of B that were observed in conjunction with the same

level of A; that is,
[

αi + β j (i)

]

−
[

αi + βu(i)

]

= β j (i) − βu(i) ,

or, in general,
b

∑

j=1

d jβ j (i) , with

b
∑

j=1

d j = 0 , for any given i .

To obtain the least squares estimators of estimable contrasts, we use the method of least squares to

find parameter estimates that minimize the sum of squared errors

a
∑

i=1

b
∑

j=1

ri j
∑

t=1

e2
i j t =

a
∑

i=1

b
∑

j=1

ri j
∑

t=1

(

yi j t − μ − αi − β j (i)

)2
.

Readers with a knowledge of calculus may verify (see Exercise 7) that the least squares estimate of

μ + αi + β j (i) is yi j.. Consequently, the least squares estimator of

http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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a
∑

i=1

ci

[

αi + β.(i)

]

is

a
∑

i=1

ci Y i..

with �ci = 0. The corresponding variance is �c2
i σ

2/ri.. Similarly, the least squares estimator of

b
∑

j=1

d jβ j (i) is

b
∑

j=1

d j Y i j. for any i

with �d j = 0. The corresponding variance is �d2
j σ

2/ri j .

All of these formulae can easily be adapted to the case where B has a different number of levels for

each level of A by replacing b by bi .

18.3.2 Estimation of σ
2

The error sum of squares is

ssE =

a
∑

i=1

b
∑

j=1

ri j
∑

t=1

(

yi j t − μ̂ − α̂i − β̂ j (i)

)2

=

a
∑

i=1

b
∑

j=1

ri j
∑

t=1

(

yi j t − yi j.

)2
(18.3.3)

=

a
∑

i=1

b
∑

j=1

ri j
∑

t=1

y2
i j t −

a
∑

i=1

b
∑

j=1

ri j y2
i j. . (18.3.4)

A comparison with the formulae in Sect. 6.4 shows that everything that we have written so far about the

fixed-effects two-way nested model could have been deduced from the fixed-effects two-way complete

model after replacing β j + (αβ)i j by β j (i). Therefore, we may also deduce that the error mean square,

msE = ssE/(n − v), gives an unbiased estimate for σ2, and the corresponding random variable MSE

has a chi-squared distribution with n − v degrees of freedom (where n = r.. and v = ab).

18.3.3 Confidence Intervals

We may obtain a 100(1 − α)% confidence bound forσ2 from the information in the previous subsection;

that is,

σ2 ≤
ssE

χ2
n−v,1−α

.

The derivation of the bound was explained in Sect. 3.4.6.

Confidence intervals for �ci (αi + β.(i)) and for �d jβ j (i) may be obtained using the relevant

methods from Chap. 4 together with the formulae

http://dx.doi.org/10.1007/978-3-319-52250-0_6
http://dx.doi.org/10.1007/978-3-319-52250-0_3
http://dx.doi.org/10.1007/978-3-319-52250-0_4
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�ci Y i.. ± w

√

√

√

√

∑

i

(

c2
i

ri

)

msE

and

�d j Y i j. ± w

√

√

√

√

∑

j

(

d2
j

ri j

)

msE .

18.3.4 Hypothesis Testing

We may obtain a test of the null hypothesis that the levels of B have the same effect on the response

within every given level of A, that is,

H
B(A)

0 : {β1(i) = β2(i) = . . . = βb(i), for every i = 1, . . . , a} ,

against the alternative hypothesis H
B(A)

A : {H
B(A)

0 is not true} by comparing the sum of squares for

error (18.3.3) in the fixed-effects two-way nested model with the sum of squares for error in the

reduced (one-way) model. The reduced model is

Yi j t = μ∗ + αi + ǫi j t ,

and the error sum of squares is given by (3.4.4), p. 39, with an extra subscript; that is,

ssE0 =

a
∑

i=1

b
∑

j=1

ri j
∑

t=1

(yi j t − yi..)
2 .

The numerator of the test statistic is then

msB(A) =
ssB(A)

a(b − 1)
,

where the number of degrees of freedom for B(A) is obtained as the difference between the error

degrees of freedom in the reduced and full models; that is,

(n − a) − (n − v) = v − a = ab − a = a(b − 1) ,

and where

ssB(A) = ssE0 − ssE

=
∑

i

∑

j

∑

t

(yi j t − yi..)
2 −

∑

i

∑

j

∑

t

(yi j t − yi j.)
2

=
∑

i

∑

j

∑

t

y2
i j t −

∑

i

ri.y
2
i.. −

∑

i

∑

j

∑

t

y2
i j t +

∑

i

∑

j

ri j y2
i j.

=
∑

i

∑

j

ri j y2
i j. −

∑

i

ri.y
2
i.. (18.3.5)

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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=
∑

i

∑

j

ri j (yi j. − yi..)
2 . (18.3.6)

The decision rule for testing H
B(A)

0 versus H
B(A)

A at significance level α is

reject H
B(A)

0 if
ssB(A)/a(b − 1)

ssE/(n − ab)
> Fa(b−1),n−ab,α .

Similarly, the decision rule for testing

H A
0 : {αi + β.(i) all equal}

against the alternative hypothesis H A
A : {H A

0 is false} is

reject H A
0 if

ssA/(a − 1)

ssE/(n − ab)
> Fa−1,n−ab,α ,

where

ssA =
∑

i

ri.(yi.. − y...)
2 =

∑

i

ri.y
2
i.. − ny2

... .

Notice that ssB(A) in the two-way nested model is equal to ssB + ssAB in the two-way complete

model. Also, the degrees of freedom for B(A) in the nested model can be obtained as the sum of the

degrees of freedom for B and AB in the complete model; that is,

(b − 1) + (b − 1)(a − 1) = a(b − 1) .

This link between the nested model and the corresponding complete model means that when the sample

sizes are equal, we can obtain all the formulae we need from the rules in Chap. 7. This remains true

for more complicated models also. For example, if we take the nested model

Yi jkt = μ + αi + β j (i) + γk(i j) + ǫi jkt ,

we have the following equivalences with the terms of the three-way complete model:

β j (i) = β j + (αβ)i j ,

γk(i j) = γk + (αγ)ik + (βγ) jk + (αβγ)i jk ;

so, for example, the sum of squares for C(AB) is

ssC(AB) = ssC + ssAC + ssBC + ssABC

=
∑

i

∑

j

∑

k

ri jk y2
i jk. −

∑

i

∑

j

ri j.y
2
i j..

=
∑

i

∑

j

∑

k

ri jk(yi jk. − yi j..)
2 ,

with degrees of freedom

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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(c − 1) + (a − 1)(c − 1) + (b − 1)(c − 1) + (a − 1)(b − 1)(c − 1) = ab(c − 1) .

As with the crossed model, the degrees of freedom for C(AB) give a clue to the subscripts needed in

the formula for the sum of squares for C(AB); that is, the degrees of freedom ab(c − 1) = abc − ab

suggest that the sum of squares for C(AB) must contain the terms yi jk. and yi j.., the latter with a minus

sign.

To obtain the degrees of freedom corresponding to any effect, we notice that the degrees of freedom

for A are the same as in the crossed model; that is, (a − 1). The degrees of freedom for B(A) are

(b − 1) + (a − 1)(b − 1) = a(b − 1), and those for C(AB) are ab(c − 1). Thus we see a pattern. The

number of degrees of freedom is the product of the numbers of levels corresponding to the factors in

parentheses and one less than the numbers of levels corresponding to the factors not in parentheses.

We may now modify rules 1 and 2 in Sect. 7.3 for equal sample sizes listed below. We also include

rules 3 and 4 here for easy reference, although these remain the same.

1. Write down the name of the main effect or interaction of interest and the corresponding number of

levels and subscripts. Include parentheses to denote nesting of factors.

2. The number of degrees of freedom ν for any effect is the product of the numbers of levels corre-

sponding to the factors in parentheses and one less than the numbers of levels corresponding to the

factors not in parentheses.

3. Multiply out the number of degrees of freedom and replace each letter with the corresponding

subscripts.

4. The sum of squares for testing the hypothesis that a main effect or an interaction is negligible is

obtained as follows. Use each group of subscripts in rule 3 as the subscripts of a term y, averaging

over all subscripts not present and keeping the same signs. Put the resulting estimate in parentheses,

square it and sum over all possible subscripts. To expand the parentheses, square each term in the

parentheses, keep the same signs, and sum over all possible subscripts.

The other rules remain the same. In particular, confidence intervals for
∑a

i=1 ci

(

αi + β.(i)

)

and

for
∑b

j=1 d jβ j (i) may be calculated using the usual multiple-comparison techniques of Chap. 4.

Example 18.3.1 Plastic experiment

Consider the following hypothetical experiment in which a manufacturer of molded plastic wishes to

replace a standard ingredient by a cheaper alternative. The two ingredients form the two levels of the

treatment factor to be studied. The manufacturing company has factories in three different parts of

the country, and since different climates may affect the product differently, the experiment is to take

place in each of the three locations. Within each factory, two operators oversee two machines each.

The experiment will be run during the usual downtime of the machines.

A possible model for the experiment is

Yi jkut = μ + αi + β j (i) + γk(i j) + τu + (τγ)uk(i j) + ǫi jkut ,

ǫi jkut ∼ N (0,σ2) ,

ǫi jkut ’s are mutually independent,

t = 1, . . . , r; i = 1, 2, 3; j = 1, 2; k = 1, 2; u = 1, 2;

where αi is the effect of the i th location, β j (i) is the effect of the j th operator at the i th location, γk(i j)

is the effect of the kth machine that is looked after by the j th operator at the i th location, τu is the

effect of the uth treatment, (τγ)uk(i j) is the interaction effect between the uth treatment and (i jk)th

http://dx.doi.org/10.1007/978-3-319-52250-0_7
http://dx.doi.org/10.1007/978-3-319-52250-0_4
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Table 18.1 Degrees of freedom and sums of squares

Effect Degrees of freedom Sum of squares

A a − 1 = 2 bcdr�i y2
i.... − abcdr y2

.....

B(A) a(b − 1) = 3 cdr�i � j y2
i j... − bcdr�i y2

i....

C(AB) ab(c − 1) = 6 dr�i � j �k y2
i jk.. − cdr�i � j y2

i j...

Trt d − 1 = 1 abcr�u y2
...u. − abcdr y2

.....

Trt × C(AB) ab(c − 1)(d − 1) = 6 r�i � j �k�u y2
i jku. − dr�i � j �k y2

i jk..

−cr�i � j �u y2
i j.u. + cdr�i � j y2

i j...

Error 24r − 19, by subtraction Obtain by subtraction

Total n − 1 = 24r − 1 �i � j �k�u�t y2
i jkut − abcdr y2

.....

machine, Yi jkut is the t th response (strength measurement) on the uth treatment and (i jk)th machine,

and ǫi jkut is the corresponding random error, assumed to have a normal distribution with mean 0 and

variance σ2. We also assume that the error variables are mutually independent.

The degrees of freedom and sums of squares for each effect are obtained from rules 1–4 listed above

this example and are shown in Table 18.1. Using the formula for confidence intervals in Sect. 18.3.3,

we may obtain a confidence interval for �uhuτu as

∑

u

hu y...u. ± w

√

∑

u

h2
u

12r
msE .

�

18.4 Analysis of Nested Random Effects

18.4.1 Expected Mean Squares

In Chap. 17 we found that we could modify many of the formulae arising from the fixed-effect crossed

models to obtain confidence intervals and hypothesis tests for variance components in the corresponding

random-effects models. To find the denominators for the hypothesis tests and to find the estimates for

variance components, all we need to do is to calculate the expected values of the mean squares arising

from the corresponding fixed-effect models. For equal sample sizes, expected mean squares can be

obtained using rule 17 of Sect. 17.8.1, p. 647, exactly as for the random- and mixed-effects crossed

models. The rules 18–22 for calculating test ratios and confidence intervals also follow exactly as for

the crossed models. We will illustrate these via the model that was suggested for the machine head

experiment in Example 18.2.1. A suggested model was

Yi j t = μ + αi + B j (i) + ǫi j t ,

ǫi j t ∼ N (0,σ2) , B j (i) ∼ N (0,σ2
B(A)) ,

ǫi j t ’s and B j (i)’s are all mutually independent,

t = 1, . . . , 4; i = 1, . . . , 5; j = 1, . . . , 4,

http://dx.doi.org/10.1007/978-3-319-52250-0_17
http://dx.doi.org/10.1007/978-3-319-52250-0_17
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Table 18.2 Analysis of variance table for a mixed-effects two-way nested model

Source of variation Deg. of freedom Sum of squares Mean square Expected mean square

A (a − 1) ssA msA Q(αi ) + rσ2
B(A) + σ2

B(A) a(b − 1) ssB(A) msB(A) rσ2
B(A) + σ2

Error ab(r − 1) ssE msE σ2

Total abr − 1 sstot

Formulae for equal sample sizes

ssA = br�i y2
i.. − abr y2

... ssB(A) = r�i � j y2
i j. − br�i y2

i..

ssE = �i � j �t y2
i j t −r�i � j y2

i j. sstot = �i � j �t y2
i j t − abr y2

...

where αi is the effect of the i th machine, B j (i) is the effect of the j th randomly selected head on the

i th machine, and σ2
B(A) is the variance of responses from the population of machine heads that could

be fitted on these five machines. The error assumptions are examined in the same way as in Chap. 5 for

the one-way analysis of variance model. More sophisticated techniques of checking other assumptions

on a mixed model with nested effects are discussed by Beckman et al. (1987).

The degrees of freedom and sums of squares for the fixed-effects two-way nested model were

calculated in Sect. 18.3. These are listed, for equal sample sizes, in Table 18.2.

We first verify that the fixed-effects mean square for error also provides an unbiased estimate for σ2

in the mixed effects two-way nested model. From Sect. 18.3.2, we know that MSE = SSE/(ab(r − 1)),

where

SSE =

a
∑

i=1

b
∑

j=1

r
∑

t=1

Y 2
i j t − r

a
∑

i=1

b
∑

j=1

Y
2

i j. .

For the mixed-effects two-way nested model (18.2.2), we have

E[Yi j t ] = E[Y i j.] = E[Y i..] = μ + αi and E[Y ...] = μ + α. .

Also,

Var(Yi j t ) = σ2
B(A) + σ2

and

Var(Y i j.) = Var

(

μ + αi + B j (i) +
1

r

r
∑

t=1

ǫi j t

)

= σ2
B(A) +

σ2

r
.

So,

E[SSE] =

[

abr(σ2
B(A) + σ2) + br

∑

i

(μ + αi )
2

]

−

[

abr

(

σ2
B(A) +

σ2

r

)

+ br
∑

i

(μ + αi )
2

]

= ab(r − 1)σ2 .

So, E[MSE] = σ2 as required. We also have that

http://dx.doi.org/10.1007/978-3-319-52250-0_5
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Var(Y i..) = Var

⎛

⎝μ + αi +
1

b

b
∑

j=1

B j (i) +
1

br

b
∑

j=1

r
∑

t=1

ǫi j t

⎞

⎠

=
σ2

B(A)

b
+

σ2

br
.

Similarly,

Var(Y ...) =
σ2

B(A)

ab
+

σ2

abr
.

Consequently, the expected value of the sum of squares for A is

E[SSA] = E

[

br

a
∑

i=1

Y
2

i.. − abrY
2

...

]

=

[

abr

(

σ2
B(A)

b
+

σ2

br

)

+ br
∑

i

(μ + αi )
2

]

−

[

abr

(

σ2
B(A)

ab
+

σ2

abr

)

+ abr
∑

i

(μ + α.)
2

]

= r(a − 1)σ2
B(A) + (a − 1)σ2 + br

∑

i

(αi − α.)
2 .

Then, since MSA = SSA/(a − 1), we have

E[MSA] =
br

a − 1

∑

i

(αi − α.)
2 + rσ2

B(A) + σ2

= Q(αi ) + rσ2
B(A) + σ2 .

Similarly, the expected value of the sum of squares for B nested within A is

E[SSB(A)] = E

⎡

⎣r

a
∑

i=1

b
∑

j=1

Y
2

i j. − br

1
∑

i=1

Y
2

i..

⎤

⎦

=

[

abr

(

σ2
B(A) +

σ2

r

)

+ br
∑

i

(μ + αi )
2

]

−

[

abr

(

σ2
B(A)

b
+

σ2

br

)

+ br
∑

i

(μ + αi )
2

]

= ar(b − 1)σ2
B(A) + a(b − 1)σ2 ,

and, since MSB(A) = SSB(A)/(a(b − 1)), we have

E[MSB(A)] = rσ2
B(A) + σ2 .
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These expected mean squares are listed in the last column of Table 18.2, and we may verify that

they can all be obtained from rule 17 of Chap. 17. This rule, which applies also to more complicated

mixed-effects nested models, says

17. To obtain the expected mean square for a particular main effect or interaction, first make a note

of the subscripts on the term representing that particular effect in the model. Write down variance

components for the effect of interest, for the error, and for every interaction whose term in the

model includes the noted set of subscripts. Gather up all variance components corresponding to

fixed effects into one quadratic form Q. Multiply any remaining variance component except σ2

by the number of observations taken on each level or combination of levels of the corresponding

effect (main effect or interaction). Add up the terms.

18.4.2 Estimation of Variance Components

The rules for obtaining confidence intervals for fixed effects or variance components also remain the

same as those in Chap. 17 for non-nested models. Thus, we may obtain a confidence interval for a

variance component in a mixed-effects nested model as follows:

19. For a random effect, let U = �ki MSi be the mean square or linear combination of mean squares

whose expected value is equal to the variance component corresponding to the random effect. An

exact or approximate 100(1 − α)% confidence interval for this variance component is

(

xu

χ2
x,α/2

,
xu

χ2
x,1−α/2

)

,

where

x =
[�ki (msi )]

2

�[ki (msi )]2/xi

,

and where u is the observed value of U, msi is the observed value of MSi , and xi is the number

of degrees of freedom corresponding to msi .

For example, for the mixed-effects two-way nested model, we may estimate the variability of the

response due to the effect of B within A as

u =
msB(A) − msE

r
.

Then, using rule 19, we can obtain a 100(1 − α)% confidence interval for σ2
B(A) as

(

xu

χ2
x,α/2

,
xu

χ2
x,1−α/2

)

,

where

x =
(msB(A) − msE)2

msB(A)2

a(b−1)
+ msE2

ab(r−1)

.

http://dx.doi.org/10.1007/978-3-319-52250-0_17
http://dx.doi.org/10.1007/978-3-319-52250-0_17
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18.4.3 Hypothesis Testing

Hypothesis testing rules are also obtained from the rules in Chap. 17:

18. To obtain the denominator of the test statistic for testing the null hypothesis that a main effect

or interaction effect is zero, write down the expected mean square for the effect of interest (see

rule 17). Cross out the term that would be zero if the null hypothesis were true. The denominator

of the test statistic is the mean square, or linear combination of mean squares, u, whose expected

value is equal to the remaining expression.

21. For a fixed effect, the decision rule for testing the hypothesis that the effect is zero is the same as

that in rule 8, p. 210, for fixed-effects models except that msE is replaced by the denominator u

from rule 18 and the number of error degrees of freedom is replaced by x in rule 19.

22. For a random effect, the decision rule for testing the hypothesis H0 that the corresponding variance

component is zero against the alternative hypothesis that it is not zero is

reject H0 if
ms

u
> Fν,x,α ,

where ms is the mean square for the effect of interest and ν the corresponding degrees of freedom,

u is the observed value of the denominator as in rule 18, and x is the corresponding degrees of

freedom calculated as in rule 19.

For example, using the information in the expected mean squares column of Table 18.2 for the mixed-

effects two-way nested model, the decision rule for testing the null hypothesis H
B(A)

0 : {σ2
B(A) = 0} of no

variability in the effect of B within each level of A against the alternative hypothesis H
B(A)

A : {σ2
B(A) > 0}

is

reject H
B(A)

0 if
msB(A)

msE
> Fa(b−1),ab(r−1),α , (18.4.7)

at chosen significance level α.

To test the hypothesis H A
0 : {α1 = α2 = · · · = αa} that the machine effects are the same averaged

over their four heads, the decision rule at significance level α is

reject H A
0 if

msA

msB(A)
> Fa−1,a(b−1),α . (18.4.8)

18.4.4 Some Examples

Example 18.4.1 Machine head experiment, continued

The data for the machine head experiment are listed in Table 18.3, and the analysis of variance table is

shown in Table 18.4. One can show that the p-value for testing the hypothesis of no machine differences

is 0.67, and we would conclude no difference in the effect on strain readings of the five machines.

The test of the null hypothesis that the variance σ2
B(A) of the population of possible heads fitted to the

machines is zero has p-value 0.065. Only if our choice of significance level is greater than this value

would we conclude nonzero variability among the heads.

http://dx.doi.org/10.1007/978-3-319-52250-0_17
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Table 18.3 Data for the machine head experiment

Mach. Head 1 Head 2 Head 3 Head 4

1 6 2 0 8 13 3 9 8 1 10 0 6 7 4 7 9

2 10 9 7 12 2 1 1 10 4 1 7 9 0 3 4 1

3 0 0 5 5 10 11 6 7 8 5 0 7 7 2 5 4

4 11 0 6 4 5 10 8 3 1 8 9 4 0 8 6 5

5 1 4 7 9 6 7 0 3 3 0 2 2 3 7 4 0

Source Hicks (1956). Copyright © 1956 American Society for Quality. Reprinted with permission

Table 18.4 Analysis of variance table for the machine head experiment

Effect d.f. Sum of squares Mean square Expected mean square Ratio

Machine 4 45.075 11.2688 Q(αi ) + 4σ2
B(A) + σ2 0.5975

Head (mach.) 15 282.875 18.8583 4σ2
B(A) + σ2 1.7625

Error 60 642.000 10.7000 σ2

Total 79 969.950

An unbiased estimate of σ2
B(A) is given by

msB(A) − msE

r
=

18.8583 − 10.7000

4
= 2.0396 ,

and since,

x =
(2.0396)2

(18.8583/4)2

15
+

(10.70/4)2

60

= 2.598 ,

a 90% confidence interval for σ2
B(A) is given by

(

(2.598)(2.0396)

χ2
2.598,.05

,
(2.598)(2.0396)

χ2
2.598,.95

)

≈

(

5.299

6.90
,

5.299

0.22

)

= (0.77 , 24.09)

measured in squared units of strain. �

Example 18.4.2 Soil experiment

Consider an experiment to compare analyses of soil samples with four treatment factors A, B, C , and

D, where

A is “method of analysis” and involves a = 2 specifically selected methods.

B is “laboratory” and involves b = 4 specifically selected labs.

C is “operator conducting the analysis” and there are c = 3 randomly selected operators in each lab.

D is “location from which soil was taken” and involves d = 3 randomly selected locations.
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Suppose the model is

Yi jkut = μ + αi + β j + (αβ)i j + Ck( j) + (αC)ik( j) + Du

+ (αD)iu + (βD) ju + (αβD)i ju + ǫi jkut ,

Ck( j) ∼ N (0,σ2
C(B)) ; (αC)ik( j) ∼ N (0,σ2

AC(B)) ; Du ∼ N (0,σ2
D) ; (αD)iu ∼ N (0,σ2

AD)

(βD) ju ∼ N (0,σ2
BD) ; (αβD)i ju ∼ N (0,σ2

ABD) ; ǫi jkut ∼ N (0,σ2)

i = 1, 2 ; j = 1, 2, 3, 4 ; k = 1, 2, 3 ; u = 1, 2, 3 ; t = 1, 2 ;

where αi is the effect of the i th method of analysis, β j is the effect of the j th laboratory, and (αβ)i j

is the effect of their interaction; Ck( j) is the effect of the kth randomly selected operator in the kth

laboratory and (αC)ik( j) is the operator × analysis method interaction; Du is the effect of the uth

randomly selected location from which the soil was selected and (αD)iu, (βD) ju and (αβD)i ju are

respectively the interactions of the uth soil location with the i th method of analysis, the uth soil location

with the j th laboratory, and the three-factor interaction of the uth soil location, i th method of analysis,

and j th laboratory. Two observations are taken on each soil sample via each method of analysis by

each operator.

The degrees of freedom, sums of squares, and expected mean squares for this model are obtained

using rules 17–21 in Sects. 18.4.1–18.4.3 and are shown in Table 18.5.

The decision rule for testing the null hypothesis H ABD
0 : {σ2

ABD = 0} against the alternative hypoth-

esis H ABD
A : {σ2

ABD > 0} is given by

reject H ABD
0 if

msABD

msE
> F6,104,α .

If this hypothesis is not rejected, we may wish to examine the AB, AD, and BD interactions. The decision

rule for testing the null hypothesis H BD
0 : {σ2

BD = 0} against the alternative hypothesis H BD
A : {σ2

BD > 0}

is given by

reject H BD
0 if

msBD

msABD
> F6,6,α .

The test for the AD interaction is similar, utilizing the test statistic msAD/msABD. To obtain a suitable

denominator for testing

H AB
0 : {(αβ)i j − (αβ)i. − (αβ). j + (αβ).. = 0, for all i, j}

against the alternative hypothesis that the interaction is not zero, we need the denominator of the test

statistic to be an unbiased estimator for

6σ2
AC(B) + 6σ2

ABD + σ2 .

Such an estimator is

U = MS(AC(B)) + MS(ABD) − MSE .

This has approximately a χ2
x distribution with
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Table 18.5 Degrees of freedom, sums of squares, and expected mean squares for the soil experiment

Effect Degrees of freedom Expected mean square

A a − 1 = 1 Q(α,αβ) + 6σ2
AC(B) + 24σ2

AD + 6σ2
ABD + σ2

B b − 1 = 3 Q(β,αβ) + 12σ2
C(B) + 6σ2

AC(B) + 12σ2
BD + 6σ2

ABD + σ2

AB (a − 1)(b − 1) = 3 Q(αβ) + 6σ2
AC(B) + 6σ2

ABD + σ2

C(B) b(c − 1) = 8 12σ2
C(B) + 6σ2

AC(B) + σ2

AC(B) (a − 1)b(c − 1) = 8 6σ2
AC(B) + σ2

D d − 1 = 2 48σ2
D + 24σ2

AD + 12σ2
BD + 6σ2

ABD + σ2

AD (a − 1)(d − 1) = 2 24σ2
AD + 6σ2

ABD + σ2

BD (b − 1)(d − 1) = 6 12σ2
BD + 6σ2

ABD + σ2

ABD (a − 1)(b − 1)(d − 1) = 6 6σ2
ABD + σ2

Error subtraction = 104 σ2

Total n − 1 = 143

Formulae

ssA = 72�i y2
i.... − 144y2

.....

ssB = 36� j y2
. j... − 144y2

.....

ssAB = 18�i � j y2
i j... − 72�i y2

i.... − 36� j y2
. j... + 144y2

.....

ssC(B) = 12� j �k y2
. jk.. − 36� j y2

. j....

ssAC(B) = 6�i � j �k y2
i jk.. − 18�i � j y2

i j... − 12� j �k y2
. jk.. + 36� j y2

. j...

ssD = 48�u y2
...u. − 144y2

.....

ssAD = 24�i �u y2
i..u. − 72�i y2

i.... − 48�u y2
...u. + 144y2

.....

ssBD = 12� j �u y2
. j.u. − 36� j y2

. j... − 48�u y2
...u. + 144y2

.....

ssABD = 6�i � j �u y2
i j.u. − 18�i � j y2

i j... − 24�i �u y2
i..u. − 12� j �u y2

. j.u.

+ 72�i y2
i.... + 36� j y2

. j... + 48�u y2
...u. − 144y2

.....

sstot = �i � j �k�u�t y2
i jkut − 144y2

.....

ssE is obtained by subtraction

x =
[MS(AC(B)) + MS(ABD) − MSE]2

MSAC(B)2

8
+ MS(ABD)2

6
+ MSE2

104

.

Thus the decision rule for testing H AB
0 against H AB

A is

reject H AB
0 if

msAB

U
> F3,x,α .

An unbiased estimate of σ2
BD is

U =
msBD − msABD

12
.

This has approximately a χ2
x distribution, where
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x =
u2

(msBD/12)2

6
+

(msABD/12)2

6

,

and an approximate 95% confidence interval for σ2
BD is

(

u/χ2
x,α/2, u/χ2

x,1−α/2

)

.

Any one of the main effects A, B, or C(B) can be investigated if the interactions involving the corre-

sponding factor are all negligible. The relevant formulae can be obtained along the same lines as those

described above. �

18.5 Using SAS Software

The SAS procedure PROC GLM can handle nested effects when they are described in the MODEL
statement using notation of the form B(A). The RANDOM statement is used to obtain expected mean

squares. The procedure PROC MIXED, which was described briefly in Chap. 17, can also be used. We

will illustrate these procedures via the experiment in Sect. 18.5.1.

18.5.1 Voltage Experiment

An experiment was described by David Desmond in the 1954 issue of Applied Statistics on reducing

the variability of voltage regulators fitted to motor cars. The voltage regulator was required to operate

within a range of 15.8–16.4 volts. When the experiment took place, records showed that about 18%

of regulators required readjustment during inspection, and sometimes this figure rose to 50%. Despite

the inspection procedure, some of the regulators reaching customers were still outside the specification

limits, and complaints from customers were considered to be excessive.

The experiment was run in order to measure the variability in the regulator setting operation.

Measurements were taken on 64 voltage regulators at each of four testing stations. The 64 regulators

were selected at random from several different setting stations. In Table 18.6, we have reproduced the

data for six of these setting stations, corresponding to 40 voltage regulators. Since the regulators were

selected at random, we model their effects as random effects nested within setting station. For purposes

of illustration, we consider the four testing stations and six setting stations as the only stations of interest

and model them as fixed effects. In the original article, these were modeled as random effects.

The effect of testing station is crossed with the effect of setting station and with regulator. A model

to describe the data can be written as

Yi jk = μ + αi + β j + Ck( j) + ǫi jk ,

ǫi jk ∼ N (0,σ2) , Ck( j) ∼ N (0,σ2
C(B)) ,

ǫi jk’s and Ck( j)’s are all mutually independent

i = 1, . . . , 4; j = 1, . . . , 6; k = 1, . . . , r j ,

where αi is the effect of the i th testing station, β j is the effect of the j th setting station, and Ck( j) is

the effect of the kth randomly selected regulator from the j th setting station.

There is no reason to suspect that the testing stations would differ in their comparative results for

different regulators, so there is no reason to expect a regulator × testing station interaction. Since there

http://dx.doi.org/10.1007/978-3-319-52250-0_17
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Table 18.6 Voltages for the voltage experiment

Set. sta.

(B)

Regulator

(C)

Testing station (A) Set. sta.

(B)

Regulator

(C)

Testing station (A)

1 2 3 4 1 2 3 4

1 1 16.5 16.5 16.6 16.6 4 1 16.1 16.0 16.0 16.2

2 15.8 16.7 16.2 16.3 2 16.5 16.1 16.5 16.7

3 16.2 16.5 15.8 16.1 3 16.2 17.0 16.4 16.7

4 16.3 16.5 16.3 16.6 4 15.8 16.1 16.2 16.2

5 16.2 16.1 16.3 16.5 5 16.2 16.1 16.4 16.2

6 16.9 17.0 17.0 17.0 6 16.0 16.2 16.2 16.1

7 16.0 16.2 16.0 16.0 7 16.0 16.0 16.1 16.0

8 16.0 16.0 16.1 16.0

2 1 16.0 16.1 16.0 16.1 5 1 15.5 15.6 15.4 15.8

2 15.4 16.4 16.8 16.7 2 15.8 16.2 16.0 16.2

3 16.1 16.4 16.3 16.3 3 16.2 15.4 16.1 16.3

4 15.9 16.1 16.0 16.0 4 16.2 16.2 16.0 16.1

5 16.1 16.2 16.3 16.2

6 16.1 16.1 16.0 16.1

3 1 16.0 16.0 15.9 16.3 6 1 15.5 15.5 15.3 15.6

2 15.8 16.0 16.3 16.0 2 16.0 15.6 15.7 16.2

3 15.7 16.2 15.3 15.8 3 16.0 16.4 16.2 16.2

4 16.2 16.4 16.4 16.6 4 15.8 16.5 16.2 16.2

5 16.0 16.1 16.0 15.9 5 15.9 16.1 15.9 16.0

6 16.1 16.1 16.1 16.1 6 15.9 16.1 15.8 15.7

7 16.1 16.0 16.1 16.0 7 16.0 16.4 16.0 16.0

8 16.1 16.2 16.2 16.1

Source Desmond (1954). Copyright © 1956 Blackwell Publishers. Reprinted with permission

is only one observation per regulator–testing station combination, we would not be able to distinguish

such an interaction from experimental error. A SAS program for analyzing this model is shown in

Table 18.7.

PROC GLM

A plot of the standardized residuals (not shown) highlights two rather large outliers. The two outlying

observations are those highlighted in italics in Table 18.6, and we notice that they are from different

regulators and different testing stations. If these outliers are removed, the output shown in Fig. 18.1 is

obtained. The TEST option produces the correct denominators for the tests of H A
0 : {α1 = α2 = α3 =

α4}, H B
0 : {β1 = β2 = · · · = β6} and H

C(B)

0 : {σ2
C(B) = 0}. If we select an overall significance level

of α = 0.06 for the three tests and do each test at level α∗ = 0.02, we see that there is a significant

difference between testing stations, but not between setting stations. Also, the variance of the regulators

within setting stations appears to be significantly different from zero. Mind you, the F-test for setting

stations is somewhat approximate, not only because the denominator is a composite variance estimator,

but also because the treatment type III mean squares may be slightly dependent as a consequence of

the removal of the two outliers, causing a slight dependence of the numerator and denominator of the

F-statistic.

Unbiased estimates of σ2 and σ2
C(B) can be obtained from the listed expected mean squares as

σ̂2 = msE = 0.0268 and



18.5 Using SAS Software 689

Table 18.7 SAS program to analyze a mixed-effects nested model

DATA VLT;
* Input setting station (B), regulator (C),
* testing station (A), and voltage;
INPUT B C A VOLTG;
LINES;
1 1 1 16.5
1 1 2 16.5
: : : :
6 8 4 16.1

;
* Plot standardized residuals versus predicted values for all data;
PROC GLM;
CLASS A B C;
MODEL VOLTG = A B C(B);
RANDOM C(B) / TEST;
LSMEANS A / PDIFF = ALL CL ADJUST = TUKEY;
LSMEANS B / PDIFF = ALL CL ADJUST = TUKEY E = C(B);
OUTPUT OUT = RESIDS PREDICTED = PRED RESIDUAL = Z;

PROC STANDARD STD=1.0;
VAR Z;

PROC PLOT; * or use PROC SGPLOT;
PLOT Z*PRED = A Z*PRED = B Z*PRED = C / VREF = 0 VPOS = 19 HPOS = 50;

* Analysis without two outliers;
DATA VLT2; SET VLT;
IF B = 2 AND C = 2 AND A = 1 THEN DELETE;
IF B = 5 AND C = 3 AND A = 2 THEN DELETE;

PROC GLM;
CLASS A B C;
MODEL VOLTG = A B C(B);
RANDOM C(B) / TEST;
LSMEANS A / PDIFF = ALL CL ADJUST = TUKEY;
* The following should be approximately correct;
LSMEANS B / PDIFF = ALL CL ADJUST = TUKEY E = C(B);

PROC MIXED METHOD = TYPE3;
CLASS A B C;
MODEL VOLTG = A B / DDFM = SAT;
RANDOM C(B);
LSMEANS A B / CL PDIFF ADJUST = BON;

σ̂2
C(B) =

msC(B) − msE

3.9499
=

0.2405 − 0.0268

3.9499
= 0.0541 ,

respectively. Thus the variability of the regulator strain readings is estimated to be about twice as large

as the experimental error.

A 90% confidence interval for σ2
C(B)/σ

2 can be obtained by adapting the formula (17.3.11) as

follows:
1
c

[

msC(B)
msE Fν1,ν2,α/2

− 1
]

≤
σ2

C(B)

σ2 ≤ 1
c

[

msC(B)
msE Fν1,ν2,1−α/2

− 1
]

= 1
c

[

0.2405
0.0268 F34,115,0.05

− 1
]

≤
σ2

C(B)

σ2 ≤ 1
c

[

0.2405
0.0268 F34,115,0.95

− 1
]

.

http://dx.doi.org/10.1007/978-3-319-52250-0_17
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Fig. 18.1 SAS output for

the voltage experiment

Since E[MSC(B)] = σ2 + 3.9499σ2
C(B), the value of c = is 3.9499. So, using F34,115,0.05 ≈ 1.52 and

F34,115,0.95 = (F115,34,0.05)
−1 ≈ 1.64−1 = 0.61, the confidence interval becomes

1.242 ≤
σ2

C(B)

σ2
≤ 3.471 .

The general conclusion of the experiment was that the differences between the four testing stations

were of little practical importance. However, we note that the residual plots still indicate one or two

large residuals, especially from testing station 2, so perhaps testing station 2 should have been examined

a little more closely.

Much of the variability in the regulators appeared to be due to the inherent measurement error, and

the experimenters concluded that it was not possible to set the regulators within the desired tolerance

limits. A quality control scheme to ensure that the current quality did not deteriorate was put in place.

We note in passing that the effect of the outliers on the analysis was actually very small. If the

two original outliers had been included in the analysis, the estimates σ̂2 = 0.0268 and σ̂2
C(B) = 0.0541

would have changed to 0.0392 and 0.0461, respectively. There would also be little change in the

p-values of the hypothesis tests. There is some benefit in retaining the entire data set, since the coeffi-

cient of σ2
C(B) in the expected mean squares is then 4.0, as stated by rule 17 on p. 637.
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Fig. 18.2 Output from

PROC MIXED for the

voltage experiment

PROC MIXED

The model can also be analyzed using the SAS procedure PROC MIXED and the analysis of variance

approach as in Chap. 17. The SAS statements are shown in Table 18.7. The analysis of variance output

from PROC MIXED (not shown) would match that generated by PROC GLM, because the option

METHOD = TYPE3 implements the same least squares fit and the same analysis based on Type III

sums of squares. An advantage of PROC MIXED is that it correctly estimates standard errors for means

and contrasts. For example, some of the output generated by the LSMEANS statement for comparing

setting stations (B) is shown in Fig. 18.2. Note that the standard error and associated degrees of freedom

depend on the levels compared, due to the data imbalance caused by the removal of the two outliers.

Composite variance estimates are used, and the degrees of freedom are obtained via Satterthwaite’s

approximation, due to the option DDFM = SAT in the MODEL statement. The changing number of

degrees of freedom from one comparison to another indicates that the corresponding variance estimator

also changes. Consequently, the Bonferroni method is used, since Tukey’s method requires a common

variance estimator, though the latter should also be approximately correct for such nearly balanced

data. If the data were more than a little imbalanced, it would be preferable to use restricted maximum

likelihood in PROC MIXED for variance components estimation—an approach to be discussed in

Chap. 19.

18.6 Using R Software

The analysis of variance approach can be used in R for the analysis of balanced designs involving

random and nested effects. The aov function can fit such models. For example, if a model as specified

in R includes the terms A and A:B but not B, then A:B represents the effects of B nested within A.

http://dx.doi.org/10.1007/978-3-319-52250-0_17
http://dx.doi.org/10.1007/978-3-319-52250-0_19
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Equivalently, the notation A/B causes inclusion of the terms A and A:B if B is excluded. Random

effects are designated by inclusion of a single Error function in the model. For example, if the model

includes the terms A and Error(A:B) but excludes the term B, then A:B represents random effects

of B nested within A. The aov function fits models by least squares, the summary function provides

the corresponding analysis of variance, including the usual (sometimes approximate) F tests for any

fixed effects in the model, and the lsmeans function implements multiple comparison procedures.

This analysis of variance approach using aov is appropriate and the computations dependable given

a balanced design.

For unbalanced designs involving random effects, the data analysis can be accomplished by alter-

native methods involving estimation of the variance components by restricted maximum likelihood

(ReML). This approach can be implemented using the lmer function of the lme4 package to fit the

model, the anova function to generate tests of fixed effects, and the lsmeans function for multi-

ple comparisons. In our programs, we call the lmerTest package rather than lme4, as the former

provides p-values for F-tests of fixed effects.

We will illustrate the above approaches in Sects. 18.6.2 and 18.6.3, respectively, using the experiment

introduced in the following section.

18.6.1 Voltage Experiment

An experiment was described by David Desmond in the 1954 issue of Applied Statistics on reducing

the variability of voltage regulators fitted to motor cars. The voltage regulator was required to operate

within a range of 15.8–16.4 volts. When the experiment took place, records showed that about 18%

of regulators required readjustment during inspection, and sometimes this figure rose to 50%. Despite

the inspection procedure, some of the regulators reaching customers were still outside the specification

limits, and complaints from customers were considered to be excessive.

The experiment was run in order to measure the variability in the regulator setting operation. Mea-

surements were taken on 64 voltage regulators at each of four testing stations. The 64 regulators were

selected at random from several different setting stations. In Table 18.6 (p. 688), we have reproduced

the data for six of these setting stations, corresponding to 40 voltage regulators. Since the regulators

were selected at random, we model their effects as random effects nested within setting station. For

purposes of illustration, we consider the four testing stations and six setting stations as the only sta-

tions of interest and model them as fixed effects. In the original article, these were modeled as random

effects.

The effect of testing station is crossed with the effect of setting station and with regulator. A model

to describe the data can be written as

Yi jk = μ + αi + β j + Ck( j) + ǫi jk , (18.6.9)

ǫi jk ∼ N (0,σ2) , Ck( j) ∼ N (0,σ2
C(B)) ,

ǫi jk’s and Ck( j)’s are all mutually independent

i = 1, . . . , 4; j = 1, . . . , 6; k = 1, . . . , r j ,

where αi is the effect of the i th testing station, β j is the effect of the j th setting station, and Ck( j) is

the effect of the kth randomly selected regulator from the j th setting station.

There is no reason to suspect that the testing stations would differ in their comparative results for

different regulators, so there is no reason to expect a regulator × testing station interaction. Since there
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Table 18.8 R program and selected output for analysis of a mixed-effects nested model by the analysis of variance

approach

> voltage.data = read.table("data/voltage.txt", header=T)
> voltage.data = within(voltage.data, {fSetting = factor(Setting);
+ fRegul = factor(Regul); fTesting = factor(Testing) })
> head(voltage.data, 3)
Setting Regul Testing Voltg fTesting fRegul fSetting

1 1 1 1 16.5 1 1 1
2 1 1 2 16.5 2 1 1
3 1 1 3 16.6 3 1 1

> # Least squares ANOVA
> # Set contrast options for correct lsmeans and contrasts
> options(contrasts = c("contr.sum", "contr.poly"))
> model1 = aov(Voltg ˜ fSetting + fTesting + Error(fSetting:fRegul),
+ data=voltage.data)
> summary(model1)

Error: fSetting:fRegul
Df Sum Sq Mean Sq F value Pr(>F)

fSetting 5 2.91 0.582 2.6 0.043
Residuals 34 7.61 0.224

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

fTesting 3 0.70 0.2341 5.97 0.0008
Residuals 117 4.59 0.0392

> # Multiple comparisons: Tukey’s method
> library(lsmeans)
> lsmTesting1 = lsmeans(model1, ˜ fTesting)
> summary(contrast(lsmTesting1, method="pairwise", adjust="tukey"),
+ infer=c(T,T), level=0.98, side="two-sided")

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 -0.1550 0.044267 117 -0.285431 -0.024569 -3.502 0.0036
1 - 3 -0.0825 0.044267 117 -0.212931 0.047931 -1.864 0.2494
1 - 4 -0.1650 0.044267 117 -0.295431 -0.034569 -3.727 0.0017
2 - 3 0.0725 0.044267 117 -0.057931 0.202931 1.638 0.3616
2 - 4 -0.0100 0.044267 117 -0.140431 0.120431 -0.226 0.9959
3 - 4 -0.0825 0.044267 117 -0.212931 0.047931 -1.864 0.2494

Results are averaged over the levels of: fSetting
Confidence level used: 0.98
Conf-level adjustment: tukey method for comparing a family of 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates

is only one observation per regulator–testing station combination, we would not be able to distinguish

such an interaction from experimental error.
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18.6.2 Analysis Using Least Squares Estimates and aov

Table 18.8 contains an R program for analyzing model (18.6.9) using the aov function. The aov

function, which fits models by ordinary least squares and takes an analysis of variance approach to the

data analysis, works fine for models including random effects as long as the design is balanced. The

summary function generates the appropriate F-tests for each fixed effect, including correct denomina-

tors for the tests of H A
0 : {α1 = α2 = α3 = α4} and H B

0 : {β1 = β2 = · · · = β6}. If we conduct both

tests of fixed effects at level α∗ = 0.02, we see that there is a significant difference between testing

stations (p = 0.0008) but not between setting stations (p = 0.043). Tukey’s method is illustrated for

comparing the effects of testing station. Code for comparing the effects of setting station is analogous.

Tests for random effects are not generated by the aov and summary functions. However, for

balanced data, the appropriate tests can be constructed by hand from the mean squares and degrees

of freedom generated by the summary function, based on the corresponding expected mean squares.

Using rule 17 for estimation and hypothesis testing (p. 647), one can show that the expect mean square

for regulators nested within setting is σ2 + 4 σ2
C(B). So, to test H

C(B)

0 : {σ2
C(B) = 0}, the appropriate test

statistic is F = msC(B)/msE = 0.224/0.0392 = 5.714 with 34 and 117 degrees of freedom, the mean

square and degrees of freedom values being obtained from Table 18.8. The reader may verify that the

null hypothesis would be rejected at level α∗ = 0.02 for example (p < 0.001), corresponding to an

overall significance level of α = 0.06 for the three tests.

Unbiased estimates of σ2 and σ2
C(B) can be obtained as σ̂2 = msE = 0.0392 and

σ̂2
C(B) =

msC(B) − msE

4
=

0.224 − 0.0392

4
= 0.0462 ,

respectively. Thus the variability of the regulator strain readings is estimated to be only slightly larger

than the experimental error.

A 90% confidence interval for σ2
C(B)/σ

2 can be obtained by adapting the formula (17.3.11) as

follows:
1
c

[

msC(B)
msE Fν1,ν2,α/2

− 1
]

≤
σ2

C(B)

σ2 ≤ 1
c

[

msC(B)
msE Fv−1,n−v,1−α/2

− 1
]

= 1
c

[

0.224
0.0462 F34,117,0.05

− 1
]

≤
σ2

C(B)

σ2 ≤ 1
c

[

0.224
0.0462 F34,117,0.95

− 1
]

.

Since E[MSC(B)] = σ2 + 4σ2
C(B), the value of c = is 4. So, using F34,117,0.05 ≈ 1.533 and

F34,117,0.95 = (F117,34,0.05)
−1 ≈ 1.635−1 = 0.6116, the confidence interval becomes

0.541 ≤
σ2

C(B)

σ2
≤ 1.732 .

The general conclusion of the experiment was that the differences between the four testing stations

were of little practical importance. However, we note that the residual plots still indicate one or two

large residuals, especially from testing station 2, so perhaps testing station 2 should have been examined

a little more closely.

Much of the variability in the regulators appeared to be due to the inherent measurement error, and

the experimenters concluded that it was not possible to set the regulators within the desired tolerance

limits. A quality control scheme to ensure that the current quality did not deteriorate was put in place.

One advantage to the aov function and ordinary least squares is that residuals are available for

checking model assumptions. A plot of the standardized residuals (not shown) highlights two rather

large outliers. The two outlying observations are those highlighted in italics in Table 18.6, and we notice

http://dx.doi.org/10.1007/978-3-319-52250-0_17
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that they are from different regulators and different testing stations. If these outliers were removed,

one would need to use different methods for the data analysis, as illustrated in the next section.

18.6.3 Analysis Using Restricted Maximum Likelihood Estimation

Whether or not the design is balanced, model (18.6.9) can also be analyzed using restricted maximum

likelihood (ReML) estimation. In particular, the variance components are estimated by restricted maxi-

mum likelihood, providing estimates which make the observed data most likely, subject to the restriction

that the variance component estimates be non-negative. Given these variance component estimates,

estimated generalized least squares estimates are computed for the fixed effects—generalized to take

into account the unequal variances of observations as well as their correlations, and estimated since this

variance-covariance structure is estimated. This approach will provide the same results as the analysis

of variance approach if the design is balanced and all variance component estimates are positive, as is

true for the voltage experiment. For further information about this approach, see Sect. 19.8.3.

Table 18.9 contains an R program and selected output for analyzing model (18.6.9) via this ReML-

based approach, but excluding the two outliers. After the program reads all of the voltage data into the

data set voltage.data, a new data set voltage2.data is created from it by taking the subset

of voltage.data that satisfies two conditions that exclude the two outliers. For example, the first

condition

!(fSetting == 2 & fRegul == 2 & fTesting == 1)

means not (!) to include observations with fSetting value 2 and (&) fRegul value 2 and

fTesting value 1, thereby excluding the first outlier. The second outlier is similarly excluded by the

second condition.

The lmer function fits model (18.6.9), estimating the variance components by restricted maximum

likelihood estimation and the fixed effects by estimated generalized least squares estimation. In the

model, specified as

Voltg ˜ fSetting + fTesting + (1|fSetting:fRegul),

the term (1|fSetting:fRegul) causes inclusion of the random effects Ck( j)—one parameter for

each combination of fSetting and fRegul. The anova function generates type 3 F-tests of the

fixed effects—namely, for the effects offSetting andfTesting. Finally, thelsmeans command

applies Tukey’s method for each fixed-effects factor using a 98% confidence level, though the results

are only displayed for testing stations.

We note in passing that the effect of the outliers on the analysis was actually very small. Comparing

the results in Table 18.8 with the outliers to those in Table 18.9 without the outliers, there is little change

in the p-values of the hypothesis tests, and Tukey’s method yields the same significant comparisons.

There is some benefit in retaining the entire voltage data set, since the analysis of variance approach

can be used in R for models involving random effects if the design is balanced, in which case the

analysis of variance approach is statistically efficient and provides a more complete data analysis.

Exercises

1. Viscosity experiment

An experiment was described by Johnson and Leone (1977, p. 744) to determine the viscosity of a

polymeric material. The material was divided into two samples. The two samples were each divided

http://dx.doi.org/10.1007/978-3-319-52250-0_19
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Table 18.9 R program and selected output for analysis of a mixed-effects nested model using restricted maximum

likelihood estimation

> voltage.data = read.table("data/voltage.txt", header=T)
> voltage.data = within(voltage.data, {fSetting = factor(Setting);
+ fRegul = factor(Regul); fTesting = factor(Testing) })

> # Drop two outliers, then reanalyze the data
> voltage2.data = subset(voltage.data,
+ !(fSetting == 2 & fRegul == 2 & fTesting == 1)
+ & !(fSetting == 5 & fRegul == 3 & fTesting == 2) )

> # REML
> # install.packages("lmerTest")
> library(lmerTest) # Attaches/masks lmer and lsmeans,
> # adding p-values to anova()
> model2 = lmer(Voltg ˜ fSetting + fTesting + (1|fSetting:fRegul),
+ data=voltage2.data)
> anova(model2) # F-tests for fixed effects

Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
fSetting 0.312 0.0623 5 34 2.32 0.06419
fTesting 0.590 0.1967 3 115 7.33 0.00015

> # Multiple comparisons
> library(lsmeans)
> lsmTesting2 = lsmeans(model2, ˜ fTesting)
> summary(contrast(lsmTesting2, method="pairwise", adjust="tukey"),
+ infer=c(T,T), level=0.98, side="two-sided")

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 -0.149846 0.037228 115.22 -0.259570 -0.040121 -4.025 0.0006
1 - 3 -0.055856 0.036922 115.10 -0.164681 0.052968 -1.513 0.4332
1 - 4 -0.138356 0.036922 115.10 -0.247181 -0.029532 -3.747 0.0016
2 - 3 0.093989 0.036921 115.12 -0.014833 0.202811 2.546 0.0583
2 - 4 0.011489 0.036921 115.12 -0.097333 0.120311 0.311 0.9895
3 - 4 -0.082500 0.036618 115.00 -0.190429 0.025429 -2.253 0.1154

Results are averaged over the levels of: fSetting
Confidence level used: 0.98
Conf-level adjustment: tukey method for comparing a family of 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates

> lsmSetting2 = lsmeans(model2, ˜ fSetting)
> summary(contrast(lsmSetting2, method="pairwise", adjust="tukey"),
+ infer=c(T,T), level=0.98, side="two-sided")

into ten “aliquots.” After preparation of these aliquots, they were divided into two subaliquots and

a further step in the preparation made. Finally, each subaliquot was divided into two parts and the

final step of the preparation made. The viscosity determinations are listed in Table 18.10.



Exercises 697

Table 18.10 Viscosity determinations for the viscosity experiment

Sample Aliquot Subaliquot 1 Subaliquot 2

Part 1 Part 2 Part 1 Part 2

1 1 59.8 59.4 58.2 63.5

2 66.6 63.9 61.8 62.0

3 64.9 68.8 66.3 63.5

4 62.7 62.2 62.9 62.8

5 59.5 61.0 54.6 61.5

6 69.0 69.0 60.6 61.8

7 64.5 66.8 60.2 57.4

8 61.6 56.6 64.5 62.3

9 64.5 61.3 72.7 72.4

10 65.2 63.9 60.8 61.2

2 1 59.8 61.2 60.0 65.0

2 65.0 65.8 64.5 64.5

3 65.0 65.2 65.5 63.5

4 62.5 61.9 60.9 61.5

5 59.8 60.9 56.0 57.2

6 68.8 69.0 62.5 62.0

7 65.2 65.6 61.0 59.3

8 59.6 58.5 62.3 61.5

9 61.0 64.0 73.0 71.7

10 65.0 64.0 62.0 63.0

Source Johnson and Leone (1977). Copyright © 1977 Johnson and Leone. Reprinted with permission

(a) Write down a model for the viscosity determinations allowing for variability in the samples,

aliquots, subaliquots and parts.

(b) Examine the error assumptions on your model.

(c) Estimate the variances of all the random effects in the model.

(d) Give a set of confidence intervals for the variances of all the random effects in the model at overall

significance level 90%. At which step of the preparation is most of the variability introduced?

2. Sleep experiment

Sleeping patterns can be classified according to periods of “deep sleep” and of “REM sleep” (rapid

eye movement). An experiment is done to see how sleeping tablets and amount of daily activity

affect the proportion of REM sleep. Three types of sleeping tablets are to be tested, coded 1, 2, 3

(where type 3 is a placebo).

Twelve subjects are selected at random from a large population and are assigned at random to

the levels of A, four to each level. Each subject is assigned an activity level for the day, and the

proportion of REM sleep is monitored during that night. The four activity levels are:

B1 = read quietly all day, B2 = walk 10 miles during the day,

B3 = spend the day shopping, B4 = play video games all day.

The experiment continues for four days, so that each subject is observed at each activity level in a

random order. The model is assumed to be
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Yhi j t = μ + Sh(i) + αi + β j + (αβ)i j + ǫhi j t ,

where αi is the effect of the i th sleeping tablet, β j is the effect of the j th activity level, (αβ)i j is the

effect of their interaction, Sh(i) is the effect of the hth random subject assigned to the i th sleeping

tablet, and Sh(i) ∼ N (0,σ2
S(A)

) and ǫhi j t ∼ N (0,σ2) and all Sh(i) and ǫhi j t are independent.

(a) Write down the degrees of freedom and expected mean squares for the analysis of variance table.

(b) Explain how to test the null hypothesis H A
0 : {α1 = α2 = α3} against the alternative hypothesis

that at least two of the αi differ.

(c) Explain how to test the null hypothesis H
S(A)
0 : {σ2

S(A)
= 0} against the alternative hypothesis

H
S(A)
A : {σ2

S(A)
> 0}.

(d) Suppose that the null hypothesis

H AB
0 : {(αβ)i j − (αβ)i. − (αβ). j + (αβ).., for all i, j}

appears to be correct. Which contrasts would be of particular interest to the experimenter? Why?

Give formulas that would provide an overall 95% set of confidence intervals for your chosen

contrasts. Give reasons for your choice of formula(s).

(e) If the experimenter thought that a day effect would be important, how would you modify the

design of the experiment and the model?

3. Consider the model

Yi jkl = μ + αi + B j (i) + Ck( j i) + δl + (αδ)il + (Bδ)l j (i) + ǫi jkl ,

(a) Calculate the expected mean squares for all effects in the model.

(b) Which ratio would you use to test H0 : {δl + (αδ).l all equal}?

(c) Which ratio would you use to test H0 : σ2
A = 0?

4. Titanium alloy experiment

An experiment described by Johnson and Leone (1977, p. 758) was performed by a company to

investigate the effects of various factors on the “yield strength” of a particular titanium alloy. The

factors investigated were:

A: vendors (4 fixed levels representing suppliers of raw material).

C : bar size (2 fixed levels representing standard sizes of bars of raw material).

B: batch (3 randomly selected levels nested within each combination of levels of A and C).

D: product type (2 fixed levels representing different types of finished product—forgedown and

finished-forge blades).

Three observations were taken on each treatment combination. A reasonable model was thought to

be

Yi jklt = μ + αi + γ j + (αγ)i j + Bk(i j) + δl

+ (αδ)il + (γδ) jl + (Bδ)kl(i j) + ǫi jklt ,

ǫi jklt ∼ N (0,σ2) , Bk(i j) ∼ N (0,σ2
B(AC)

) , (Bδ)kl(i j) ∼ N (0,σ2
BD(AC)) ,

i = 1, 2, 3, 4; j = 1, 2; k = 1, 2, 3; l = 1, 2; t = 1, 2, 3,
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where αi , γ j , and δl represent the effects of the i th vendor, j th bar size, and lth product type,

respectively, and Bk(i j) represents the effect of the kth randomly selected batch of the j th bar size

made with bar stock from the i th vendor, and random variables on the right-hand side of the model

are assumed to be mutually independent.

(a) Write down the degrees of freedom and expected mean squares column of the analysis of variance

table.

(b) Give a formula for an approximate 95% confidence interval for σ2
B(AC)

.

(c) How would you test the hypothesis

H0 : {no differences in yield strength of the titanium alloy

can be attributed to the four vendors}

against the alternative hypothesis HA : {H0 is false} ?

5. Titanium alloy experiment, continued

Suppose that factors C and D are to be investigated further in a followup experiment. Suppose

that two new factors P and Q (“heat setting during processing” and “cooling method”) are also to

be investigated at two levels each. A followup experiment is required with the four factors C , D,

P , and Q at two levels each (a 24 experiment). Only sixteen observations will be taken, four for

each vendor. It is known that the interactions C P , C Q, P Q, C P Q, and C D P Q are likely to be

negligible. Also, there was information gained from the previous parts to Exercise 4 to suggest that

all interactions of treatment factors with vendor can be assumed negligible.

(a) Divide the 16 treatment combinations into four blocks of size four (one block for each vendor).

Show your design explicitly, and indicate what should be randomized.

(b) Write down a suitable model and the degrees of freedom column for the analysis of variance

table for your design in part (a).

(c) Before your design in part (a) is run, the management announces that in future, only one vendor

will be used by the company. Also, your budget is cut, so that you can take only 8 observations.

Thus, you need to design a 1
2

–fraction of a 24 experiment. In reviewing the list of negligible

interactions above, you discover that two have been omitted. Interactions D P and C DQ are also

known to be negligible. Choose a design and list the treatment combinations explicitly. (Hint:

Try I = C P Q.) State the aliasing scheme and a suitable model. Will there be any problems in

interpreting the results of this experiment?

6. Operator experiment

An experiment to identify the causes of variability in readings of a spectrometer was described in

Exercise 10 of Chap. 7, p. 241. The same authors (Inman et al., Journal of Quality Technology, 1992)

also described a study to determine how much of the variation in measured manganese concentration

in steel was due to operator variation.

Ten steel samples were sliced from a steel billet. Each operator was asked to measure the manganese

content of each sample twice. The measurements taken by any one operator were done in a random

order on a single day. There were four operators, who were regarded as representative of a large

population of potential operators.

(a) Write down a model for this experiment. Indicate clearly which effects are fixed, random, crossed,

and nested.

http://dx.doi.org/10.1007/978-3-319-52250-0_7
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Table 18.11 Manganese concentrations (percentages) for the operator experiment

Sample Operator

1 2 3 4

1 0.63 0.60 0.62 0.62 0.60 0.60 0.59 0.61

2 0.64 0.63 0.63 0.64 0.67 0.65 0.62 0.64

3 0.60 0.58 0.60 0.61 0.60 0.60 0.58 0.60

4 0.75 0.74 0.74 0.74 0.74 0.73 0.73 0.76

5 0.71 0.68 0.69 0.70 0.69 0.67 0.68 0.71

6 0.65 0.63 0.62 0.65 0.63 0.64 0.62 0.64

7 0.67 0.64 0.66 0.67 0.65 0.65 0.64 0.66

8 0.65 0.63 0.65 0.64 0.62 0.62 0.60 0.62

9 0.68 0.66 0.67 0.68 0.67 0.67 0.65 0.68

10 0.67 0.64 0.66 0.66 0.65 0.64 0.64 0.66

Source Inman, Ledolter, Lenth, and Niemi (1992). Reprinted with Permission from Journal of Quality Technology ©

1992 ASQ, www.asq.org

(b) Write down the degrees of freedom, the sums of squares, and the expected mean squares for each

of the sources of variation in your model.

(c) The authors analyzed this experiment using a gamma distribution to model the distribution of

the error terms. Using the data in Table 18.11, investigate whether or not the normal distribution

could be used (it may be necessary to take a transformation).

(d) If the normal distribution can be used as a reasonable approximation to the error distribution,

then analyze the experiment. In particular, obtain estimates of the variances of the random effects

and identify the major sources of variation.

7. For the two-way nested fixed-effects model (18.2.1) on p. 672, show that the least squares estimator

of μ + αi + β j (i) is given by Y i j..

[Hint: Differentiate the sum of squared errors with respect to μ, αi (i = 1, . . . , a), and β j (i) ( j =

1, . . . , b; i = 1, . . . , a), in turn. Set the resulting three sets of normal equations equal to zero. Show

that the third set of equations adds to the first equation, and that the i th portion of the third set of

equations adds to the i th equation in the second set. Thus, the first and second sets of equations are

redundant, and a + 1 extra equations must be added to the set.]

8. Red blood cell experiment

The trout experiment reported by Gutsell (Biometrics, 1951) was described in Exercise 15 of Chap. 3.

As part of the same experiment, the red blood cell counts in the blood of brown trout were measured.

Fish were put at random into eight troughs of water. Two troughs were assigned to each of the four

levels of the treatment factor “sulfamerazine” (0, 5, 10, 15 grams per 100 pounds of fish added to

the diet per day). After 42 days, five fish were selected at random from each trough and the red

blood cell count from the blood of each fish was measured in two different counting chambers,

giving two measurements per fish. The observations reported in Table 18.12, when multiplied by

5000, give the number of red blood cells per cubic millimeter of blood.

A possible model for these data is

Yi jkt = μ + αi + B j (i) + Ck(i j) + ǫi jkt ,

ǫi jkt ∼ N (0,σ2) , B j (i) ∼ N (0,σ2
B(A)) , Ck(i j) ∼ N (0,σ2

C(AB)) ,

i = 1, 2, 3, 4; j = 1, 2; k = 1, . . . , 5; t = 1, 2;

www.asq.org
http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 18.12 Red blood cell counts from brown trout for the red blood cell experiment

Fish 0 gm sulf. 5 gm sulf.

Trough 1 Trough 2 Trough 1 Trough 2

1 213 230 166 157 296 319 310 309

2 253 231 206 185 278 258 241 270

3 195 164 245 250 345 307 272 311

4 193 203 213 181 322 372 254 237

5 191 195 198 169 248 274 266 275

Fish 10 gm sulf. 15 gm sulf.

Trough 1 Trough 2 Trough 1 Trough 2

1 339 322 196 232 278 212 287 280

2 282 285 205 186 275 311 221 243

3 236 262 252 274 186 158 331 309

4 252 209 245 216 301 281 231 244

5 263 296 249 260 223 246 292 295

Source Gutsell (1951). Copyright © 1951 International Biometric Society. Reprinted with permission

where αi is the effect of the i th level of sulfamerazine in the diet, B j (i) is the effect of the j th

randomly selected trough assigned to the i th level of sulfamerazine, and Ck is the effect of the kth

randomly selected fish from the (i j)th trough, and random variables on the right hand-side of the

model are assumed to be mutually independent.

(a) What are the experimental units and observational units in this experiment?

(b) Since the data are counts, examine the assumptions of normally distributed errors and equal error

variances by treatment. If the assumptions are not approximately satisfied, is there a transforma-

tion that can be used to correct the problem?

(c) Write out the degrees of freedom and the expected mean squares for each term in the model.

(d) Test the hypothesis that sulfamerazine has no effect on the red blood cell counts. Examine the

linear and quadratic trends.

(e) If the test in part (d) is rejected, calculate simultaneous 95% confidence intervals for pairwise

comparisons in the effects of the sulfamerazine levels.
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19.1 Introduction

Split-plot designs are needed when the levels of some treatment factors are more difficult to change

during the experiment than those of others. The designs have a nested blocking structure. In a block

design, the experimental units are nested within the blocks, and a separate random assignment of units

to treatments is made within each block. In a split-plot design, the experimental units are called split

plots, and are nested within whole plots, which themselves may or may not be nested within blocks.

The split plots within each whole plot are assigned at random to the levels of one or more of the

treatment factors. The levels of other treatment factors are assigned to whole plots and remain constant

for all split plots within a whole plot. Typically, these will be the factors whose levels are difficult to

change, and the effects of their levels will be less precisely compared than those assigned to the split

plots.

In Sect. 19.2 we show an example of an experiment designed as a split-plot design, together with

a typical model for this type of design. The analysis of split-plot designs is discussed in Sect. 19.3

and illustrated via a second experiment. Designs with an extra level of nesting (split-split-plot

designs) are briefly described in Sect. 19.4, and the issue of confounding treatment contrasts is intro-

duced in Sect. 19.5. Section 19.6 introduces an experiment using a split-plot design without blocking.

Section 19.7 introduces an experiment planned as a split-plot design with blocking, but that can also be

viewed as a split-split-plot design. The use of SAS and R for analysis of split-plot designs is illustrated

in Sects. 19.8 and 19.9, respectively.

19.2 Designs and Models

When a factorial experiment is run as a completely randomized design or a randomized complete block

design, the levels of all the factors generally have to be changed frequently during the course of the

experiment. For example, in Block I of the design in Table 13.13, p. 452, we see that as the experiment

progressed on day 1, the level of the first factor had to be changed from 1 to 0 to 1 to 0 to 1, and the

level of the second factor had to be changed from 0 to 1 to 0 to 1 to 0. The levels of the third and

fourth factors also had to be changed four times. In most experiments this is no particular problem, but

sometimes the level of one of the factors is not particularly easy to change.

An experiment is described by Munro in his 1986 University of Southampton dissertation on the

effect of lighting conditions (factor A) and the speed of a rotating drum (factor B) on a subject’s ability

© Springer International Publishing AG 2017
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Table 19.1 Part of a split-plot design for the rotating drum experiment

Whole plot 1 Whole plot 2

(Session 1) (Session 2)

Block (Subject) Level of A (Lighting) Levels of B (Speed) Level of A (Lighting) Levels of B (Speed)

I 0 0 3 1 2 1 1 0 2 3

II 0 1 0 2 3 1 2 1 3 0

III 1 2 1 3 0 0 3 2 0 1

: : : : : : : : : : :

s 0 0 1 3 2 1 2 3 1 0

to focus on the center of the drum. In this experiment, it was easy to change the speed of rotation by the

turn of a dial. The lighting conditions, however, took time to set up, and Munro wished to change these

as seldom as possible. He therefore asked each subject to view all the rotation speeds (in a randomized

order) under one set of lighting conditions during one session and return for a second session with

different lighting conditions at a later date. Part of a possible design is shown in Table 19.1.

A whole plot is defined by a session for a particular subject. A split plot is defined by a time slot

nested in a particular session for a particular subject. The two whole plots (sessions) within each block

are assigned at random to the levels of one factor (A), and the four split plots (time slots) within each

whole plot are assigned at random to the levels of the other factor (B).

If we look at the design in Table 19.1 and ignore factor B, we see that the levels of A are assigned

according to a randomized complete block design, where the s subjects play the role of blocks, the 2

whole plots per block play the role of experimental units, and the 2 levels of A are assigned at random

to the 2 whole plots within each block. Assuming no block ×A interaction, the difference in the two

levels of A could be analyzed like any randomized complete block design, using the whole-plot totals

as the observations.

If we now look at the levels of B, they have also been assigned according to a randomized complete

block design, but this time, the whole plots play the role of the blocks, and the four split plots nested

within each whole plot are assigned to the four levels of B.

The analysis of the split-plot design is divided into two parts, reflecting this nested blocking system,

each part with its own error. Analysis of the main effect of A involves comparisons of responses from

split plots in different whole plots, whereas analysis of the main effect of B and the AB interaction

involve comparisons of responses from split plots within the same whole plots.

In general, split plots within a whole plot will be more similar than split plots in different whole plots.

Consequently, within-whole-plot comparisons will generally be more precise than between-whole-plot

comparisons. So, in the rotating drum experiment, the main effect of B and the AB interaction will

very likely be more precisely estimated than the main effect of A.

Ignoring the effects of the treatment factors for the moment, the response could be modeled as

Yhpq = μ + θh + ǫW
p(h) + ǫS

q(hp) ,

whereθh is the effect of the hth block, ǫW
p(h)

is the effect of the pth whole plot nested within the hth

block, and ǫS
q(hp)

is the effect of the qth split plot nested within the pth whole plot in the hth block.

We model the whole-plot and split-plot effects, and possibly the block effects, as random effects that

are independent and normally distributed with mean 0 and variances σ2
W , σ2

S , and σ2
θ , respectively.

Now, suppose that the levels of factor A are assigned to the whole plots, and in the hth block, the

pth whole plot receives the uth assignment of the i th level of A (i = 1, . . . , a; u = 1, . . . , ℓ). Also,
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suppose that the levels of factor B are assigned to the split plots, and in the (hp)th whole plot, the qth

split plot receives the t th assignment of the j th level of B ( j = 1, . . . , b; t = 1, . . . , m). Then the

model includes the effects of A, B and AB, and p is replaced by iu and q is replaced by j t , as follows:

Yhiu j t = μ + θh + αi + ǫW
iu(h)

+ β j + (αβ)i j + ǫS
jt (hiu)

,
(19.2.1)

ǫW
iu(h)

∼ N (0,σ2
W ) , ǫS

jt (hiu)
∼ N (0,σ2

S) ,

ǫW
iu(h)

’s and ǫS
jt (hiu)

’s are all mutually independent,

h = 1, . . . , s; i = 1, . . . , a; u = 1, . . . , ℓ; j = 1, . . . , b; t = 1, . . . , m ,

where θh is the effect of the hth block, αi is the effect of the i th level of factor A measured on the whole

plots, the random variables ǫW
iu(h)

represent the random effects of the whole plots, β j is the effect of

the j th level of B measured on the split plots, (αβ)i j is the interaction effect of A at level i and B at

level j , and the random variables ǫS
jt (hiu)

represent the random effects of the split plots.

The model (19.2.1) has been written on two lines to emphasize the two different parts of the design.

In the design of Table 19.1, each level of A appears exactly once per block and each level of B appears

exactly once per whole plot, so we may drop the subscripts u and t , and the model for this design

becomes

Yhi j = μ + θh + αi + ǫW
i(h)

+ β j + (αβ)i j + ǫS
j (hi) ,

(19.2.2)

ǫW
i(h)

∼ N (0,σ2
W ) , ǫS

j (hi) ∼ N (0,σ2
S) ,

ǫW
i(h)

’s and ǫS
j (hi)’s are all mutually independent,

h = 1, . . . , s; i = 1, . . . , a; j = 1, . . . , b.

In some experiments the whole plot is the largest unit, which is equivalent to there being only one

block (s = 1). In this case, model (19.2.1) becomes simpler, since the block effect θh and all subscripts

h are omitted:

Yiu j t = μ + αi + ǫW
iu

+ β j + (αβ)i j + ǫS
jt (iu)

,
(19.2.3)

ǫW
iu ∼ N (0,σ2

W ) , ǫS
jt (iu)

∼ N (0,σ2
S) ,

ǫW
iu ’s and ǫS

jt (iu)
’s are all mutually independent,

i = 1, . . . , a; u = 1, . . . , ℓ; j = 1, . . . , b; t = 1, . . . , m.

For unequal sample sizes, the ranges of the subscripts would be modified in models (19.2.1)

and (19.2.3).

19.3 Analysis of a Split-Plot Design with Complete Blocks

In this section we consider only the case of equal sample sizes and randomized complete block designs

for each of the treatment factors. There are then s blocks, each of which is divided into a whole plots,

and each of these is subdivided into b split plots, giving a total of sab observations. Model (19.2.2) is

used, and the degrees of freedom and sums of squares are calculated according to the rules in Chap. 18,

http://dx.doi.org/10.1007/978-3-319-52250-0_18
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Table 19.2 Outline analysis of variance table for the rotating drum split-plot design

Source of variation Degrees of freedom Sum of squares Mean square Ratio

Block (Subjects) s − 1 ssθ – –

A (Lighting) a − 1 ssA msA msA/msEW

Whole-plot error (s − 1)(a − 1) ssEW msEW

Whole-plot total sa − 1 ssW – –

B (Speed) b − 1 ssB msB msB/msES

AB (a − 1)(b − 1) ss(AB) ms(AB) ms(AB)/msES

Split-plot error a(b − 1)(s − 1) ssES msES

Total abs − 1 sstot

Computational formulae

ssθ = ab�h y2
h.. − saby2

... ssW = b�h�i y2
hi. − saby2

...

ssA = sb�i y2
.i. − saby2

... ssB = sa� j y2
.. j − saby2

...

ssEW = ssW − ssθ − ssA ss(AB) = s�i � j y2
.i j − sb�i y2

.i.

sstot = �h�i � j y2
hi j − saby2

.... − sa� j y2
.. j + saby2

...

ssES = sstot − ssW − ssB − ss(AB)

as shown in the following two subsections. The analysis of variance is outlined in Table 19.2 and,

for this setting, is appropriate whether the blocks are fixed or random. The analysis of a split plot

design with incomplete blocks is illustrated in Sects. 19.8.4 and 19.9.4, using the SAS and R software,

respectively.

19.3.1 Split-Plot Analysis

Consider first the split-plot analysis, which is that part of the analysis (shown in the bottom half of

the analysis of variance Table 19.2) that is based on the observations arising from the split plots within

whole plots. There are sab − 1 total degrees of freedom, and the total sum of squares is

sstot =
∑

h

∑

i

∑

j

y2
hi j − saby2

... . (19.3.4)

The b levels of factor B are assigned to the split plots within each whole plot according to a randomized

complete block design. The sa whole plots are playing the role of sa blocks, so there are sa −1 whole-

plot degrees of freedom, and the whole-plot-total sum of squares is

ssW = b
∑

h

∑

i

y2
hi. − saby2

... . (19.3.5)

Due to the fact that all levels of B are observed in every whole plot as in a randomized complete block

design, the sum of squares for B needs no adjustment for whole plots, and is given by

ssB = sa
∑

j

y2
.. j − saby2

... (19.3.6)

corresponding to b − 1 degrees of freedom. The interaction between the factors A and B is also

calculated as part of the split-plot analysis. Again, due to the complete block structure of both the
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whole-plot design and the split-plot design, the interaction sum of squares needs no adjustment for

blocks. The number of interaction degrees of freedom is (a − 1)(b − 1) = ab − a − b + 1, and the

sum of squares is

ss(AB) = s
∑

i

∑

j

y2
.i j − sb

∑

i

y2
.i. − sa

∑

j

y2
.. j + saby2

... . (19.3.7)

Since there are b split plots nested within the sa whole plots, there are, in total, sa(b − 1) split-plot

degrees of freedom. Of these, b − 1 are used to measure the main effect of B, and (a − 1)(b − 1) are

used to measure the AB interaction, leaving

sa(b − 1) − (b − 1) − (a − 1)(b − 1) = a(s − 1)(b − 1)

degrees of freedom for error. Equivalently, this can be obtained by subtraction of the whole-plot, B,

and AB degrees of freedom from the total

(sab − 1) − (sa − 1) − (b − 1) − (a − 1)(b − 1) = a(s − 1)(b − 1) .

The split-plot error sum of squares can also be calculated by subtraction:

ssES = sstot − ssW − ssB − ss(AB) . (19.3.8)

The split-plot error mean square msES = ssES/[a(s −1)(b−1)] is used as the error estimate in testing

hypotheses and calculating confidence intervals for contrasts in B and AB. Notice that we cannot

compare the levels of factor A on the split plots, since within each whole plot the level of A is held

constant. The A contrasts are, in fact, confounded with whole plots.

The sums of squares (19.3.4)–(19.3.8) and their associated degrees of freedom are summarized in

the bottom half of the analysis of variance table shown in Table 19.2.

19.3.2 Whole-Plot Analysis

We now move on to the whole-plot analysis, which is the part of the analysis based on comparisons

of whole-plot totals. The levels of A are assigned to the whole plots within blocks according to a

randomized complete block design, and so the sum of squares for A needs no block adjustment. There

are a − 1 degrees of freedom for A, so the sum of squares is given by

ssA = sb
∑

i

y2
.i. − saby2

... . (19.3.9)

There are s − 1 degrees of freedom for blocks, giving a block sum of squares of

ssθ = ab
∑

h

y2
h.. − saby2

... . (19.3.10)

There are a whole plots nested within each of the s blocks, so there are, in total, s(a − 1) whole-plot

degrees of freedom. Of these, a −1 are used to measure the effects of A leaving (s −1)(a −1) degrees

of freedom for whole-plot error. Equivalently, this can be obtained by the subtraction of the block and

A degrees of freedom from the whole-plot total degrees of freedom
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(sa − 1) − (s − 1) − (a − 1) = (s − 1)(a − 1) .

Similarly, the whole-plot error sum of squares, which is used in testing hypotheses and calculating

confidence intervals for contrasts in factor A, is obtained by subtraction:

ssEW = ssW − ssθ − ssA . (19.3.11)

The sums of squares (19.3.9)–(19.3.11) and their corresponding degrees of freedom are summarized

in the top half of Table 19.2 (p. 706).

If the whole plot is the largest unit—namely, if there is no blocking of the whole plots—then the

sum of squares for blocks in Table 19.2 effectively gets pooled into the whole-plot error sum of squares.

Then the latter, still used in testing hypotheses and calculating confidence intervals for contrasts in

factor A, is given by

ssEW = ssW − ssA , (19.3.12)

with (sa − 1) − (a − 1) = a(s − 1) degrees of freedom.

19.3.3 Contrasts Within and Between Whole Plots

The formulae for the least squares estimates of the main effect and interaction treatment contrasts are

similar to those given by rule 10 of Sect. 7.3 for fixed effects, since no block adjustments are needed.

Thus

∑

i

ci α̂
∗
i =

∑

i

ci y.i. , (19.3.13)

∑

j

d j β̂
∗
j =

∑

j

d j y.. j ,

∑

i

∑

j

ki j (̂αβ)i j =
∑

i

∑

j

ki j y.i j ,

where
∑

i ci = 0,
∑

j d j = 0, and
∑

i ki j =
∑

j ki j = 0.

Consider the consequences of confounding factor A with whole plots. Using model (19.2.2), the

corresponding main-effect-of-A contrast estimator can be expressed as

∑

i

ci α̂
∗
i =

∑

i

ci Y .i. =
∑

i

ci (α
∗
i + ǫW

i(.) + ǫS
.(.i)).

Consequently, this estimator has mean
∑

i ciα
∗
i and variance

∑
i (c

2
i /sb)(bσ2

W +σ2
S), where (bσ2

W +σ2
S)

replaces σ2 in rule 11 of Sect. 7.3 for fixed effects models. So, although main effects of A are confounded

with whole plots, because the whole plot effects are random with mean zero, main effects of A are

estimable but with larger variance reflecting whole plot variability in addition to split plot variability.

For the estimates in Eq. (19.3.13), the corresponding estimated variances reflect whether the con-

trasts are measured in terms of whole-plot differences (as for contrasts in the levels of A) or split-plot

(within whole-plot) differences (as for contrasts in B or AB). The former use the whole-plot error

mean square, and the latter use the split-plot error mean square as follows.

http://dx.doi.org/10.1007/978-3-319-52250-0_7
http://dx.doi.org/10.1007/978-3-319-52250-0_7
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For main effect and interaction contrasts, the methods of multiple comparison of Bonferroni, Scheffé,

Tukey, and Dunnett can be used as usual (incorporating either the whole-plot or split-plot error mean

square as above). Inferences for other contrasts in the treatment effects τi j = αi + β j + (αβ)i j , such

as all pairwise comparisons, are more complicated and are discussed later in this chapter.

19.3.4 A Real Experiment—Oats Experiment

An experiment on the yield of three varieties of oats (factor A) and four different levels of manure

(factor B) was described by F. Yates in his 1935 paper Complex Experiments. The experimental area

was divided into s = 6 blocks. Each of these was then subdivided into a = 3 whole plots. The varieties

of oat were sown on the whole plots according to a randomized complete block design (so that every

variety appeared in every block exactly once). Each whole plot was then divided into b = 4 split

plots, and the levels of manure were applied to the split plots according to a randomized complete

block design (so that every level of B appeared in every whole plot exactly once). The design, after

randomization, is shown in Table 19.3, together with the yields in quarter pounds. Model (19.2.2) was

used.

Analysis of Variance—Oats Experiment

Using the formulae (19.3.4)–(19.3.11), we obtain the sums of squares shown in Table 19.4. To test, at

significance level α = 0.01, the hypothesis H AB
0 that the interaction between variety and manure level

is negligible against the alternative hypothesis that the interaction is not negligible, we reject H AB
0 if

ms(AB)

msES

= 53.63

177.08
= 0.30 > F6,45,0.01 .

Since F6,45,0.01 ≈ 3.2, we do not reject H AB
0 , and we conclude that the interaction is negligible.

The hypothesis H B
0 of no difference in yield due to the different levels of manure (averaged over

variety) is also tested using the split-plot error mean square as the denominator. We reject H B
0 in favor

of the alternative hypothesis, that the manure levels do affect yield of oats, if

msB

msES

= 6673.50

177.08
= 37.69 > F3,45,0.01 .

Since F3,45,0.01 ≈ 4.3, we conclude that these four manure levels have different effects on the yield of

the oat varieties tested.

Factor A is measured on the whole plots, so the whole-plot error is used as the denominator of

the test statistic. We reject the hypothesis H A
0 of no difference in the average yields of the different

varieties averaged over the manure levels if
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Table 19.3 Split-plot design and yields (in quarter lb) for the oats experiment

Level Level of B Level Level of B

Block of A (yield) Block of A (yield)

I 2
3 (156) 2 (118)

1 (140) 0 (105)
II 2

2 (109) 3 (99)

0 (63) 1 (70)

0
0 (111) 1 (130)

3 (174) 2 (157)
1

0 (80) 2 (94)

3 (126) 1 (82)

1
0 (117) 1 (114)

2 (161) 3 (141)
0

1 (90) 2 (100)

3 (116) 0 (62)

III 2
2 (104) 0 (70)

1 (89) 3 (117)
IV 1

3 (96) 0 (60)

2 (89) 1 (102)

0
3 (122) 0 (74)

1 (89) 2 (81)
0

2 (112) 3 (86)

0 (68) 1 (64)

1
1 (103) 0 (64)

2 (132) 3 (133)
2

2 (132) 3 (124)

1 (129) 0 (89)

V 1
1 (108) 2 (126)

3 (149) 0 (70)
VI 0

2 (118) 0 (53)

3 (113) 1 (74)

2
3 (144) 1 (124)

2 (121) 0 (96)
1

3 (104) 2 (86)

0 ( 89) 1 (82)

0
0 (61) 3 (100)

1 (91) 2 (97)
2

0 (97) 1 (99)

2 (119) 3 (121)

Source Yates (1935). Copyright c© 1935 Blackwell Publishers. Reprinted with permission

msA

msEW

= 893.18

601.33
= 1.49 > F2,10,0.01 .

Since F2,10,0.01 = 7.56, there is no evidence to conclude a difference in average yields of the three

varieties of oats.

The same conclusions could be reached from the p-values in Table 19.4.

Multiple Comparisons—Oats Experiment

Suppose that level 0 of A was the currently used variety and that level 0 of B was the usual level of

manure, and suppose that two-sided treatment-versus-control intervals had been required for both A

and B at an overall level of 98% (that is, 99% for each set of Dunnett intervals).

Since both the split-plot and whole-plot designs are randomized complete block designs, the least

squares estimates of the treatment contrasts are given by the formula in (19.3.13), so

α̂∗
0 − α̂∗

1 = y.0. − y.1. = −6.875 ,

α̂∗
0 − α̂∗

2 = y.0. − y.2. = −12.167 ,

β̂∗
0 − β̂∗

1 = y..0 − y..1 = −19.500 ,

β̂∗
0 − β̂∗

2 = y..0 − y..2 = −34.833 ,

β̂∗
0 − β̂∗

3 = y..0 − y..3 = −44.000 ,
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Table 19.4 Analysis of variance for the oats split-plot experiment

Source of variation Degrees of freedom Sum of square Mean square Ratio p-value

Blocks 5 15875.28 3175.06 –

A (variety) 2 1786.36 893.18 1.49 0.2724

Whole-plot error 10 6013.31 601.33

Whole-plot total 17 23674.94 1392.64

B (manure) 3 20020.50 6673.50 37.69 0.0001

AB 6 321.75 53.63 0.30 0.9322

Split-plot error 45 7968.75 177.08

Total 71 51985.94

where y.i. is an average over the b = 4 split plots within the s = 6 whole plots (one per block) on

which level i of A is measured. Similarly, y.. j is an average over the sa = 18 split plots (one per

whole plot) on which level j of B is measured. The confidence intervals are obtained from (19.3.13)

and (19.3.14) as follows:

α0 − α1 ∈
(

(y.0. − y.1.) ± t
(0.5)
2,10,0.01

√
2

24
msEW

)

=
(

−6.875 ± 3.53

√
2

24
(601.33)

)

= (−6.875 ± 24.99) = (−31.87, 18.12) ,

α0 − α2 = (−37.16, 18.12) ,

β0 − β1 ∈
(

(y..0 − y..1) ± t
(0.5)
3,45,0.01

√
2

18
msES

)

=
(

−19.5 ± 3.09

√
2

18
(177.03)

)

= (−19.5 ± 13.70) = (−33.20,−5.79) ,

β0 − β2 ∈ (−48.54,−21.13) ,

β0 − β3 ∈ (−57.70,−30.30) .

It is clear that the treatment-versus-control comparisons for the factor B manure levels are made more

precisely (msd = 13.70) than those for the factor A oat varieties (msd = 24.99). This is primarily

due to the much smaller error variance estimate, msES < msEW , which reflects the fact that split

plots within a whole plot are generally more similar than split plots in different whole plots. There are

also more degrees of freedom associated with the split-plot error than with the whole-plot error, which

also helps to reduce the minimum significant difference. Comparisons for factor B are more precise,

despite the fact that the means y.i. for factor A involve more observations.

19.4 Split-Split-Plot Designs

In the split-plot designs illustrated in Sect. 19.2, the factor A contrasts were confounded with the whole-

plot contrasts, so that the main effect of A was assessed against the whole-plot variability, while the

main effect of B and the AB interaction were assessed against the split-plot variability. It is possible
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Table 19.5 Part of a split-split-plot design for the rotating drum experiment

Split-plot 1 Split-plot 2

First half session Second half session

Block

(Subject)

Whole-plot

(Session)

Level of A

(Light)

Level of C

(Direction)

Levels of B

(Speed)

Level of C

(Direction)

Levels of B

(Speed)

I 1 0 1 0 3 1 2 0 2 1 3 0

2 1 0 1 0 2 3 1 3 2 0 1

II 1 1 1 1 0 2 3 0 0 3 1 2

2 0 0 2 1 3 0 1 3 2 0 1

: : : : : : : : : : : : :

Table 19.6 Analysis of variance for a split-split-plot design

Source of variation Degrees of freedom Mean square Ratio

Blocks (subjects) s − 1 msθ

A (lighting) a − 1 msA msA/msEW

Whole-plot error (s − 1)(a − 1) msEW

Whole-plot total sa − 1 msW

C (direction) c − 1 msC msC/msES

AC (a − 1)(c − 1) ms(AC) ms(AC)/msES

Split-plot error a(s − 1)(c − 1) msES

Split-plot total sac − 1 msES

B b − 1 msB msB/msESS

AB (a − 1)(b − 1) ms(AB) ms(AB)/msESS

CB (c − 1)(b − 1) ms(CB) ms(CB)/msESS

ACB (a − 1)(c − 1)(b − 1) ms(ACB) ms(ACB)/msESS

Split-split-plot error ac(s − 1)(b − 1) msESS

Total sacb − 1 mstot

to extend this idea, and to divide the split plots into split split plots on which are assigned the levels of

a third factor.

For example, in the drum rotation experiment described in Sect. 19.2, the experimenter used a third

factor C , the direction of rotation of the drum. A possible design for the experiment would be to ask

each subject to be present at two sessions (whole plots) with a different lighting condition (A) at each

session. In the first half of a session (split plot), set the direction of rotation (C), and run through each

speed (B) in a random order (split split plots), changing the direction of rotation in the second half of

the session. The design would then appear as in Table 19.5.

The model and analysis of variance table would have three parts, one for the whole plots nested

within blocks together with the factor A effect, one for the split plots nested within whole plots together

with the factor C effect and the AC interaction, and one for the split split plots nested within split plots

together with the factor B effect and the other interactions, as shown in model (19.4.15):

Yhi jk = μ + θh + αi + ǫW
i(h) (19.4.15)

+ γ j + (αγ)i j + ǫS
j (hi)

+ βk + (αβ)ik + (γβ) jk + (αγβ)i jk + ǫSS
k(hi j) .

The analysis of variance table, shown in Table 19.6, has three sections, reflecting the three parts of the

model, and is illustrated through a real experiment in Sect. 19.7.3.
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19.5 Split-Plot Confounding

If there are a number of different factors involved in a split-plot design, the size of the whole plots

may not be large enough to allow a randomized complete block design to be used for the split-plot

factors. We can obtain smaller blocks by confounding one or more interaction contrasts as we did for

the single-replicate designs in Chap. 13. For example, suppose a two-replicate 24 experiment is to be

conducted for treatment factors A, B, C , and D, and for practical reasons, the observations are to be

divided into eight whole plots of size four. Suppose that the levels of A are sufficiently difficult to

change that it is decided to change the level only after each whole plot of four observations is taken.

The A contrasts are confounded with the whole plots, since each whole plot is assigned only one level

of A.

Now, only four of the eight combinations of factors B, C , and D can be taken in any one whole plot.

Thus, ignoring factor A, a design with b = 8 whole plots of size k = 4 and v = 8 treatment labels is

required. An incomplete block design, such as a cyclic design, would be a possible choice. However,

since a split-plot design is a complex design to analyze, it is better to select a repeated single-replicate

design, so that we know exactly what is confounded with the whole plots. If we choose to confound

BCD with the whole plots, as well as A, then ABCD will also be confounded. The single-replicate

design that confounds A, BCD, and ABCD is obtained from the equations

a1 = 0 or 1 mod 2 ,

a2 + a3 + a4 = 0 or 1 mod 2 .

If we repeat this single-replicate design twice, we obtain the split-plot plan shown in Table 19.7. Before

this plan can be used, the eight whole plots would need to be randomly ordered, and the four split plots

within each whole plot would need to be randomly ordered. An outline analysis of variance table is

shown in Table 19.8.

19.6 A Real Experiment—UAV Experiment

Sriram Mahadevan (2009) conducted three experiments at Wright State University to evaluate the

performance of a semi-automated computer display system designed to support a human operator’s

ability to monitor and control the complex dynamic operation of multiple unmanned aerial vehicles

(UAVs) when the UAVs are involved in multiple combat-related tasks. One of his experiments was

conducted to examine the effects of different visual tools on the task performance efficiency and

situation awareness of a single operator at a computer display to monitor and control dual-task scenarios

involving UAVs.

The experiment involved 16 subjects (factor W ) and a = 2 cue conditions (factor A), with eight

of the 16 participants utilizing a baseline user interface with basic visual tools (A = 1), and with

Table 19.7 A split-plot confounded 24 experiment in 8 whole plots of size 4

Whole plot A Levels of B, C, D on the split plots Whole plot A Levels of B, C, D on the split plots

I 0 000 011 101 110 II 1 001 010 100 111

III 0 001 010 100 111 IV 1 000 011 101 110

V 0 000 011 101 110 VI 1 001 010 100 111

VII 0 001 010 100 111 VIII 1 000 011 101 110

http://dx.doi.org/10.1007/978-3-319-52250-0_13
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Table 19.8 Outline analysis of variance table for a split-plot confounded 24 experiment in 8 whole plots of size 4

Source of variation Degrees of freedom Mean square Ratio

A 1 msA msA/msEW

BCD 1 ms(BCD) ms(BCD)/msEW

ABCD 1 ms(ABCD) ms(ABCD)/msEW

Whole-plot error 4 msEW

Whole-plot total 7 msW

B 1 msB msB/msES

C 1 msC msC/msES

D 1 msD msD/msES

BC 1 ms(BC) ms(BC)/msES

BD 1 ms(BD) ms(BD)/msES

CD 1 ms(CD) ms(CD)/msES

AB 1 ms(AB) ms(AB)/msES

AC 1 ms(AC) ms(AC)/msES

AD 1 ms(AD) ms(AD)/msES

ABC 1 ms(ABC) msABC/msES

ABD 1 ms(ABD) ms(ABD)/msES

ACD 1 ms(ACD) ms(ACD)/msES

Split-plot error 12 msES

Total 31

the other eight participants utilizing an advanced user interface involving more advanced visual tools

(A = 2). Each subject ran through eight trials—one at each combination of task similarity (factor

B, with b = 2 levels) and task complexity (factor C , with c = 4 levels). Task similarity depended

on whether the primary and secondary tasks (which were done concurrently) were similar (coded 1),

each task being a suppression-of-enemy-air-defenses (SEAD) mission, or dissimilar (coded 2), the

primary and secondary tasks being SEAD and reconnaissance missions, respectively. Task complexity

corresponds to the number of UAVs in the scenario, the levels being: simple-simple if both the primary

and secondary tasks each involves two UAVs; simple-complex if the primary and secondary tasks

involve two and four UAVs, respectively; complex-simple if the primary and secondary tasks involve

four and two UAVs, respectively; and complex-complex if both the primary and secondary tasks each

involves four UAVs. These levels were coded 1, 2, 3, 4, respectively.

This may be viewed as a split-plot design, with subjects serving as the whole plots, and with the

eight trials per subject serving as the split plots. Main effects of cue are comparisons between subjects

(i.e. between whole plots), since subjects are nested within cue levels, whereas main effects of B and

C and all interactions are comparisons within whole plots.

One of the response variables measured was the time taken to perform situation awareness perception

tasks in the primary task, yielding the data shown in Table 19.9. The model, including all treatment

effects, is as follows.
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Table 19.9 Split-plot design and times (in seconds) for the UAV experiment: situation awareness perception in the

primary task

B (Similarity) 1 2

C (Complexity) 1 2 3 4 1 2 3 4

A (Cue) W (Subject)

1 1 29 28 49 46 36 35 42 48

2 26 26 53 42 35 40 46 44

3 33 25 45 56 34 36 40 40

4 27 28 44 47 36 32 50 54

5 31 26 47 48 33 36 44 60

6 28 27 51 41 31 34 38 43

7 34 28 57 44 34 32 49 35

8 25 35 50 54 35 50 45 48

2 1 15 13 16 18 21 18 20 21

2 12 11 19 22 18 19 25 22

3 14 13 21 19 25 23 21 23

4 18 16 17 20 24 27 25 24

5 15 15 18 21 19 20 21 21

6 13 16 19 17 21 22 23 25

7 17 18 20 16 22 23 27 24

8 14 14 16 19 20 21 22 22

Source Mahadevan (2009). Copyright c© 2009 Sriram Mahadevan. Reprinted with permission

Yiu jk = μ + αi + ǫW
iu

+ β j + γk + (αβ)i j + (αγ)ik + (βγ) jk + (αβγ)i jk + ǫS
jk(iu)

,
(19.6.16)

ǫW
iu ∼ N (0,σ2

W ) , ǫS
jk(iu)

∼ N (0,σ2
S) ,

ǫW
iu ’s and ǫS

jk(iu)
’s are all mutually independent,

i = 1, 2; u = 1, . . . , 8; j = 1, 2; k = 1, 2, 3, 4 ,

This is analogous to model (19.2.1), except: (i) this model excludes block effects (s = 1); (ii) it

includes the factorial effects γk , (αγ)ik , (βγ) jk , and (αβγ)i jk associated with factor C , all estimated

as split-plot differences; and (iii) there is no replication of treatments within whole plots (m = 1).

19.6.1 Analysis of Variance

The analysis of variance table for the UAV experiment, given in Table 19.10, is similar to the one

in Table 19.4 for the oats experiment, except for the following. There are no block effects, so the

whole-plot error is obtained by subtraction as

ssEW = ssW − ssA ,

with the corresponding degrees of freedom adjusted accordingly. Also, more treatment effects are

involved in the split-plot analysis so the error sum of squares, obtained by subtraction of other effect

sums of squares from the total sum of squares, is
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Table 19.10 Analysis of variance for UAV experiment

Source of variation Degrees of freedom Sum of square Mean square Ratio p-value

A (cue) 1 12880.13 12880.13 693.30 0.0001

Whole-plot error 14 260.09 18.58

Whole-plot total 15 13140.22 876.01

B (similarity) 1 457.53 457.53 34.57 0.0001

C (complexity) 3 2470.03 823.34 62.22 0.0001

AB 1 98.00 98.00 7.41 0.0077

AC 3 1177.94 392.65 29.67 0.0001

BC 3 351.28 117.09 8.85 0.0001

ABC 3 153.31 51.10 3.86 0.0117

Split-plot error 98 1296.91 13.23

Total 127 19145.22

ssES = sstot − ssW − ssB − ssC − ss(AB) − ss(AC) − ss(BC) − ss(ABC) .

Factor A is tested relative to whole-plot error, while the other treatment effects are tested relative to

the split-plot error. As one can see from the p-values in Table 19.10, all treatment main and interaction

effects are significant at the individual α = .01 levels, except for the ABC interaction which has a

p-value slightly larger than .01.

19.6.2 Multiple Comparisons

The experimenter was interested in the main effect of cue, averaged over the other factors; that is,

α∗
1 − α∗

2 = [α1 + (αβ)1. + (αγ)1. + (αβγ)1..] − [α2 + (αβ)2. + (αγ)2. + (αβγ)2..],

comparing the effects of the two cue conditions, averaging over combinations of levels of similarity

and complexity. Paralleling the discussion in Sect. 19.3: the least squares estimate of the main effect

of cue is

α̂∗
1 − α̂∗

2 = y1... − y2... = 39.4531 − 19.3906 = 20.0625 seconds;

also, Var(Y 1... − Y 2...) = Var[(ǫW
1. + ǫS

..(1.)
) − (ǫW

2. + ǫS
..(2.)

)] = 2(σ2
W /8 + σ2

S/64) = σ2
W /4 + σ2

S/32,

and this is estimated by msEW /32. So, with 99% confidence,

α∗
1 − α∗

2 ∈
(
(y.1.. − y.2..) ± t14,0.005

√
msEW /32

)

=
(

20.0625 ± 2.977
√

18.58/32
)

= (20.0625 ± 2.2684) = (17.7941, 22.3309) .

Hence, with 99% confidence, the main effect of cue is between 17.7941 and 22.3309 seconds so, on

average, operators using the enhanced user interface spend between 17.7941 and 22.3309 seconds

less time to perform the requested situation awareness perception tasks in the primary task than do

operators using the baseline user interface.
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Given the significant main effect of cue, coupled with the p-value of 0.0117 for the ABC interaction,

the experimenter decided to also investigate the simple pairwise differences comparing the effect of

cue at each of the eight combinations of the other two factors. For each such combination jk of BC,

the estimator of the simple pairwise difference

[α1 + (αβ)1 j + (αγ)1k + (αβγ)2 jk] − [α2 + (αβ)2 j + (αγ)2k + (αβγ)2 jk] (19.6.17)

is Y 1. jk − Y 2. jk , with variance

Var[(ǫW
1. + ǫS

jk(1.)) − (ǫW
2. + ǫS

jk(2.))] = 2(σ2
W /8 + σ2

S/8) = (σ2
W + σ2

S)/4.

These simple pairwise differences are neither within- nor between-whole-plot comparisons, so a com-

posite variance estimator is needed. Now, E[MSES] = σ2
S . Also, one can show that E[MSEW ] =

8σ2
W +σ2

S , (by rule 17 of Sect. 17.8.1, there being 8 observations on each whole plot). So, the variance

estimate is

(msEW + 7msES)/32 = (18.578 + 7(13.234))/32 ≈ 3.4755,

with estimated standard error 1.8643 obtained as the square root. The degrees of freedom associated

with this variance estimate is computed using Satterthwaite’s approximation as follows:

df = (msEW + 7msES)2

(msEW )2/14 + (7msES)2/98
= 12, 369

24.6533 + 87.5659
≈ 110 .

So for example, an individual 99% confidence interval for (19.6.17) has minimum significant differ-

ence msd = (t110,0.005)(1.8643) = (2.621)(1.8643) ≈ 4.8863. The corresponding simple pairwise

difference estimates are as follows,

jk 11 12 13 14 21 22 23 24

y.1 jk − y.2 jk 14.375 13.375 31.250 28.250 13.000 15.250 21.250 23.750

where levels 1 and 2 of B are similar and dissimilar, respectively, and levels 1–4 of C are simple-

simple, simple-complex, complex-simple, and complex-complex, respectively. Since each of these

simple pairwise difference estimates exceeds the minimum significant difference 4.8863 and is positive,

the enhanced user interface provides significant mean time reductions in performing the requested

situation awareness perception tasks in the primary task for each combination of task similarity and

task complexity. The overall significance level for testing these eight differences would have been at

most 0.08, had these comparisons been preplanned. While they perhaps were not, one can also show

that each of these comparisons is significantly nonzero with a p-value of less than 0.0001 when tested

individually, and so one can feel rather confident that the effects are real.

19.7 A Real Experiment—Mobile Computing Field Study

Mary Mc. Wesler (2001) conducted a field experiment to study the effective use of mobile computing

devices for real-time navigation and situation awareness, with applications in the military domain.

One goal of the experiment was to study the effects of display type and visual presentation format on

navigational performance, taking information garnered from laboratory studies and putting it to the

test in more realistic field studies. Two display types (factor A) were studied: a handheld, headdown

http://dx.doi.org/10.1007/978-3-319-52250-0_17
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display; and a helmet mounted display, facilitating headup usage. Three visual presentation formats

(factor B) were studied: second person egocentric; birds’ eye view egocentric; and birds’ eye view

exocentric. Each experimental run consisted of a subject attempting to navigate, quickly and accurately,

a prescribed route or path through unfamiliar, moderate, lightly wooded terrain in the dark of night.

Response variables of interest included: elapsed time, distance traveled, and root mean square error of

distance off of the prescribed path. The latter two response variables were based on GPS data.

The experiment involved 12 subjects and 24 days, with each subject participating for two days.

There were various constraints on the experiment. For example, on any given day it was feasible to

make three runs with one subject, with subjects and days both considered possible sources of variation.

Involving each subject for two days provided a single replicate of the 2 × 3 combinations of A and

B with each subject, allowing all treatment effects to be within-subject comparisons. However, with

only three runs per day, it was decided to fix display type but vary visual presentation format each day,

so visual presentation format comparisons are within days, but display type comparisons are between

days. Correspondingly, each subject only needed to be trained on one display type each day. In short,

the experimenter used a split-plot design—the 12 subjects constitute blocks, the 24 days constitute

whole plots with two whole plots per block, and the three runs per day constitute split plots.

The experiment also involved paths and run order—additional nuisance sources of variation the

experimenter chose to control in the experiment and adjust for in the analysis. Each subject navigated

each of three paths frontward and backward for six paths in total, each path being roughly square in

shape with north, south, east, and west legs.

Twelve subjects was enough to design the experiment so treatment effects were not confounded

with subject, path, or run order, though display type was confounded with days (i.e. whole plots). The

design construction is discussed in Sect. 19.7.4. The resulting root mean square error (RMSE) data are

in Table 19.11. Prior to analysis of the data, it was discovered that one of the subjects traversed one of

the paths in the reverse direction. This was deemed to adversely affect some response variables, making

the original data inappropriate to use in the evaluation. As such, one of the 72 planned observations is

listed as missing.

The model used by the experimenter for the data analysis is as follows.

Ydhi jqr = μ + θh + αi + (φ2)q2 + (ρ2)r2 + ǫW
d(h)

+ β j + (αβ)i j + (φ3)q3 + (φ2φ3)q2q3

+ (ρ3)r3 + (ρ2ρ3)r2r3 + ǫS
i jq3r3(dhq2r2)

,

(19.7.18)

θh ∼ N (0,σ2
θ ) , ǫW

d(h)
∼ N (0,σ2

W ) , ǫS
i jq3r3(dhq2r2)

∼ N (0,σ2
S) ,

θh ’s, ǫW
d(h)

’s and ǫS
i jq3r3(dhq2r2)

’s are all mutually independent,

d = 1, 2; h = 1, . . . , 12; i = 1, 2; j = 1, 2, 3;

q = 3(q3 − 1) + 2(q2 − 1) + 1, for q2 = 1, 2, q3 = 1, 2, 3;

r = 3(r3 − 1) + 2(r2 − 1) + 1, for r2 = 1, 2, r3 = 1, 2, 3.

In the model, θh denotes subject (i.e. block) effects, αi and β j denote the display type and visual

presentation format effects, respectively, ǫW
d(h)

denotes day (i.e. whole plot) effects, and ǫS
i jq3r3(dhq2r2)

denotes the split-plot effects.
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Table 19.11 Mobile computing field study: root mean square error (RMSE) data for each subject (Subj), day, run order,

and path-treatment combination (PAB), with one observation missing

Subj Day 1 Day 2

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

PAB RMSE PAB RMSE PAB RMSE PAB RMSE PAB RMSE PAB RMSE

1 111 49.321 212 24.386 313 37.680 421 34.291 522 32.053 623 43.121

2 213 45.469 311 24.224 112 29.063 523 32.020 621 33.478 422 36.942

3 312 20.378 113 47.680 211 39.962 622 19.876 423 37.471 521 27.410

4 121 50.088 222 19.010 323 28.749 411 41.306 512 21.924 613 41.469

5 223 27.452 321 46.204 122 42.188 513 28.919 611 24.599 412 28.361

6 322 73.913 123 59.856 221 73.709 612 32.315 413 80.809 511 36.911

7 421 45.506 522 40.380 623 37.135 111 54.271 212 26.685 313 26.076

8 523 29.368 621 34.627 422 27.021 213 33.799 311 43.408 112 40.724

9 622 19.946 423 36.251 521 29.726 312 26.041 113 53.162 211 27.546

10 411 77.787 512 66.956 613 51.114 121 67.176 222 38.774 323 48.602

11 513 26.584 611 41.038 412 47.183 223 37.914 321 30.026 122 44.577

12 612 31.994 413 35.671 511 30.146 322 . 123 58.481 221 62.659

Source Wesler (2001). Copyright c© 2001 Mary Mc. Wesler. Research was performed under U.S. Army Research

Laboratory, Federated Laboratory Research Consortium (DAAL01-96-0003) directed by Mr. Bernie Corona. Reprinted

with permission

Furthermore, construction of the design involved various pseudofactors. For example, the factor

path (P) has been represented by pseudofactors: path direction P2 at two levels, corresponding to

using a path frontwards (P2 = 0, for paths 1–3) or backwards (P2 = 1, for paths 4–6); and P3 at

three levels, corresponding to the three paths used. The corresponding effects of P2, P3 and P2 P3 are

modeled by the parameters (φ2)q2 , (φ3)q3 , and (φ2φ3)q2q3 , respectively. Likewise, the factor run order

(O) has been represented by pseudofactors: O2 at two levels, corresponding to runs on day 1 (O2 = 0,

for runs 1–3) or day 2 (O2 = 1, for runs 4–6); and O3 at three levels, corresponding to the three runs

on a given day. The effects corresponding to O2, O3 and O2 O3 are modeled by the parameters (ρ2)r2 ,

(ρ3)r3 , and (ρ2ρ3)r2r3 , respectively.

Since each subject makes the first three runs on one day and the other three on a second day, one

degree of freedom for run order corresponding to O2 is confounded with days (i.e. whole plots). Also,

since paths 1–3 are always used on one day for each subject and paths 4–6 on the other day, the one

degree of freedom for path direction corresponding to P2 is also confounded with days.

Consequently, the between-whole-plot comparisons consist of: main effects of display type A,

subject main effects, the path direction effect P2, and the run order effect O2. Within-whole-plot

comparisons include: main effects of display format B, AB interaction effects, the path effects P3 and

P2 P3, and the run order effects O3 and O2 O3.

19.7.1 Analysis of Variance

Recall, one observation is missing since one of the subjects traversed one of the paths in the wrong

direction from what was intended. Consequently, the resulting 71-run experiment deviates modestly

from the balanced 72-run experiment that was planned, complicating the data analysis, since the

standard formulas for a balanced design are no longer applicable. Direct analysis of the 71 observations

collected is an option, and it will be illustrated using the SAS and R software packages in Sects. 19.8.4
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Table 19.12 Analysis of variance for the mobile computing field study

Source of variation Degrees of freedom Sum of square Mean square Ratio p-value

Subject 11 6230.92 566.45 2.92 0.0594

Order (O2) 1 30.48 30.48 0.16 0.7012

Path (P2) 1 379.34 379.34 1.95 0.1957

A (display) 1 47.95 47.95 0.25 0.6311

Whole-plot error (day) 9 1747.52 194.17 2.17 0.0483

Whole-plot total 23 8436.21

Order (O3, O2 O3) 4 56.56 14.14 0.16 0.9581

Path (P3, P2 P3) 4 1941.84 485.46 5.42 0.0016

B (VPF) 2 806.44 403.22 4.51 0.0179

AB 2 166.48 83.24 0.93 0.4038

Split-plot error 36 3222.00 89.50

Total 71 14629.54

and 19.9.4, respectively. Another option, illustrated here, is the following traditional remedy involving

the estimation of missing values.

Given the missing observation, a standard approach is to fit the intended model using the 71 observa-

tions collected, estimate the missing value, then analyze the data as a 72-run experiment including the

estimated value as if not missing, except making the following accommodation. With one observation

missing, there is one fewer degrees of freedom for the analysis. In comparing the results when using

software to fit model (19.7.18) with the 71 and 72 observations, respectively, the analysis of variance

for the 71-run fit (not shown here) yields one fewer degrees of freedom for split-plot error—namely,

35 rather than 36. So, the same effects are estimable in each case, but the lost observation results in

one fewer split-plot error degrees of freedom. Consequently, in analyzing the 72-run data set including

the estimated missing value, the number of split-plot error degrees of freedom should be reduced by

one. That said, the reduction from 36 to 35 split-plot error degrees of freedom has negligible impact

on the analysis, as corresponding critical values are nearly the same with this many error degrees of

freedom, so such an adjustment is not always made in the analyses presented here.

Recall, the experimental plan was a split-plot design, with a single response on each independent

variable for each of the six treatment combinations per subject. The subjects served as blocks in the

design, days as whole plots, and the 72 runs as split plots. The analysis of variance is given in Table 19.12

and is analogous to the one in Table 19.4 (p. 710) for the oats split-plot experiment.

The experimenter planned to test each treatment effect using a 5% significance level. As one can see

from the p-values in Table 19.12, the interaction between display type and visual presentation format

is not significant (p = 0.4038) using α = 0.05, nor is the main effect of display type (p = 0.6311),

but the main effect of visual presentation format is significant (p = 0.0179) at the 5% level.

As one can also see from the p-values, there are significant effects of path (i.e. P3 and P2 P3

collectively) but not of P2, so the three paths used had significant differences either themselves or

interacting with path direction, but the path direction was not significant. Also, the subject and day

effects were modestly significant with p = 0.0594 and p = 0.0483, respectively, but order effects

were not significant.
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19.7.2 Multiple Comparisons

For each treatment effect found to be significant in the analysis of variance, the experimenter followed

up with multiple comparisons using simultaneous 95% confidence intervals. Since only the main effect

of visual presentation format was significant, Tukey’s method was used to compare the three formats.

The estimated pairwise comparisons are:

β̂∗
1 − β̂∗

2 = y...1.. − y...2.. = 7.792 ,

β̂∗
3 − β̂∗

2 = y...3.. − y...2.. = 6.102 ,

β̂∗
1 − β̂∗

3 = y...1.. − y...3.. = 1.690 .

Since the corresponding F-test uses the split-plot mean squared error as the denominator and the

72-run design is balanced, the estimated standard error of each pairwise comparison also utilizes the

split-plot mean squared error. Also, since each treatment sample mean is the average of 24 observations,

the variance estimate of each pairwise contrast is 2msES/24 = 89.5/12 ≈ 7.4583. So, the minimum

significant difference for each comparison is (q3,35,0.05/
√

2)
√

7.4583 ≈ 6.69, for q3,35,0.05 = 3.465,

with the split-plot error degrees of freedom having been reduced by one to 35 because of the missing

value. Hence, visual presentation format 1 (second person egocentric) has a significantly larger mean

RMSE from the intended path than does visual presentation format 2 (birds’ eye view egocentric),

indicating that format 2 is preferable. The other two pairwise comparisons are not significantly different,

though format 3 also does substantially worse than format 2. The reader may verify for example that

the minimum significant difference would only be 5.89 for simultaneous 90% confidence intervals, in

which case visual presentation format 2 would be significantly better than both of the other formats.

19.7.3 Analysis as a Split-Split-Plot Design

The original experimental plan was a split-plot design, with a single response on each independent

variable for each of the six treatment combinations per subject. The subjects served as blocks in the

design, days as whole plots, and the 72 runs as split plots. The split-plot analysis was provided in

Sects. 19.7.1 and 19.7.2.

It subsequently became of interest to study whether the effectiveness of the display types (factor A)

or visual presentation formats (factor B) depended on the direction being navigated. One could consider

utilizing the data for this purpose because, as noted previously, each path was roughly square in shape

with north, south, east, and west legs, (coded 1–4, respectively). Furthermore, data was available on

the independent variables for each of the four legs of each run. It was ultimately decided to analyze

the data as a split-split-plot design, including leg direction as a factor, treating each leg of a run as

a split-split-plot. In that regard, one should note that leg order may also have an effect and may be

confounded with leg direction. Nonetheless, it was decided to include leg direction rather than leg order

as a factor, since previous studies indicate that leg direction is a stronger independent variable, noting

for example that participants in another study had difficulty cognitively transposing information from

a fixed north-up display while traversing a south-bound leg of a test course. For this reason, visual

display format by leg direction interaction effects were also included in the model.

Adding leg direction factor D with effects δt (t = 1, . . . , 4), visual presentation format by

leg direction interaction effects (βδ) j t , and split-split-plot errors ǫSS
t (dhi jqr)

to the split-plot design

model (19.7.18), the split-split-plot design model is as follows.
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Ydhi jqrt = μ + θh + αi + (φ2)q2 + (ρ2)r2 + ǫW
d(h)

+ β j + (αβ)i j + (φ3)q3 + (φ2φ3)q2q3

+ (ρ3)r3 + (ρ2ρ3)r2r3 + ǫS
i jq3r3(dhq2r2)

+ δt + (βδ) j t + ǫSS
t (dhi jqr)

,

(19.7.19)

θh ∼ N (0,σ2
θ ) , ǫW

d(h)
∼ N (0,σ2

W ) ,

ǫS
i jq3r3(dhq2r2)

∼ N (0,σ2
S) , ǫSS

t (dhi jqr)
∼ N (0,σ2

SS)

θh ’s, ǫW
d(h)

’s, ǫS
i jq3r3(dhq2r2)

’s, ǫSS
t (dhi jqr)

’s are all mutually independent,

d = 1, 2; h = 1, . . . , 12; i = 1, 2; j = 1, 2, 3;
q = 3(q3 − 1) + 2(q2 − 1) + 1, for q2 = 1, 2, q3 = 1, 2, 3;
r = 3(r3 − 1) + 2(r2 − 1) + 1, for r2 = 1, 2, r3 = 1, 2, 3;

t = 1, 2, 3, 4.

The data for the split-split-plot design consist of the RMSE values for each of the four legs of each

run. The data, shown in Table 19.13, now include four missing observations, since the one missing

run of the split-plot design includes four legs. Estimating these four missing values, the analysis of

variance is provided in Table 19.14. As the reader may verify, if the model is fit without the estimated

missing values, one loses one degree of freedom for split-plot error and three for split-split-plot error,

but adjusting the corresponding degrees of freedom from 36 to 35 and from 207 to 204, respectively,

would have minimal impact on any analysis. The first two sections of Table 19.14 duplicate information

given in Table 19.12 for the split-plot analysis—the degrees of freedom, ratio, and p-value is the same

for each source so conclusions are unchanged, though the sum of squares and mean squares are

different since the data are observations on legs of runs, not runs. The visual presentation format by leg

direction interaction is not significant, but leg direction is significant with p = 0.0117 < 0.05. Hence,

the experimenter compared the leg direction effects using simultaneous 95% confidence intervals

obtained via Tukey’s method.

The estimated pairwise comparisons are:

δ̂∗
2 − δ̂∗

1 = y......2 − y......1 = 2.8645 , δ̂∗
4 − δ̂∗

1 = y......4 − y......1 = 1.5666 ,

δ̂∗
2 − δ̂∗

3 = y......2 − y......3 = 2.0217 , δ̂∗
4 − δ̂∗

3 = y......4 − y......3 = 0.7239 ,

δ̂∗
2 − δ̂∗

4 = y......2 − y......4 = 1.2979 , δ̂∗
3 − δ̂∗

1 = y......3 − y......1 = 0.8427 .

Since the corresponding F-test uses the (split-split-plot) mean square error as the denominator

and the 288-leg design is balanced, the estimated standard error of each pairwise comparison also

utilizes the mean squared error. Also, since each treatment sample mean is the average of 72 of the 288

observations, the variance estimate of each pairwise contrast is 2(msE)/72 = 2(28.19)/72 ≈ 0.7831.

So, the minimum significant difference for each comparison is (q4,204,0.05/
√

2)
√

0.7831 ≈ 2.27, for

q3,204,0.05 ≈ q3,∞,0.05 = 3.63, with the split-plot error degrees of freedom having been reduced by

three to 204 because of the missing values. Hence, mean RMSE is significantly greater for leg direction

2 (south) than for leg direction 1 (north). This provides some credence to the observation in another

study that participants had difficulty cognitively transposing information from a fixed north-up display

while traversing a south-bound leg of a test course.
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Table 19.13 Mobile computing field study split-split-plot design: root mean square error (RMSE) data for each subject

(Subj), leg, day, run order, and path-treatment combination (PAB), with four observations missing

Subj Leg Day 1 Day 2

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

PAB RMSE PAB RMSE PAB RMSE PAB RMSE PAB RMSE PAB RMSE

1 1 111 6.313 212 3.653 313 6.762 421 6.223 522 6.888 623 7.506

2 111 25.032 212 4.259 313 4.269 421 5.621 522 9.165 623 12.035

3 111 7.600 212 7.011 313 11.870 421 13.733 522 8.129 623 17.760

4 111 10.376 212 9.464 313 14.780 421 8.713 522 7.871 623 5.820

2 1 213 8.574 311 6.332 112 5.313 523 5.832 621 3.601 422 5.813

2 213 7.244 311 5.257 112 12.927 523 7.441 621 6.756 422 7.498

3 213 19.585 311 10.759 112 3.666 523 8.659 621 4.837 422 10.979

4 213 10.066 311 1.877 112 7.157 523 10.088 621 18.283 422 12.651

3 1 312 8.700 113 10.037 211 11.989 622 3.607 423 10.548 521 9.446

2 312 5.436 113 15.766 211 6.458 622 5.892 423 7.323 521 4.318

3 312 4.101 113 9.985 211 11.384 622 3.577 423 6.705 521 5.304

4 312 2.142 113 11.892 211 10.130 622 6.800 423 12.895 521 8.343

4 1 121 3.700 222 4.378 323 4.348 411 18.534 512 3.393 613 4.472

2 121 26.995 222 4.065 323 10.347 411 4.280 512 4.250 613 13.711

3 121 6.061 222 5.764 323 2.645 411 9.041 512 7.794 613 9.561

4 121 13.332 222 4.804 323 11.409 411 9.450 512 6.487 613 13.724

5 1 223 7.924 321 8.801 122 6.337 513 3.435 611 5.669 412 7.954

2 223 2.563 321 16.128 122 21.415 513 4.446 611 8.044 412 6.689

3 223 6.068 321 4.969 122 4.171 513 4.716 611 5.759 412 5.960

4 223 10.897 321 16.305 122 10.265 513 16.321 611 5.127 412 7.758

6 1 322 22.194 123 11.316 221 11.540 612 3.791 413 15.781 511 5.236

2 322 13.209 123 24.914 221 18.154 612 9.139 413 20.223 511 3.422

3 322 13.197 123 9.051 221 34.058 612 7.538 413 28.214 511 4.137

4 322 25.314 123 14.575 221 9.957 612 11.847 413 16.591 511 24.117

7 1 421 15.819 522 17.896 623 6.257 111 2.320 212 6.519 313 4.058

2 421 6.846 522 7.257 623 8.781 111 26.503 212 6.613 313 5.936

3 421 14.657 522 7.117 623 13.149 111 21.167 212 8.820 313 11.339

4 421 8.184 522 8.110 623 8.948 111 4.280 212 4.733 313 4.743

8 1 523 11.039 621 3.718 422 7.356 213 3.837 311 5.856 112 6.410

2 523 7.973 621 18.952 422 9.132 213 3.759 311 16.997 112 26.575

3 523 6.242 621 5.573 422 4.332 213 9.298 311 8.671 112 2.342

4 523 4.115 621 6.384 422 6.200 213 16.905 311 11.883 112 5.397

9 1 622 4.371 423 8.725 521 7.110 312 4.352 113 7.832 211 7.286

2 622 4.846 423 11.287 521 6.264 312 6.641 113 31.707 211 6.662

3 622 6.666 423 10.870 521 9.541 312 6.450 113 1.774 211 9.589

4 622 4.063 423 5.369 521 6.810 312 8.597 113 11.848 211 4.008

10 1 411 22.287 512 22.921 613 15.016 121 26.405 222 7.143 323 10.467

2 411 19.107 512 12.482 613 5.827 121 13.756 222 11.160 323 21.939

3 411 15.018 512 15.430 613 18.707 121 11.025 222 12.443 323 5.404

4 411 21.375 512 16.123 613 11.564 121 15.990 222 8.029 323 10.791

11 1 513 5.883 611 6.531 412 10.834 223 9.284 321 6.103 122 3.570

2 513 7.288 611 15.533 412 8.584 223 10.828 321 12.479 122 24.502

3 513 3.260 611 8.494 412 18.250 223 9.102 321 6.008 122 5.115

4 513 10.154 611 10.479 412 9.515 223 8.701 321 5.436 122 11.389

12 1 612 5.826 413 12.041 511 8.747 322 . 123 9.794 221 16.560

2 612 10.782 413 8.086 511 8.952 322 . 123 23.941 221 17.369

3 612 7.168 413 5.918 511 1.080 322 . 123 20.566 221 11.995

4 612 8.218 413 9.626 511 11.367 322 . 123 4.180 221 16.735

Source Wesler (2001). Copyright c© 2001 Mary Mc. Wesler. Research was performed under U.S. Army Research

Laboratory, Federated Laboratory Research Consortium (DAAL01-96-0003) directed by Mr. Bernie Corona. Reprinted

with permission
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Table 19.14 Analysis of variance for the mobile computing field study

Source of variation Degrees offreedom Sum ofsquare Meansquare Ratio p-value

Subject 11 1557.78 141.62 2.92 0.0594

O2 1 7.62 7.62 0.16 0.7011

P2 1 94.84 94.84 1.95 0.1957

Display 1 11.99 11.99 0.25 0.6311

Whole-plot error (day) 9 436.86 48.54 2.17 0.0483

Whole-plot total 23 2109.09

Order 4 14.15 3.54 0.16 0.9581

Path 4 485.43 121.36 5.42 0.0016

VPF 2 201.60 100.80 4.51 0.0179

VPF*Display 2 41.62 20.81 0.93 0.4038

Split-plot error 36 805.47 22.37 0.79 0.7934

Split-plot total 71 3657.36

LegDir 3 317.98 105.99 3.76 0.0117

VPF*LegDir 6 34.85 5.81 0.21 0.9746

Split-split-plot error 207 5835.85 28.19

Total 287 9846.03

19.7.4 Design Construction

In this section we discuss construction of the split-plot design used in the mobile computing field

study. The design used (Table 19.11, p. 719) is a fractional factorial design with some day effects

confounded with blocks (subjects). The design construction illustrated here utilizes the techniques of

Chaps. 13 and 14, including the use of pseudofactors introduced in Sect. 14.3. The first step in the

design construction is to determine an appropriate fraction of the non-blocking factors, then some

effects (and their aliases)—some day effects in this case—are chosen to be confounded with blocks.

Before constructing the fraction, here are some preliminary considerations.

Recall, the basic experiment was 2 × 3 in the treatment factors A (display type) and B (visual

presentation format), the purpose being accurate comparison of the treatment effects. Multiple subjects

were to be recruited for the study based on appropriate protocols. It was pragmatically reasonable to

have each subject make three runs per day and to involve each subject for two days. This would

allow each subject to be assigned each of the six treatment combinations once, providing a balanced

design with treatment comparisons as within-subject comparisons, good for precision. Since day-to-day

variation was anticipated to be relatively small and simplicity of the experimental design is desirable,

it was decided to confound main effects of A with days. Viewing subjects as blocks, days as whole

plots, and runs as split plots, levels of A would be assigned to whole plots and levels of B to split plots.

There remains the question of how many days 2h to include in the experiment, (or equivalently,

how many subjects, h). Consider this question from the viewpoint of design construction rather than as

a sample size question, to see how small an appropriate design can be given the circumstances. For a

2×3 experiment, standard confounding techniques can be applied if the number of subjects is a power

of two times a power of three, h = 2m3n say, so represent the subjects factor S by pseudofactors S2i

(i = 1, . . . , m) each at two levels and pseudofactors S3 j ( j = 1, . . . , n) each at three levels, where

the number of each remains to be determined. The other nuisance sources of variation are days D,

with two days for each subject, and run order O and path P each at six levels. Let O2, O3, P2 and P3

be pseudofactors for run order and path, with the subscript indicating the number of levels. Likewise,

http://dx.doi.org/10.1007/978-3-319-52250-0_13
http://dx.doi.org/10.1007/978-3-319-52250-0_14
http://dx.doi.org/10.1007/978-3-319-52250-0_14
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denote pseudofactors for days by D2i (i = 0, 1, . . . , m) each at two levels and D3 j ( j = 1, 2, . . . , n)

each at three levels. So, factors at two levels are A2, the D2i , O2, P2, and the S2i , each with levels 0

and 1, say. Similarly, factors at three levels are B3, the D3 j , O3, P3, and the S3 j , each with levels 0, 1

and 2, say.

In the resulting design, take the treatment factor levels to be: A = A2 + 1 and B = B3 + 1.

Furthermore, let order O = 3 × O2 + O3 + 1, so the levels of O2 distinguish a subject’s three runs

on their first day (i.e. O = 1, 2, 3) from the subject’s three runs on their second day (i.e. O = 4, 5, 6),

and the levels of O3 distinguish the three runs on each day. Similarly, let path P = 3 × P2 + P3 + 1,

with the understanding that the levels of P2 distinguish whether a path is run frontwards (P2 = 0,

say) or backwards (P2 = 1, say), and the levels of P3 correspond to the three physical paths. Similar

relationships between factors and pseudofactors for days and subjects will be provided later.

The design is a fractional factorial block design. Following the approach introduced in Sect. 15.5,

the first step is to determine an appropriate fractional factorial design in the non-blocking factors, then

determine what effects to confound with blocks. That said, subjects will not participate on the same day,

so comparisons between subjects will necessarily be comparisons between days, so the corresponding

between-days comparisons will be confounded with subjects. Let the levels of D20 represent the two

days each subject participates, so D20 will not be confounded with subjects, but anticipate that the

remaining days pseudofactors will be confounded with subjects.

The experiment includes one observation for each combination of day and O3. Thus, one can view

the day pseudofactors D2i (i = 0, . . . , m) and D3 j ( j = 1, . . . , n) and the order pseudofactor O3 as

free variables in constructing the fractional factorial design, with all other pseudofactors defined in

relation to them using defining relations.

Consider first the remaining 2-level pseudofactors—A2, O2, and P2—in relation to free variables

D2i . Run order is necessarily related to days, since each subject makes their first three runs on their

first day and their last three runs on their second day. This corresponds to the constraint O2 = D20, or

equivalently I2 = D20 O2.

To avoid aliasing the effects of A2 with either order or path, the experimenter chose to let A2 =
D21 + D22 + O2 (mod 2) and P2 = A2 + D22 (mod 2), so the defining relation for the 2-level

pseudofactors is

I2 = D20 O2 = A2 D21 D22 O2 = A2 D20 D21 D22

= A2 D22 P2 = A2 D20 D22 O2 P2 = D21 O2 P2 = D20 D21 P2 ,

with defining relation generators underlined, the other terms being generalized interactions.

With these choices used by the experimenter, using only three 2-level day pseudofactors D20, D21

and D22, the fraction of the 2-level pseudofactors is a 1/8 fraction with eight runs involving eight days.

Hence, as will be seen, the number of days in the full experiment is a multiple of eight. Technically,

the fraction for the 2-level pseudofactors is not of resolution III, because day effects D2i are aliased

with the effects of three factors: A, since A2 = D20 D21 D22; order, since O2 = D20; and path, since

P2 = D20 D21. However, the day effects are random, modeling variability but with mean zero. So, the

effects of A, O2 and P2, being “aliased” with the random effects of days, are comparisons between days

(i.e. between whole plots), so these effects are estimable, but estimation and testing of these effects

will involve the whole-plot mean squared error.

Now consider the remaining pseudofactors at three levels—namely, B3 and P3—to be defined in

relation to the free variables O3 and the D3 j . Four 3-level factors are necessary and sufficient to obtain

a resolution III fraction, so one 3-level days pseudofactor D31 will suffice. The experimenter chose to

let B3 = 2D31 + O3 (mod 3) and P3 = D31 + O3 (mod 3). Thus, the defining relation for the resulting

1/9 fraction for the 3-level pseudofactors is

http://dx.doi.org/10.1007/978-3-319-52250-0_15
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I3 = B3 D31 O2
3 = B2

3 D2
31 O3

= D31 O3 P2
3 = B3 D2

31 P2
3 = B2

3 O2
3 P2

3

= D2
31 O2

3 P3 = B3 O3 P3 = B2
3 D31 P3 ,

involving the contrasts (B; B2), (B3 D31 O2
3 ; B2

3 D2
31 O3), (D31 O3 P2

3 ; D2
31 O2

3 P3), (B3 D2
31 P2

3 ; B2
3 D31 P3),

and (B3 O3 P3; B2
3 O2

3 P2
3 ).

Since the effects of B3, O3 and P3 are not aliased with other main effects, and in particular not with

day effects, they are estimable within-day comparisons under a main-effects model, free of day-to-day

(i.e. whole-plot-to-whole-plot) variation, as desired.

With these choices used by the experimenter, using only one 3-level day pseudofactor D31, the

fraction of the 3-level pseudofactors is a 1/9 resolution III fraction involving nine runs, including three

days and three runs per day (corresponding to the nine combinations of the free variables D31 and O3).

The 2-level and 3-level fractions are combined by pairing each of the eight 2-level pseudofactor

combinations in the 2-level fraction with each of the nine 3-level pseudofactor combinations in the

3-level fraction, providing a composite fractional factorial design with 72 pseudofactor combinations

or runs, 24 days, six run orders, and six paths. The corresponding composite defining relation includes

72 terms, including each product of one of the eight terms from the defining relation of the 2-level

fraction with one of the nine terms from the defining relation of the 3-level fraction. In short, letting

I6 = I2 × I3, and treating I2 and I3 as multiplicative identities, the composite defining relation is as

follows.

× I2 = D20 O2 = . . . = D20 D21 P2

I3 I6 = D20 O2 = . . . = D20 D21 P2

= B3 D31 O2
3 = B3 D31 O2

3 = D20 O2 B3 D31 O2
3 = . . . = D20 D21 P2 B3 D31 O2

3

= B2
3 D2

31 O3 = B2
3 D2

31 O3 = D20 O2 B2
3 D2

31 O3 = . . . = D20 D21 P2 B2
3 D2

31 O3

=
... =

... =
... =

... =
...

= B2
3 D31 P3 = B2

3 D31 P3 = D20 O2 B2
3 D31 P3 = . . . = D20 D21 P2 B2

3 D31 P3

This composite defining relation includes each of the terms from the 2-level and 3-level defining

relations, indicating for example that days are still aliased with the effects of A, O2 and P2 in the

composite fraction, as was the case in the 2-level fraction, so A and one degree of freedom for each of

order and path remain between-day comparisons in the composite fraction. However, the remaining

terms in the composite defining relation are the generalized interactions that include terms other than

I2 and I3 from each of the 2-level and 3-level defining relations, so they tend to be of higher order.

Consequently, one may observe for example that AB effects are not aliased with day effects, so they are

within-day (i.e. within-whole-plot) comparisons. The same is true of the order and path effects except

O2 and P2, so order and path each have four degrees of freedom that are within-day comparisons,

in addition to each having one degree of freedom that is a between-day (i.e. between-whole-plot)

comparison.

Finally, the block design is obtained by confounding the day effects D21, D22 and D31 with sub-

jects, which also confounds the corresponding generalized interactions D21 D22, D21 D31, D22 D31

and D21 D22 D31, confounding 11 degrees of freedom for days with subjects. The composite design

involves 12 subjects and 24 days, with three runs per day, so 72 runs in total. The resulting design

is shown in Table 19.11, with factor levels in the table obtain as follows: D = D20 + 1 and

Subj = 6S21 + 3S22 + S31 + 1.
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In summary, 12 subjects is enough to design the experiment so treatment effects are not aliased with

subject, path, or run order, though effects of A (display type) are aliased with days (whole plots), as is

one degree of freedom each for order and path. One might say that the design is of resolution III in the

fixed effects but of resolution II when random effects are considered.

The experimenter determined that this was a large enough experiment, with each pairwise com-

parison of visual presentation formats being estimable with variance σ2
S/12, and with the pairwise

comparison of display types being estimable with variance (3σ2
W + σ2

S)/18.

If a larger design was needed, one could be obtain by inclusion of additional free variables D2i (i > 2)

or D3 j ( j > 1) and corresponding additional subject pseudofactors, coupled with an appropriate choice

of defining relations to determine all non-free variables in terms of the free variables. For example,

to have two replicates of the design obtained above, simply include the additional free variable D23

to double the number of days, include the pseudofactor S23 to double the number of subjects, impose

the same constraints as above, and confound D23 with subjects. Alternatively, one could seek a better

fraction—namely, either one of higher resolution or, short of that, a fraction with less aliasing together of

lower order effects of interest—by inclusion of additional free variables D2i or D3 j and corresponding

subject pseudofactors, coupled with some better choice of defining relations that presumably would

involve these additional free variables.

The approach used above to obtain a blocked fractional factorial experiment involved two steps: first

obtaining a fraction of the non-blocking factors, then confounding some effects with blocks. Another

equivalent approach is simply to obtain an appropriate fraction of all of the factor combinations,

including the blocking factors as non-free variables. For example, one could obtain the same blocked

fractional factorial design in one step by imposing the same defining relations as above plus the relations

S21 = D21, S22 = D22, and S31 = D31.

19.8 Using SAS Software

In this section, we illustrate use of the SAS software for analyzing split-plot designs. The analysis of

variance approach can be used for balanced data using PROC GLM or PROC MIXED, as illustrated for

analysis of the oats experiment in Sect. 19.8.1. In Sect. 19.8.2, the UAV experiment is briefly revisited to

illustrate the analysis of simple contrasts using the SLICE statement in PROC MIXED. In Sect. 19.8.3,

we introduce a restricted maximum likelihood approach to analysis of split plot designs using PROC

MIXED, comparing it to the analysis of variance approach and PROC GLM in the context of the UAV

switch experiment—a new example involving a negative variance component estimate. In Sect. 19.8.4,

using a subset of the oats data yielding a balanced incomplete block design for the whole-plots factor,

PROC MIXED is used to illustrate the recovery of inter-block information. Finally, in Sect. 19.8.5,

analysis of unbalanced data is illustrated using PROC MIXED and the restricted maximum likelihood

approach for the mobile computing field study, excluding the missing observation from analysis of the

split plot design.

19.8.1 The Analysis of Variance Approach

The analysis of variance approach to the analysis of mixed models involves: (i) fitting the model

by ordinary least squares, treating the random effects as fixed; and (ii) using the expected mean

squares to determine unbiased estimates of the variance components. In analyzing a balanced split-

plot design by the analysis of variance approach, care needs to be taken with PROC GLM or PROC

MIXED in order to obtain the two separate parts of the analysis of variance table, corresponding to
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Table 19.15 SAS program illustrating type I and III analyses—the oats split-plot experiment

DATA OAT;
INPUT BLOCK WP A B Y;
LINES;
1 1 2 3 156
1 1 2 2 118
1 1 2 1 140
1 1 2 0 105
1 2 0 0 111
: : : : :
6 3 2 3 121

;
*** Analysis of variance: type I;
PROC GLM;
CLASS BLOCK A B WP;
MODEL Y = BLOCK A WP(BLOCK) B A*B / E1;
RANDOM BLOCK WP(BLOCK) / TEST;
MEANS A / DUNNETT(’0’) CLDIFF ALPHA = 0.01;
* The following statement fails to generate output due to

nonestimability;
LSMEANS A / ADJUST = DUNNETT ALPHA = 0.01 CL PDIFF = CONTROL(’0’)

E = WP(BLOCK);
LSMEANS B / ADJUST = DUNNETT ALPHA = 0.01 CL PDIFF = CONTROL(’0’);

PROC MIXED METHOD = TYPE1;
CLASS BLOCK A B WP;
MODEL Y = A B A*B / DDFM = SAT;
RANDOM BLOCK WP(BLOCK);
LSMEANS A B / PDIFF = CONTROL(’0’, ’0’)

CL DIFF ADJUST = DUNNETT ALPHA = 0.01;
*** Analysis of variance: type III;
PROC GLM;
CLASS BLOCK A B;
MODEL Y = BLOCK A BLOCK*A B A*B;
RANDOM BLOCK A*BLOCK / TEST;
LSMEANS A / ADJUST = DUNNETT ALPHA = 0.01 CL PDIFF = CONTROL(’0’)

E = BLOCK*A;
LSMEANS B / ADJUST = DUNNETT ALPHA = 0.01 CL PDIFF = CONTROL(’0’);

PROC MIXED METHOD = TYPE3;
CLASS BLOCK A B;
MODEL Y = A B A*B / DDFM = SAT;
RANDOM BLOCK A*BLOCK;
LSMEANS A B / PDIFF = CONTROL(’0’, ’0’)

CL DIFF ADJUST = DUNNETT ALPHA = 0.01;

between-whole-plots and within-whole-plots comparisons. We illustrate two different methods of pro-

ducing an analysis of variance table similar to the one in Table 19.4 (p. 710) presented for the oats

experiment in Sect. 19.3.4. Table 19.15 contains SAS code illustrating the two methods—namely, the

type I and type III analyses—using the data of the oats experiment.

Type I Analysis

One approach to analysis of a split plot design is a type I analysis, utilizing the type I (sequential)

sums of squares and corresponding type I expected mean squares. In the first call of PROC GLM

in Table 19.15, the option E1 in the model statement requests a type I analysis. Correspondingly,
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the sources of variation need to be entered into the model in the same order as in model (19.2.2).

The first three terms yield the whole-plot analysis. The whole-plot error term ǫW
i(h)

is represented by

WP(BLOCK)—the nested effect of whole plots within blocks—since it accounts for any whole plot

comparisons not yet modeled. The remaining terms provide the split-plot analysis. No term is needed

to represent the split-plot error term ǫS
j (hi), since this plays the role of the usual error variable, and

the corresponding error sum of squares is automatically calculated by the SAS software. The type I

analysis is necessary because, with inclusion of WP(BLOCK) in the model, the type III analysis would

yield SSA = 0 with zero degrees of freedom for A. Otherwise, the type I and type III sums of squares

would be the same. Inclusion of the statement

RANDOM BLOCK WP(BLOCK) / TEST;

ensures that the correct denominators are used for all of the hypothesis tests.

The output is shown in Fig. 19.1. The type I sums of squares are listed, but the F-statistics and

p-values are incorrect for testing the effects of blocks and A, since SAS software uses the split-plot

error mean square MSE throughout. The expected mean squares are listed, and the reader can verify

that the error estimate for A differs from those of B and AB. The correct hypothesis tests are listed in

the bottom half of the output.

One would like to use the LSMEANS statement to obtain standard multiple comparisons procedures.

For example, Dunnett’s procedure for comparing each level of A with control level 0 and each level of

B with control level 0 is requested via the LSMEANS statements shown in Table 19.15. Unfortunately,

this generates no output for A, because PROC GLM treats all effects as fixed, including the random

effects, so concludes that main effects of A are not estimable. While we have generally avoided use of

the MEANS statement for multiple comparisons, since it uses means rather than least squares means,

the two are equivalent in this case, since both the whole-plot design and the split-plot design are

randomized complete block designs. As such, the MEANS statement can be used to obtain standard

multiple comparison procedures for A, while the LSMEANS statement cannot. For example, Dunnett’s

procedure for comparing each level of A with control level 0 and each level of B with control level

0 are obtained via the MEANS statement and the second LSMEANS statement, respectively, shown

in Table 19.15. For the MEANS statement, SAS software will use the split-plot term MSE to estimate

standard errors unless told to do otherwise, which would be correct for the B contrasts but not for the

A contrasts. To use the whole-plot error mean square for the A contrasts, we include the option E =
WP(BLOCK). Partial output is shown in Fig. 19.2. For both factors, note that the SAS software has

relabeled the levels starting at 1 rather than 0.

The first call of PROC MIXED in Table 19.15 would generate the same correct information, includ-

ing only the correct F-tests for the analysis of variance, and automatically computing correct standard

errors for contrasts. The option METHOD = TYPE1 calls for a type I analysis. In PROC MIXED, all

fixed effects are entered into the model before the random effects, but that is not problematic in this

case.

Type III Analysis

The second approach to analysis of a split plot design is a type III analysis, utilizing the type III sums

of squares and corresponding expected mean squares. This approach makes use of the fact that the

whole-plot error sum of squares uses the same collective degrees of freedom as any block by whole-

plot-treatment interactions deemed negligible. In the oats experiment, with only one whole-plot factor,

A, and with the block ×A interaction deemed negligible, the block ×A effect represents whole-plot

error in the model. In the second call of PROC GLM in Table 19.15, the same sources of variation

are entered into the SAS model as in model (19.2.2), but the whole plot error ǫW
i(h)

is replaced by

BLOCK*A—the negligible block × whole-plot-treatment interaction. For the type III analysis, the
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Fig. 19.1 Type I analysis of variance—the oats split-plot experiment



19.8 Using SAS Software 731

Fig. 19.2 Multiple comparisons—the oats split-plot experiment

order of entry of terms into the SAS model does not matter. The SAS output is not shown, but is

identical to that in Fig. 19.1 with WP(BLOCK) replaced by BLOCK*A, and Type I Expected

Mean Square replaced by Type III Expected Mean Square. The second call of PROC
MIXED in Table 19.15 would generate the same information, but with only the correct F-tests for the

analysis of variance, the option METHOD = TYPE3 calling for a type III analysis.

More generally, suppose the experiment included two whole-plot factors A and B and one split-plot

factor C , with the AB-combinations assigned to whole plots within blocks constituting a randomized

complete block design, and with the levels of C assigned to split plots within whole plots constituting

a randomized complete block design. Then, assuming all block by whole-plot-treatment interactions

are negligible, the following SAS statements would provide the analogous type III analysis.
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Table 19.16 SAS program illustrating analysis of simple contrasts—UAV experiment

DATA UAV;
INPUT A W B C TIME;
LINES;
1 1 1 1 29
1 1 1 2 28
1 1 1 3 49
1 1 1 4 46
1 1 2 1 36
: : : : ::
2 8 2 4 22

;
PROC MIXED METHOD = TYPE3;
CLASS A W B C;
MODEL TIME = A | B | C / DDFM = SAT;
RANDOM W(A);
LSMEANS A / CL DIFF ALPHA = 0.01;
* Compares levels of A at each B*C combination;
SLICE A*B*C / SLICEBY = B*C CL DIFF ALPHA = 0.01;

;
PROC GLM;
CLASS A W B C;
MODEL TIME = A | B | C W(A);
RANDOM W(A) / TEST;
MEANS A / T CLDIFF E = W(A) ALPHA = 0.01;
* need PDIFF, else E = mse erroneously;
LSMEANS A / CL PDIFF E = W(A) ALPHA = 0.01;

PROC GLM;
CLASS BLOCK A B C;
MODEL Y = BLOCK A B A*B BLOCK*A*B C A*C B*C A*B*C;
RANDOM BLOCK BLOCK*A*B / TEST;
LSMEANS A B / ADJUST = DUNNETT ALPHA = 0.01 CL

PDIFF = CONTROL(’0’, ’0’) E = BLOCK*A*B;
LSMEANS C / ADJUST = DUNNETT ALPHA = 0.01 CL PDIFF = CONTROL(’0’);

In this case, the whole-plot error sum of squares uses the collective degrees of freedom of the block

×A, block ×B, and block ×A ×B interactions. These are collected into the single term BLOCK*A*B

by including it in the model but leaving out the terms BLOCK*A and BLOCK*B.

19.8.2 Simple Contrasts

In this section, we briefly revisit the UAV experiment of Sect. 19.6 to illustrate the analysis of simple

contrasts using the SLICE statement in PROC MIXED. The SAS program in Table 19.16 shows how

either PROC MIXED or PROC GLM can be used to generate the analyses provided in Sect. 19.6.

For example, both procedures generate the analysis of variance in Table 19.10, as well as the 99%

confidence interval for the main effect of cue (A).

PROC MIXED generally provides more options and functionality for multiple comparisons. For

example, the SLICE statement illustrated in the SAS program generates the output in Table 19.17,

which includes the information on simple contrasts for cue that was provided in Sect. 19.6.2 (p. 717),

comparing the effects of the two levels of cue (A) at each of the eight BC combinations. The standard
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Table 19.17 SAS output for simple contrasts—UAV experiment

The SAS System
The Mixed Procedure

Simple Differences of A*B*C Least Squares Means

Standard t
Slice A _A Estimate Error DF Value Pr>|t| Alpha Lower Upper
B 1 C 1 1 2 14.3750 1.8643 110.2 7.71 <.0001 0.01 9.4885 19.2615
B 1 C 2 1 2 13.3750 1.8643 110.2 7.17 <.0001 0.01 8.4885 18.2615
B 1 C 3 1 2 31.2500 1.8643 110.2 16.76 <.0001 0.01 26.3635 36.1365
B 1 C 4 1 2 28.2500 1.8643 110.2 15.15 <.0001 0.01 23.3635 33.1365
B 2 C 1 1 2 13.0000 1.8643 110.2 6.97 <.0001 0.01 8.1135 17.8865
B 2 C 2 1 2 15.2500 1.8643 110.2 8.18 <.0001 0.01 10.3635 20.1365
B 2 C 3 1 2 21.2500 1.8643 110.2 11.40 <.0001 0.01 16.3635 26.1365
B 2 C 4 1 2 23.7500 1.8643 110.2 12.74 <.0001 0.01 18.8635 28.6365

errors involve composite variance estimates, and Satterthwaite’s approximation is used as a conse-

quence of the denominator degrees of freedom option DDFM = SAT. The SLICE statement uses

much of the same syntax as the LSMEANS statement in PROC MIXED. Analogous results do not seem

to be available from PROC GLM.

19.8.3 The Restricted Maximum Likelihood Approach

In this section, we introduce a restricted maximum likelihood (ReML) approach to analysis of split

plot designs using PROC MIXED, comparing it to the analysis of variance approach in the context of

a new example—UAV switch experiment. The two approaches yield the same results if (i) the design

is balanced and (ii) all variance component estimates are either positive or allowed to be negative.

The restricted maximum likelihood approach is generally preferable for (i) the estimation and testing

of variance components and (ii) the analysis of fixed effects given sufficiently unbalanced data. The

UAV switch experiment provides an interesting comparison of the approaches, because the design is

balanced but a variance component estimate is negative if unconstrained.

The analysis of variance approach was illustrated in Sects. 17.10.2, 18.5, 19.8.1 and 19.8.2 for

balanced data using both PROC MIXED and PROC GLM. Indeed, the analysis of variance approach

can be reasonable and appropriate for the analysis of balanced data, as the fixed effect estimates are

then best linear unbiased estimates, and the variance component estimates are then minimum variance

unbiased estimates under normality. That said, variance component estimates can be negative even for

balanced data. This may be reasonable for analysis of fixed effects, but it seems problematic if one

is interested in inferences on variance components. Moreover, for unbalanced data, the fixed effects

estimates can be inefficient, and the properties of the ANOVA-based variance component estimates

are not well understood.

As an alternative to the analysis of variance approach, consider the use of maximum likelihood

estimates, which generally have good large-sample properties. Under appropriate regularity conditions,

the maximum likelihood estimator θ̂ of an estimable parameter θ is asymptotically N (θ, CRLB), where

CRLB is the Cramer–Rao lower bound for the variance of an unbiased estimator. Mind you, for the

regularity conditions to hold, the estimate must be a solution to the likelihood equations—not obtained

http://dx.doi.org/10.1007/978-3-319-52250-0_17
http://dx.doi.org/10.1007/978-3-319-52250-0_18
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as a boundary condition—so these asymptotic properties do not apply for example to a variance

component estimator when the estimate is constrained to be zero because the solution to the likelihood

equations is negative. Likewise, given a factor with random effects but with few levels observed in

an experiment, one should be skeptical of the asymptotic properties of the corresponding variance

component estimate. That said, the asymptotic properties of MLEs should usually be reasonably

applicable for the analysis of fixed effects unless an experiment is quite small. We will utilize restricted

maximum likelihood estimation—a special case of maximum likelihood estimation.

The restricted maximum likelihood approach to fitting a mixed model involves two steps: (i) estimat-

ing the variance components by restricted maximum likelihood; then (ii) estimating the fixed effects

by estimated generalized least squares—namely, treating the variance component estimates as true

values, then computing the maximum likelihood estimates of the fixed effects, or equivalently, the

generalized least squares estimates. To compute restricted maximum likelihood (ReML) estimates of

the variance components, the original data is essentially replaced by a maximal set of linearly inde-

pendent contrasts in the data each with mean zero (i.e. data contrasts the distributions of which do not

involve the fixed effects), then the likelihood function of the contrasts is maximized. (Equivalently,

one can estimate the fixed effects by ordinary least squares, then maximize the likelihood function of

the residuals, the joint distribution of which does not involve the fixed effects. Hence, the restricted

maximum likelihood approach is also known as residual maximum likelihood.) The ReML estimates

of the variance components may be preferable to the usual maximum likelihood estimates, because

the ReML estimates are the same as the ANOVA-based estimates if the data are balanced and all

variance component estimates are positive. Also, restricted maximum likelihood adjusts in some sense

for fixed effects, so often provides unbiased estimates of variance components. A new experiment will

be introduced to illustrate the restricted maximum likelihood approach to analysis of split plot designs.

UAV Switch Experiment

Mahadevan (2009) conducted three experiments to evaluate the performance of a semi-automated com-

puter display system designed to support a human operator’s ability to monitor and control the complex

dynamic operation of multiple unmanned aerial vehicles (UAVs) when the UAVs are involved in multi-

ple combat-related tasks. His third experiment involved: 16 subjects (factor W ); two alert techniques—a

visual alert (A = 1) and an audio-visual alert (A = 2); and two levels of task complexity—a simple

primary task coupled with a simple secondary task (B = 1), and a complex primary task coupled with

a simple secondary task (B = 2). The experiment was a 2 × 2 split-plot design, with subjects as whole

plots and two trials per subject as split-plots, with each level of A assigned to half of the subjects, and

with both levels of B observed once on each subject. Hence, subject is nested within alert type. For

each trial, each subject, while working on the primary task, was warned of the secondary task using

one of the two alert techniques. One of the response variables measured was the time taken to switch

to the secondary task following the alert, and the experimenter was interested in the effect of the nature

of the alert (A) on the mean time to switch from the primary to the secondary task. The data are shown

in Table 19.18. The model used by the experimenter is as follows.

Yiu j = μ + αi + ǫW
iu

+ β j + (αβ)i j + ǫS
j (iu)

,
(19.8.20)

ǫW
iu ∼ N (0,σ2

W ) , ǫS
j (iu)

∼ N (0,σ2
S) ,

ǫW
iu ’s and ǫS

j (iu)
’s are all mutually independent,

i = 1, 2; u = 1, . . . , 8; j = 1, 2.



19.8 Using SAS Software 735

Table 19.18 Time taken (in seconds) to switch to secondary task for the UAV switch experiment

A (Alert Type) B (Complexity) W (Subject)

1 2 3 4 5 6 7 8

1 1 6 5 5 5 5 7 5 6

2 16 22 16 20 12 18 16 14

2 1 7 6 5 6 5 6 4 4

2 6 7 6 8 6 6 7 6

Source Mahadevan (2009). Copyright c© 2009 Sriram Mahadevan. Reprinted with permission

The SAS program for the UAV switch experiment is shown in Table 19.19. The first calls of PROC

GLM and PROC MIXED each fit model (19.8.20), and some of the corresponding output is shown in

Fig. 19.3. The random effects term W(A) in each SAS model represents the whole plot errors ǫW
iu in

model (19.8.20), so σ2
W(A)

in the SAS output corresponds to σ2
W in our model. Also, msE in SAS output

corresponds to msES in our formulae. PROC MIXED is by default fitting the model by ReML but,

because of the NOBOUND option, the variance component estimates are not constrained to be positive.

In fact, the whole-plots variance component estimate, σ̂2
W(A)

= −0.03571, is negative, matching the

estimate one could compute by hand from the PROC GLM output—namely, σ̂2
W(A)

= [ms(W(A)) −
msE]/2 ≈ −0.036. Because the data are balanced and the ReML estimates are allowed to be negative,

the two procedures provide the same estimates of fixed effects and variance components, the same test

results for fixed effects, and the same results for multiple comparisons (not shown).

Consider in comparison the output generated by the second calls of these procedures, shown in

Fig. 19.4.PROC MIXED is still fitting model (19.8.20), but the restricted maximum likelihood estimate

of σ2
W(A)

, now bounded, is zero. Correspondingly, the whole-plots term is effectively removed from

the model, with the 14 degrees of freedom associated with it essentially pooled with the 14 degrees of

freedom for error. Hence, there are now 28 degrees of freedom for error in the analysis, the (residual)

error variance estimate of 3.1205 being the average of ms(W(A)) and msE generated by the first call

of PROC GLM. These results match those at the bottom of Fig. 19.4, generated by the second call of

PROC GLM, for which the whole-plots term has been removed from the model for sake of illustration.

While the multiple comparisons output generated by these procedure calls is not shown, the reader

may confirm that the results would also match, as they do for the F-tests, with both procedures using

28 error degrees of freedom for all contrast standard errors.

The above information begs the question, “What is the correct analysis?” The analyses provided

by the first calls of PROC GLM and PROC MIXED are arguably correct, except one should use the

multiple comparisons results from PROC MIXED in any instances where PROC GLM uses incorrect

standard errors. Otherwise, the SAS procedures correctly implement the planned statistical analyses

using the proposed model. If the model is reasonable and appropriate, then the statistical results are

valid, even if a simpler model with σ2
W(A)

= 0 suggested by the data would also be correct.

It is an open problem whether the analyses generated by the second calls of PROC MIXED or PROC
GLM are correct—namely, whether they control error rates for any preplanned analysis, assuming the

originally posed model (19.8.20) is correct. It seems improper for example to fit the first model using

PROC GLM, see that the estimate σ̂2
W(A)

is negative, so change the model by removing the whole-plots

term from the model, then fit the reduced model as in the second call of PROC GLM and use these

results for the analysis. Control of error rates is an open problem when one uses the data to determine

the model then uses the model to analyze the same data. Still, it is interesting that the second call

of PROC MIXED fits and conducts the analysis under the assumption that model (19.8.20) is correct

and, while it so happens that σ̂2
W(A)

= 0, the originally postulated model is used for the analysis. If this

approach could be shown to control error rates, then this would be the preferred analysis, since there are
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Table 19.19 SAS program for the UAV switch experiment

DATA UAV3;
INPUT A W B TIME;
LINES;
1 1 1 6
1 1 2 16
1 2 1 5
1 2 2 22
1 3 1 5
: : : :
2 8 2 6

;
PROC GLM;
TITLE ’Proc GLM: full model’;
CLASS A W B;
MODEL TIME = A | B W(A);
RANDOM W(A) / TEST;
LSMEANS A / CL PDIFF E = W(A); * need PDIFF, else E = mse;
LSMEANS A*B; * SAS would erroneously use MSE for CLs;

PROC MIXED NOBOUND;
TITLE ’Proc Mixed NoBound’;
CLASS A W B;
MODEL TIME = A | B / DDFM = SAT;
RANDOM W(A);
LSMEANS A A*B / CL DIFF;

PROC MIXED;
TITLE ’Proc Mixed (Bounded)’;
CLASS A W B;
MODEL TIME = A | B / DDFM = SAT;
RANDOM W(A);
LSMEANS A A*B / CL DIFF;

* Dropping W(A) from the Proc GLM model;
PROC GLM;
TITLE ’Proc GLM: W(A) dropped from model’;
CLASS A B;
MODEL TIME = A | B;
LSMEANS A A*B / CL PDIFF;

benefits associated with essentially pooling ms(W(A)) and msE, including for example increased power

for some tests, as well as the availability of a common variance estimator for multiple comparisons of

AB-treatment combinations.

Given any uncertainty regarding whether the latter approach (corresponding to the second calls)

controls error rates, our formal (rather than exploratory) approach to data analysis is to advocate that

the experimenter use the analyses generated by the first calls of the procedures, since this approach is

known to control error rates for any preplanned analyses if the proposed model (19.8.20) is correct.

19.8.4 Recovery of Inter-block Information

The oats experiment, introduced in Sect. 19.3.4, involves a split-plot design with complete blocks at

both the whole- and split-plots levels—namely, the levels of A assigned to whole plots within blocks
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Fig. 19.3 Output for the

UAV switch experiment:

Procs GLM and Mixed,

First Calls

constitute a randomized complete block design, and the levels of B assigned to split plots within whole

plots constitute a randomized complete block design. With this dual complete block structure, the data

analysis is the same whether the block effects are modeled as fixed (as in Sect. 19.3.4) or random (as

in Sect. 19.8.4). Such would not be the case if for example the split-plot design involves incomplete

blocks at the whole-plots level, as illustrated in this section.

Consider again the oats experiment and corresponding data in Table 19.3 (p. 710), but suppose one

only has the data for levels 1 and 2 of A in blocks 3 and 5, for levels 0 and 2 of A in blocks 1 and 4,

and for levels 0 and 1 of A in blocks 2 and 6. For this subset of the data, the levels of A assigned to

whole plots in blocks constitute a balanced incomplete block design with blocks of size 2. The SAS

program in Table 19.20 provides several approaches to the analysis of these data.
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Fig. 19.4 Output for the

UAV switch experiment:

Procs GLM and Mixed,

Second Calls

In the first call of PROC MIXED, the ANOVA approach is used to conduct a type 3 analysis, and

block effects are modeled as fixed. Figure 19.5 contains the corresponding output. Because the block

effects are modeled as fixed, the estimates of main-effect-of-A contrasts are intra-block estimates—

namely, each is composed (by summing over blocks) of within-block contrasts of observations—as

is necessary for the fixed block effects to cancel out to yield unbiased estimates. Analogously, for

testing for main effects of A, the numerator of the F-statistic is the mean square for A adjusted for

block effects, which can be computed from the sum of squares of an appropriate set of such intra-block

estimates of main-effect-of-A contrasts. The corresponding data analysis is called the intra-block

analysis. The second call of PROC MIXED uses the restricted maximum likelihood approach but

provides the same intra-block analysis, since the block effects are again modeled as fixed. The output

(not shown) would include the same Type 3 Tests of Fixed Effects and Differences

of Least Squares Means as in Fig. 19.5. For sake of comparison with subsequent analyses,

note that the pairwise comparisons with the control for A each have estimated standard error 11.2883

with 4 degrees of freedom.
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Table 19.20 SAS program illustrating the intra-block analysis and also the recovery of inter-block information—the

oats split-plot experiment

DATA OATBIBD;
INPUT BLOCK WP A B Y;
IF A = 0 AND (BLOCK = 3 OR BLOCK = 5) THEN DELETE;
IF A = 1 AND (BLOCK = 1 OR BLOCK = 4) THEN DELETE;
IF A = 2 AND (BLOCK = 2 OR BLOCK = 6) THEN DELETE;
LINES;
1 1 2 3 156
1 1 2 2 118
1 1 2 1 140
1 1 2 0 105
1 2 0 0 111
: : : : :
6 3 2 3 121

;
*** Intra-block analyses;
PROC MIXED METHOD = TYPE3;
TITLE ’ANOVA Approach, Type 3, Fixed Block Effects’;
CLASS BLOCK A B;
MODEL Y = BLOCK A B A*B / DDFM = SAT;
RANDOM A*BLOCK; * Random whole-plot effects;
LSMEANS A / PDIFF = CONTROL(’0’) CL DIFF ADJUST = DUNNETT ALPHA = 0.01;

PROC MIXED METHOD = ReML NOBOUND;
TITLE ’ReML Approach, Fixed Block Effects’;
CLASS BLOCK A B WP;
MODEL Y = BLOCK A B A*B / DDFM = SAT;
RANDOM WP(BLOCK);
LSMEANS A / PDIFF = CONTROL(’0’) CL DIFF ADJUST = DUNNETT ALPHA = 0.01;

*** Analyses recovering inter-block information;
PROC MIXED METHOD = TYPE3;
TITLE ’ANOVA Approach, Type 3, Random Block Effects’;
CLASS BLOCK A B;
MODEL Y = A B A*B / DDFM = SAT;
RANDOM BLOCK A*BLOCK;
LSMEANS A / PDIFF = CONTROL(’0’) CL DIFF ADJUST = DUNNETT ALPHA = 0.01;

PROC MIXED METHOD = ReML NOBOUND;
TITLE ’ReML Approach, Random Block Effects’;
CLASS BLOCK A B WP;
MODEL Y = A B A*B / DDFM = SAT;
RANDOM BLOCK WP(BLOCK);
LSMEANS A / PDIFF = CONTROL(’0’) CL DIFF ADJUST = DUNNETT ALPHA = 0.01;

In the third call of PROC MIXED, the ANOVA approach is used to conduct a type 3 analysis, but the

block effects are modeled as independent random effects with mean zero and variance σ2
θ . With random

block effects, one can obtain unbiased ordinary least squares estimates of main-effect-of-A contrasts

using contrasts of block totals (the sum total of the observations in each block), and these so-called

inter-block estimates are in addition to and independent of the intra-block estimates. So, for any main-

effect-of-A contrast, any fixed weighted average of the corresponding intra- and inter-block estimates

provides an unbiased estimate of the contrast, and the best (minimum variance) estimate would be

obtained when each weight is inversely proportional to the variance of the corresponding estimate.

Unfortunately, this best weighting is unknown, because the variance of the intra-block estimate is a
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Fig. 19.5 SAS output illustrating the intra-block analysis—the oats split-plot experiment

multiple of σ2 + 4σ2
W , the variance of the inter-block estimate is a multiple of σ2 + 4σ2

W + 8σ2
θ , and

these variances are unknown. A common approach is to use the estimated variances to determine the

weights, but random weights would make the resulting analyses approximate. If the weights are well

chosen, the resulting combined estimate is better (has smaller variance) than the intra-block estimate,

due to recovery of inter-block information.

The output corresponding to the third call ofPROC MIXED is in Fig. 19.6. Because a type 3 analysis

is requested, the model is initially fit by ordinary least squares, providing a corresponding Type 3

Analysis of Variance identical to that generated by the first call of PROC MIXED, again with

effects of A adjusted for block effects. However, this ANOVA information is then used to estimate the

variance components, then the variance component estimates are in turn used to re-estimate the fixed
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Fig. 19.6 SAS output

illustrating the recovery of

inter-block information—

the oats split-plot

experiment; ANOVA

approach

effects by estimated generalized least squares. Using this revised information, SAS software provides

updated Type 3 Tests of Fixed Effects, including an approximate F test for A with 5

rather than 4 denominator degrees of freedom, and revised estimates of the pairwise comparisons with

the control for A, each now with estimated standard error 10.6837 with 5 degrees of freedom. The

smaller standard error and increased number of degrees of freedom are both helpful consequences of

the recovered inter-block information, increasing test power and decreasing confidence interval width.

In the fourth call of PROC MIXED, the restricted maximum likelihood approach is used for the

analysis, with the block effects again modeled as independent random effects with mean zero and

variance σ2
θ . The output corresponding to the third call of PROC MIXED is in Fig. 19.7. Under this

approach, ReML estimates of the variance components are computed, then these are used to estimate

the fixed effects by generalized least squares. Based on these estimates, SAS software provides Type

3 Tests of Fixed Effects, including an approximate F test for A with 4.95 denominator

degrees of freedom, and estimates of the pairwise comparisons with the control for A, each with

estimated standard error 10.7095 with 4.95 degrees of freedom. These values are slightly worse than

the results of the third call of PROC MIXED, but still much better than for the intra-block analysis

generated by the first two calls. Clearly there is a helpful recovery of inter-block information.

Turning attention to the split-plot comparisons, note that the F-tests for B, and likewise for AB,

are the same in each analysis. This is the case because a randomized complete block design was used

for the assignment of levels of B to split plots in whole plots (serving as blocks). Consequently, for

each main effect of B and AB-interaction contrast, the corresponding contrast in treatment means is a

within-whole-plot contrast, free of whole-plot or block effects, so no adjustment is needed.
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Fig. 19.7 SAS output

illustrating the recovery of

inter-block information—

the oats split-plot

experiment; ReML

approach

In the above example, recovery of the inter-block information provided better information for

analysis of the whole-plots factor A. For example, for each treatment-versus-control contrast estimate

for A, recovery of inter-block information provided a tighter confidence interval, due to both a smaller

standard error and more error degrees of freedom. In planning such an experiment, the experimenter

should determine in advance how the data will be analyzed. While one could plan on conducting the

intra-block analysis, recovery of the inter-block information should usually be beneficial.

19.8.5 ReML and Unbalanced Data

In this section, we illustrate the restricted maximum likelihood approach using PROC MIXED for

analysis of an unbalance split-plot design, revisiting the mobile computing field study experiment

introduced in Sect. 19.7. Recall, while the planned experiment was nicely balanced, it was discovered

prior to analysis of the data that one of the subjects traversed one of the paths in the reverse direction,

making the corresponding observation inappropriate to use in the analysis. As such, one of the 72

planned observations (given in Table 19.11, p. 719) is listed as missing. In Sects. 19.7.1 and 19.7.2, an

approximate analysis of the split-plot design was provided by estimating the missing value and treating

it as observed, using standard formulas for analysis of the balanced design via the analysis of variance

approach, but adjusting degrees of freedom appropriately. With one observation lost, the data are no

longer balanced, making the data analysis conceptually and computationally more difficult. However,

SAS PROC MIXED handles this situation nicely, as we shall illustrate.
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Table 19.21 SAS program for the mobile computing field study experiment

DATA MCFS71;
INPUT SUBJ DAY ORDER O2 O3 PATH P2 P3 A B Y;
LINES;
1 1 1 0 0 1 0 0 1 1 49.321
1 1 2 0 1 2 0 1 1 2 24.386
1 1 3 0 2 3 0 2 1 3 37.680
: : : : : : : : : : :
12 1 3 0 2 5 1 1 1 1 30.146
12 2 4 1 0 3 0 2 2 2 .
12 2 5 1 1 1 0 0 2 3 58.481
12 2 6 1 2 2 0 1 2 1 62.659

;
PROC MIXED NOBOUND;
TITLE ’Analysis of RMSE without missing value’;
CLASS SUBJ DAY O2 O3 P2 P3 A B;
MODEL Y = O2 P2 A O3 O2*O3 P3 P2*P3 B A*B / DDFM = SAT;
RANDOM SUBJ DAY(SUBJ);
LSMEANS A B / CL DIFF ALPHA = 0.05;

* To get consolidated tests for order and path;
PROC MIXED NOBOUND;
CLASS SUBJ DAY ORDER PATH A B;
MODEL Y = ORDER PATH A B A*B / DDFM = SAT;
RANDOM SUBJ DAY(SUBJ);

The SAS program for analysis of the 71-observation split-plot design via the restricted maximum

likelihood approach is shown in Table 19.21, with the corresponding output in Fig. 19.8. The mixed

model for the analysis was provided in Eq. (19.7.18), p. 718. Using PROC MIXED, the three variance

components are (by default) estimated by restricted maximum likelihood. In this case, the three esti-

mates are all positive. Given these variance component estimates, the fixed effects are then estimated

by generalized least squares.

PROC MIXED provides Type III F-tests for each fixed effect—Type III in the sense that the tests

are based on estimates of effects and corresponding variability obtained by fitting the full model. The

option DDFM = SAT in the MODEL statement causes use of a general Satterthwaite approximation

for the denominator degrees of freedom, equivalent to Satterthwaite’s approximation for a balanced

design. Readers are referred to SAS documentation for details. Regarding the two treatment factors,

only the effects of visual presentation format (B) are significant, with p = 0.0166. Concerning the

nuisance factors path and order, these involved both within- and between-whole-plot comparisons

before the lost observation caused design imbalance. For each of these factors, the first call of PROC
MIXED provides tests of each of three pseudofactor components, including for example tests for P2,

P3 and P2 P3 for path. The second call of PROC MIXED provides a consolidated test for each of these

nuisance factors. It is not surprising that path has significant effects, and these are attributable to the

three distinct paths used as distinguished by P3.

TheLSMEANS statement generated the pairwiseDifferences of Least Squares Means

output for each of factors A and B, including individual t-tests and individual 95% confidence intervals

for each pairwise comparison. These results are similar to those obtained in Sect. 19.7.2, where the

approach used was to estimate the missing value and analyze the balanced design, though there Tukey’s

method was used. Based on the individual 95% confidence intervals provided here, level 2 of B—the
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Fig. 19.8 Output for the mobile computing field study experiment

birds’ eye view egocentric visual presentation format—has a significantly smaller RMSE from the

intended path than do the other two visual presentation formats. It is interesting that the denominator

degrees of freedom is not constant for the factor B pairwise comparisons, due to the imbalance created

by the lost observation. This indicates that the pairwise comparisons do not all utilize the same variance

estimator. As a consequence, the Bonferroni method should be used if multiple comparisons for B

are of interest. These comparisons could be generated by adding the option ADJUST = BON to the

LSMEANS statement. Replacing the keyword BON by DUNNETT, SCHEFFE or TUKEY would yield

the corresponding multiple comparisons method, though these latter methods assume availability of a

common variance estimator so are not applicable here.

One could also generate pairwise comparisons for the AB combinations by including A*B in the list

of effects in the LSMEANS statement. However, only the Bonferroni method of multiple comparisons

would be applicable, since there would not be a common variance estimator for all of these pairwise
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comparisons. Also, the corresponding variance estimators would generally be composite variance

estimators, in which case Satterthwaite’s approximation would be used.

19.9 Using R Software

In this section, we illustrate use of the R software for analyzing split-plot designs. The analysis of

variance approach can be used for balanced data using aov, as illustrated for analysis of the oats

experiment in Sect. 19.9.1. In Sect. 19.9.2, the UAV experiment is briefly revisited to illustrate the

analysis of simple contrasts by conditioning on other factor level combinations, given a model fit

using the aov function. In Sect. 19.9.3, we introduce a restricted maximum likelihood approach to

analysis of split plot designs using the lmer function of the lme4 package, comparing it to the

analysis of variance approach using the aov function in the context of UAV switch experiment—a

new example involving a negative variance component estimate. In Sect. 19.9.4, the recovery of inter-

block information is illustrated, using a subset of the oats data yielding a balanced incomplete block

design for the whole-plots factor, and using the lmer function to fit the mixed model by restricted

maximum likelihood. Finally, in Sect. 19.9.5, analysis of unbalanced data is illustrated using the lmer

function and restricted maximum likelihood estimation for the mobile computing field study, excluding

the missing observation from analysis of the split plot design.

19.9.1 The Analysis of Variance Approach

The analysis of variance approach to the analysis of mixed models involves: (i) fitting the model by

ordinary least squares, treating the random effects as fixed; and (ii) using the expected mean squares

to determine unbiased estimates of the variance components. In analyzing a balanced split-plot design

by the analysis of variance approach, the aov function automatically provides correct F tests of fixed

effects, taking into account the two separate parts of the analysis of variance table, corresponding to

between-whole-plots and within-whole-plots comparisons. Table 19.22 contains R code and output,

providing an analysis of variance table similar to the one in Table 19.4 (p. 710) presented for the oats

experiment in Sect. 19.3.4.

The approach used by aov in this analysis of a split plot design is a type III analysis, utilizing the

type III sums of squares and corresponding expected mean squares. In the call of aov in Table 19.22,

the model explicitly includes all sources of variation as in model (19.2.2) except the split-plot error term

ǫS
j (hi), which plays the role of the usual error variable. The whole-plot error term ǫW

i(h)
is represented

by fWP:fBlock—the random effects of whole plots nested within blocks—entered into the model

via the Error function used to designate random effects. The term fBlock is likewise included in

the Error function to designate the block effects as random.

Table 19.23 continues the R program and output of Table 19.22, illustrating the use of lsmeans

to implement standard multiple comparisons procedures. For example, Dunnett’s procedure for com-

paring each level of A with control level 0 and each level of B with control level 0 is requested via

the lsmeans and summary(contrast… statements shown in Table 19.23. The syntax ref=1

designates the first level of a factor as the reference level or control, 0 being the first level of both

A and B. R automatically uses the correct standard error estimates, using the split-plot term MSE to

estimate standard errors for the B contrasts, while using the whole-plot error mean square represented

by fBlock:fWP for the A contrasts.
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Table 19.22 R program and output illustrating type 3 analysis of variance, including tests for fixed effects—the oats

split-plot experiment

> oats.data = read.table("data/oats.txt", header=T)
> oats.data = within(oats.data, {fBlock = factor(Block);
+ fWP = factor(WP); fA = factor(A); fB = factor(B) })
> head(oats.data, 3)
Block WP A B y fB fA fWP fBlock

1 1 1 2 3 156 3 2 1 1
2 1 1 2 2 118 2 2 1 1
3 1 1 2 1 140 1 2 1 1

> # Least squares ANOVA
> # Set contrast options for correct lsmeans and contrasts
> options(contrasts = c("contr.sum", "contr.poly"))
> model1 = aov(y ˜ fA + fB + fA:fB + Error(fBlock + fWP:fBlock),
+ data=oats.data)
> summary(model1)

Error: fBlock
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 15875 3175

Error: fBlock:fWP
Df Sum Sq Mean Sq F value Pr(>F)

fA 2 1786 893 1.49 0.27
Residuals 10 6013 601

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

fB 3 20021 6674 37.7 2.5e-12
fA:fB 6 322 54 0.3 0.93
Residuals 45 7969 177

19.9.2 Simple Contrasts

In this section, we briefly revisit the UAV experiment of Sect. 19.6 to illustrate the analysis of simple

contrasts by conditioning on other factor level combinations. The R program in Table 19.24 shows

how to generate the analyses provided in Sect. 19.6 and includes selected output. The aov and

summary functions generate the analysis of variance in Table 19.10 (not shown here). The lsmeans

and summary(contrast…) functions are used to generate the 99% confidence interval for the main

effect of cue (A). Then they are used a second time to generate information for the simple contrasts for

cue, analogous to what was provided in Sect. 19.6.2 (p. 716), comparing the effects of the two levels

of cue (A) at each of the eight BC combinations. For the simple contrasts, the syntax “fA | fC:fB”

says to compare the levels of A given each combination of levels of B and C . The corresponding

standard errors involve composite variance estimates, and Satterthwaite’s approximation is used by R

by default. Output for three of the eight simple contrasts is in the bottom of Table 19.24.
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Table 19.23 Multiple comparisons—the oats split-plot experiment

> # Multiple comparisons: Dunnett’s method
> library(lsmeans)
> lsmA = lsmeans(model1, ˜ fA)
> set.seed(21531957)
> summary(contrast(lsmA, method="trt.vs.ctrl", adjust="mvt", ref=1),
+ infer=c(T,T), level=0.99, side="two-sided")

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 0 6.875 7.0789 10 -18.123 31.873 0.971 0.5423
2 - 0 12.167 7.0789 10 -12.831 37.164 1.719 0.1973

Results are averaged over the levels of: fB
Confidence level used: 0.99
Conf-level adjustment: mvt method for 2 estimates
P value adjustment: mvt method for 2 tests

> lsmB = lsmeans(model1, ˜ fB)
> set.seed(21531957)
> summary(contrast(lsmB, method="trt.vs.ctrl", adjust="mvt", ref=1),
+ infer=c(T,T), level=0.99, side="two-sided")

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 0 19.500 4.4358 45 5.8789 33.121 4.396 0.0002
2 - 0 34.833 4.4358 45 21.2122 48.454 7.853 <.0001
3 - 0 44.000 4.4358 45 30.3789 57.621 9.919 <.0001

Results are averaged over the levels of: fA
Confidence level used: 0.99
Conf-level adjustment: mvt method for 3 estimates
P value adjustment: mvt method for 3 tests

19.9.3 The Restricted Maximum Likelihood Approach

In this section, we introduce a restricted maximum likelihood (ReML) approach to analysis of split plot

designs using the lmer function of the lme4 package, comparing the restricted maximum likelihood

approach to the analysis of variance approach in the context of a new example—UAV switch experiment.

The two approaches yield the same results if (i) the design is balanced and (ii) all variance component

estimates are either positive or allowed to be negative, though the lmer function does not allow

variance component estimates to be negative. The restricted maximum likelihood approach is generally

preferable for (i) the estimation and testing of variance components and (ii) the analysis of fixed effects

given sufficiently unbalanced data. The UAV switch experiment provides an interesting comparison

of the approaches, because the design is balanced but a variance component estimate is negative if

unconstrained.

The analysis of variance approach was illustrated in Sects. 17.11.2, 18.6, 19.9.1 and 19.9.2 for

balanced data using the aov function. Indeed, the analysis of variance approach can be reasonable and

appropriate for the analysis of balanced data, as the fixed effect estimates are then best linear unbiased

estimates, and the variance component estimates are then minimum variance unbiased estimates under

normality. That said, variance component estimates can be negative even for balanced data. This may

be reasonable for analysis of fixed effects, but it seems problematic if one is interested in inferences

http://dx.doi.org/10.1007/978-3-319-52250-0_17
http://dx.doi.org/10.1007/978-3-319-52250-0_18
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Table 19.24 R program and selected output illustrating analysis of simple contrasts—UAV experiment

> uav.data = read.table("data/uav.txt", header=T)
> uav.data = within(uav.data, {fA = factor(A); fW = factor(W);
+ fB = factor(B); fC = factor(C) })
> head(uav.data, 3)
A W B C Time fC fB fW fA
1 1 1 1 1 29 1 1 1 1
2 1 1 1 2 28 2 1 1 1
3 1 1 1 3 49 3 1 1 1

> # Least squares ANOVA
> # Set contrast options for correct lsmeans and contrasts
> options(contrasts = c("contr.sum", "contr.poly"))
> model1 = aov(Time ˜ fA*fB*fC + Error(fA:fW), data=uav.data)
> summary(model1)

> # Compare 2 levels of fA pairwise
> library(lsmeans)
> lsmA = lsmeans(model1, ˜ fA)
> summary(contrast(lsmA, method="pairwise"), infer=c(T,T))

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 20.062 0.76195 14 18.428 21.697 26.33 <.0001

Results are averaged over the levels of: fB, fC
Confidence level used: 0.95

> # Compare 2 levels of fA pairwise given each fB:fC combination
> library(lsmeans)
> lsmAgBC = lsmeans(model1, ˜ fA | fC:fB)
> summary(contrast(lsmAgBC, method="pairwise", adjust="none"),
+ infer=c(T,T), level=0.99)

fC = 1, fB = 1:
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 14.375 1.8643 110.22 9.4885 19.262 7.711 <.0001

fC = 2, fB = 1:
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 13.375 1.8643 110.22 8.4885 18.262 7.174 <.0001
...
fC = 4, fB = 2:
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 23.750 1.8643 110.22 18.8635 28.637 12.740 <.0001

Confidence level used: 0.99

on variance components. Moreover, for unbalanced data, the fixed effects estimates can be inefficient,

and the properties of the ANOVA-based variance component estimates are not well understood.
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As an alternative to the analysis of variance approach, consider the use of maximum likelihood

estimates, which generally have good large-sample properties. Under appropriate regularity conditions,

the maximum likelihood estimator θ̂ of an estimable parameter θ is asymptotically N (θ, CRLB), where

CRLB is the Cramer–Rao lower bound for the variance of an unbiased estimator. Mind you, for the

regularity conditions to hold, the estimate must be a solution to the likelihood equations—not obtained

as a boundary condition—so these asymptotic properties do not apply for example to a variance

component estimator when the estimate is constrained to be zero because the solution to the likelihood

equations is negative. Likewise, given a factor with random effects but with few levels observed in

an experiment, one should be skeptical of the asymptotic properties of the corresponding variance

component estimate. That said, the asymptotic properties of MLEs should usually be reasonably

applicable for the analysis of fixed effects unless an experiment is quite small. We will utilize restricted

maximum likelihood estimation—a special case of maximum likelihood estimation.

The restricted maximum likelihood approach to fitting a mixed model involves two steps: (i) estimat-

ing the variance components by restricted maximum likelihood; then (ii) estimating the fixed effects

by estimated generalized least squares—namely, treating the variance component estimates as true

values, then computing the maximum likelihood estimates of the fixed effects, or equivalently, the

generalized least squares estimates. To compute restricted maximum likelihood (ReML) estimates of

the variance components, the original data is essentially replaced by a maximal set of linearly inde-

pendent contrasts in the data each with mean zero (i.e. data contrasts the distributions of which do not

involve the fixed effects), then the likelihood function of the contrasts is maximized. (Equivalently,

one can estimate the fixed effects by ordinary least squares, then maximize the likelihood function of

the residuals, the joint distribution of which does not involve the fixed effects. Hence, the restricted

maximum likelihood approach is also known as residual maximum likelihood.) The ReML estimates

of the variance components may be preferable to the usual maximum likelihood estimates, because

the ReML estimates are the same as the ANOVA-based estimates if the data are balanced and all

variance component estimates are positive. Also, restricted maximum likelihood adjusts in some sense

for fixed effects, so often provides unbiased estimates of variance components. A new experiment will

be introduced to illustrate the restricted maximum likelihood approach to analysis of split plot designs.

UAV Switch Experiment

Mahadevan (2009) conducted three experiments to evaluate the performance of a semi-automated com-

puter display system designed to support a human operator’s ability to monitor and control the complex

dynamic operation of multiple unmanned aerial vehicles (UAVs) when the UAVs are involved in multi-

ple combat-related tasks. His third experiment involved: 16 subjects (factor W ); two alert techniques—a

visual alert (A = 1) and an audio-visual alert (A = 2); and two levels of task complexity—a simple

primary task coupled with a simple secondary task (B = 1), and a complex primary task coupled with

a simple secondary task (B = 2). The experiment was a 2 × 2 split-plot design, with subjects as whole

plots and two trials per subject as split-plots, with each level of A assigned to half of the subjects, and

with both levels of B observed once on each subject. Hence, subject is nested within alert type. For

each trial, each subject, while working on the primary task, was warned of the secondary task using

one of the two alert techniques. One of the response variables measured was the time taken to switch

to the secondary task following the alert, and the experimenter was interested in the effect of the nature

of the alert (A) on the mean time to switch from the primary to the secondary task. The data are shown

in Table 19.25. The model used by the experimenter is as follows.
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Table 19.25 Time taken (in seconds) to switch to secondary task for the UAV switch experiment

A (Alert Type) B (Complexity) W (Subject)

1 2 3 4 5 6 7 8

1 1 6 5 5 5 5 7 5 6

2 16 22 16 20 12 18 16 14

2 1 7 6 5 6 5 6 4 4

2 6 7 6 8 6 6 7 6

Source Mahadevan (2009). Copyright c© 2009 Sriram Mahadevan. Reprinted with permission

Yiu j = μ + αi + ǫW
iu

+ β j + (αβ)i j + ǫS
j (iu)

,
(19.9.21)

ǫW
iu ∼ N (0,σ2

W ) , ǫS
j (iu)

∼ N (0,σ2
S) ,

ǫW
iu ’s and ǫS

j (iu)
’s are all mutually independent,

i = 1, 2; u = 1, . . . , 8; j = 1, 2.

The R program and selected output for the UAV switch experiment is shown in Tables 19.26 and

19.27. Table 19.26 illustrates the analysis of variance approach, which is recommended for analysis of

fixed effects given a balanced design—the case here. The model term Error(fA:fW) in the aov
function models the whole plot errors ǫW

iu as random whole plots effects W (A), and the corresponding

mean square provides the denominator for testing main effects of A, as appropriate. R code for multiple

comparisons is shown, but not the corresponding output.

For sake of comparison, the restricted maximum likelihood approach is illustrated in the top of

Table 19.27. The lmer function fits a linear mixed effects model by restricted maximum likelihood.

This function is part of the lme4 package, but loading it via the lmerTest package adds the p-

values to the analysis of variance table. For the model specified in the lmer statement, the term

(1|fA:fW) causes inclusion of random W (A) effects in the model, representing the whole plot

errors ǫW
iu . The corresponding variance component estimate, bounded to be nonnegative, is essentially

zero, (σ̂2
W = 3.88 × 10−19 per output from the summary command). Consequently, the restricted

maximum likelihood approach effectively removes this term from the model, pooling its degrees of

freedom with that for (split plot) error, yielding 28 error degrees of freedom rather than 14 each for

W (A) and error as in the analysis of variance approach. This is confirmed by the analysis of variance

provided at the bottom of Table 19.27, obtained by removing whole plot effects from the model. These

two analyses provide exactly the same F tests for the fixed effects. They also generate the same

multiple comparisons results (not shown), with both procedures using 28 error degrees of freedom for

all contrast standard errors.

The analysis in Table 19.26 is correct and should be used. It correctly implements the planned

statistical analyses using the proposed model. If the model is reasonable and appropriate, then the

statistical results are valid, even if a simpler model with σ2
W = 0 suggested by the data would also be

correct.
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Table 19.26 R program and selected output for the UAV switch experiment: analysis of variance approach

> uav3.data = read.table("data/uav3.txt", header=T)
> uav3.data = within(uav3.data,
+ {fA = factor(A); fW = factor(W); fB = factor(B) })
> head(uav3.data, 3)

A W B Time fB fW fA
1 1 1 1 6 1 1 1
2 1 1 2 16 2 1 1
3 1 2 1 5 1 2 1

> # ANOVA: full model
> # Set contrast options for correct lsmeans and contrasts
> options(contrasts = c("contr.sum", "contr.poly"))
> model1 = aov(Time ˜ fA + fB + fA:fB + Error(fA:fW), data=uav3.data)
> summary(model1)

Error: fA:fW
Df Sum Sq Mean Sq F value Pr(>F)

fA 1 215.3 215.3 69.8 8.2e-07
Residuals 14 43.2 3.1

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

fB 1 306.3 306.3 97 1.1e-07
fA:fB 1 205.0 205.0 65 1.3e-06
Residuals 14 44.2 3.2

> # Multiple comparisons
> library(lsmeans)
> lsmA.aov = lsmeans(model1, ˜ fA)
> summary(contrast(lsmA.aov, method="pairwise"),
+ infer=c(T,T), side="two-sided")
> lsmAB.aov = lsmeans(model1, ˜ fA:fB)
> summary(contrast(lsmAB.aov, method="pairwise", adjust="tukey"),
+ infer=c(T,T), side="two-sided")

It is an open problem whether the analyses provided in Table 19.27 are strictly correct—namely,

whether they control error rates for any preplanned analysis, assuming the originally posed model

(19.9.21) is correct. It seems improper for example if one were to fit the original full model by least

squares, see that the estimate σ̂2
W is negative, so change the model by removing the whole-plots term

from the model, then fit the reduced model and use these results for the analysis. Control of error

rates is an open problem when one uses the data to determine the model then uses the model to

analyze the same data. Still, it is interesting that the restricted maximum likelihood approach fits and

conducts the analysis under the assumption that model (19.9.21) is correct and, while it so happens that

σ̂2
W = 0, the originally postulated model is used for the analysis. If this approach could be shown to

control error rates, then this would seem to be the preferred analysis, since effectively setting σ̂2
W = 0
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Table 19.27 R program and selected output for the UAV switch experiment, continued: restricted maximum likelihood

approach, and reduced ANOVA model

> # ReML: full model
> library(lmerTest)
> model2 = lmer(Time ˜ fA + fB + fA:fB + (1|fA:fW), data=uav3.data)
> anova(model2)

Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
fA 215 215 1 28 69.0 4.9e-09
fB 306 306 1 28 98.2 1.2e-10
fA:fB 205 205 1 28 65.7 8.0e-09

> summary(model2)

...
Random effects:
Groups Name Variance Std.Dev.
fA:fW (Intercept) 3.88e-19 6.23e-10
Residual 3.12e+00 1.77e+00

...

> # Multiple comparisons
> # Detach then reload lsmeans, to avoid issues from its masking by lmerTest
> detach("package:lsmeans", unload=TRUE)
> library(lsmeans)
> lsmA2 = lsmeans(model2, ˜ fA)
> summary(contrast(lsmA2, method="pairwise"),
+ infer=c(T,T), side="two-sided")
> lsmAB.reml = lsmeans(model2, ˜ fA:fB)
> summary(contrast(lsmAB.reml, method="pairwise", adjust="tukey"),
+ infer=c(T,T), side="two-sided")

> # ANOVA: reduced model--without fW
> model3 = aov(Time ˜ fA + fB + fA:fB, data=uav3.data)
> summary(model3)

Df Sum Sq Mean Sq F value Pr(>F)
fA 1 215.3 215.3 69.0 4.9e-09
fB 1 306.3 306.3 98.2 1.2e-10
fA:fB 1 205.0 205.0 65.7 8.0e-09
Residuals 28 87.4 3.1

> # Multiple comparisons
> lsmA.aov2 = lsmeans(model3, ˜ fA)
> summary(contrast(lsmA.aov2, method="pairwise"),
+ infer=c(T,T), side="two-sided")
> lsmAB.aov2 = lsmeans(model3, ˜ fA:fB)
> summary(contrast(lsmAB.aov2, method="pairwise", adjust="tukey"),
+ infer=c(T,T), side="two-sided")
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causes pooling of ms(W(A)) and msE (i.e. msEW and msES) to estimate σ2
S with more degrees of

freedom. One benefit should be increased power for some tests—especially tests of effects compared

between whole plots. It would also provide a common variance estimator for multiple comparisons

of AB-treatment combinations, making most if not all methods of multiple comparisons applicable.

Moreover, the restricted maximum likelihood approach becomes preferable to the analysis of variance

approach for unbalanced designs.

19.9.4 Recovery of Inter-block Information

The oats experiment, introduced in Sect. 19.3.4, involves a split-plot design with complete blocks at

both the whole- and split-plots levels—namely, the levels of A assigned to whole plots within blocks

constitute a randomized complete block design, and the levels of B assigned to split plots within whole

plots constitute a randomized complete block design. With this dual complete block structure, the data

analysis is the same whether the block effects are modeled as fixed (as in Sect. 19.3.4) or random (as

in Sect. 19.9.4). Such would not be the case if for example the split-plot design involves incomplete

blocks at the whole-plots level, as illustrated in this section.

Consider again the oats experiment and corresponding data in Table 19.3 (p. 710), but suppose one

only has the data for levels 1 and 2 of A in blocks 3 and 5, for levels 0 and 2 of A in blocks 1 and

4, and for levels 0 and 1 of A in blocks 2 and 6. For this subset of the data, the levels of A assigned

to whole plots in blocks constitute a balanced incomplete block design with blocks of size 2. The R

program and output in Tables 19.28 and 19.29 provides two approaches to the analysis of these data.

In Table 19.28, the analysis of variance approach is used and block effects are modeled as fixed.

This is a Type I analysis. Since block effects are modeled as fixed, unbiased estimates of main-effect-

of-A contrasts must be intra-block estimates—namely, each is composed (by summing over blocks) of

within-block contrasts of observations—as is necessary for the fixed block effects to cancel out to yield

unbiased estimates. Analogously, for testing for main effects of A, the numerator of the F-statistic is

the mean square for A adjusted for block effects, which can be computed from the sum of squares

of an appropriate set of such intra-block estimates of main-effect-of-A contrasts. The corresponding

data analysis is called the intra-block analysis. For sake of comparison with subsequent analyses,

note that the pairwise comparisons with the control for A each have estimated standard error 11.288

with 4 degrees of freedom. The same results would be obtained by the restricted maximum likelihood

approach using the following R code, except Type III tests would be provided, so the sum of squares

for blocks would be adjusted for A.

library(lmerTest)
model2 = lmer(y ˜ fBlock + fA + fB + fA:fB + (1|fWP:fBlock),

data=oats2.data)
anova(model2)

The program and output are continued in Table 19.29, where the restricted maximum likelihood

approach is used, but this time block effects are modeled as random. With random block effects, one

can obtain unbiased estimates of main-effect-of-A contrasts using contrasts of block totals (the sum

total of the observations in each block), and these so-called inter-block estimates are in addition to

and independent of the intra-block estimates used in the first analysis. So, for any main-effect-of-A

contrast, any fixed weighted average of the corresponding intra- and inter-block estimates provides an

unbiased estimate of the contrast, and the best (minimum variance) estimate would be obtained when

each weight is inversely proportional to the variance of the corresponding estimate. Unfortunately,

this best weighting is unknown because, for any main-effect-of-A contrast, the variances of the intra-

and inter-block estimates are different and depend on the unknown variance components. A common
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Table 19.28 R program and output illustrating the intra-block analysis—the oats split-plot experiment

> oats.data = read.table("data/oats.txt", header=T)
> oats.data = within(oats.data, {fBlock = factor(Block);
+ fWP = factor(WP); fA = factor(A); fB = factor(B) })
> # Reduce data so level of A constitute a BIBD
> oats2.data = subset(oats.data,
+ !(fA == 0 & (fBlock == 3 | fBlock == 5))
+ & !(fA == 1 & (fBlock == 1 | fBlock == 4))
+ & !(fA == 2 & (fBlock == 2 | fBlock == 6)) )
>
> # Intra-block analysis: ANOVA, fixed block effects
> options(contrasts = c("contr.sum", "contr.poly")) # For correct lsmeans
> model1 = aov(y ˜ fBlock + fA + fB + fA:fB + Error(fWP:fBlock),
+ data=oats2.data)
> summary(model1)

Error: fWP:fBlock
Df Sum Sq Mean Sq F value Pr(>F)

fBlock 5 12064 2413 3.16 0.14
fA 2 377 188 0.25 0.79
Residuals 4 3058 765

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

fB 3 15966 5322 34.23 2.4e-09
fA:fB 6 1361 227 1.46 0.23
Residuals 27 4198 155

> # Dunnett’s Method for A: ANOVA approach
> library(lsmeans)
> lsmA1 = lsmeans(model1, ˜ fA)
> set.seed(19831957)
> summary(contrast(lsmA1, method="trt.vs.ctrl", adjust="mvt"),
+ infer=c(T,T), level=0.99)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 0 6.0417 11.288 4 -54.508 66.592 0.535 0.8228
2 - 0 7.4583 11.288 4 -53.092 68.008 0.661 0.7503

Confidence level used: 0.99
Conf-level adjustment: mvt method for 2 estimates
P value adjustment: mvt method for 2 tests

approach is to use the estimated variances to determine the weights, but random weights would make

the resulting analyses approximate. If the weights are well chosen, the resulting combined estimate is

better (has smaller variance) than the intra-block estimate, due to recovery of inter-block information.

Consider now the output in Table 19.29, obtained by recovering and using this inter-block informa-

tion. For factor A, the F-test and corresponding p values have changed, as have the results of Dunnett’s

method comparing levels of A to the control level. Recovery of the inter-block information ought to

provide contrast estimates that are more accurate, and indeed the standard errors for the treatment-

versus-control comparisons are smaller than in the inter-block analysis. Also, the variance estimate for

each main-effect-of-A contrast is essentially a composite variance estimate, so Satterthwaite’s method

is used to compute the number of denominator degrees of freedom (i.e. 4.95) for the F test of A,
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Table 19.29 R program and output illustrating the recovery of inter-block information—the oats split-plot experiment

> # Recovering inter-block information: ReML, random block effects
> model3 = lmer(y ˜ fA + fB + fA:fB + (1|fBlock) + (1|fWP:fBlock),
+ data=oats2.data)
> anova(model3)

Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
fA 150 75 2 4.95 0.5 0.64
fB 15966 5322 3 27.00 34.2 2.4e-09
fA:fB 1362 227 6 27.00 1.5 0.23

> # Dunnett’s Method for A
> lsmA3 = lsmeans(model3, ˜ fA)
> set.seed(19831957)
> summary(contrast(lsmA3, method="trt.vs.ctrl", adjust="mvt"),
+ infer=c(T,T), level=0.99)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 0 3.516 10.71 4.95 -46.042 53.074 0.328 0.9257
2 - 0 10.350 10.71 4.95 -39.208 59.908 0.966 0.5638

which is also equal to the number of degrees of freedom associated with the standard error for each

main effect of A contrast. For these pairwise comparisons, each standard error is smaller with more

degrees of freedom than for the intra-block analysis, so there is a helpful recovery of the inter-block

information.

The restricted maximum likelihood approach was used above to recover the inter-block information

for main-effect-of-A contrasts. One may not be able to accomplish this directly in R using the analysis

of variance approach. Consider the following code, for example.

model4 = aov(y ˜ fA + fB + fA:fB + Error(fBlock + fWP:fBlock),
data=oats2.data)

summary(model4)

The Error function, used to enter random effects in the model, causes separate analyses to be con-

ducted for each error strata. In this example, the error strata correspond to: comparisons within whole

plots, that involve split-plot error; comparisons between whole plots within blocks, that involve split-

plot and whole-plot error; and comparisons between blocks, that involve split-plot error, whole-plot

error, and variation due to random block effects. The intra-block and inter-block estimates of main-

effect-of-A contrasts involve two different error strata, so the above code using the analysis of variance

approach generates two F tests for A—the intra-block test in Table 19.28 and an inter-block test (not

shown)—but no composite test.

Turning attention to the split-plot comparisons, note that the F-tests for B, and likewise for AB,

are the same in each analysis. This is the case because a randomized complete block design was used

for the assignment of levels of B to split plots in whole plots (serving as blocks). Consequently, for

each main effect of B and AB-interaction contrast, the corresponding contrast in treatment means is a

within-whole-plot contrast, free of whole-plot or block effects, so no adjustment is needed.

In the above example, recovery of the inter-block information provided better information for

analysis of the whole-plots factor A. For example, for each treatment-versus-control contrast estimate

for A, recovery of inter-block information provided a tighter confidence interval, due to having both
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a smaller standard error and more error degrees of freedom. In planning such an experiment, the

experimenter should determine in advance how the data will be analyzed. While one could plan

on conducting the intra-block analysis, recovery of the inter-block information should usually be

beneficial.

19.9.5 ReML and Unbalanced Data

In this section, we illustrate the restricted maximum likelihood approach using the linear mixed effects

function lmer for analysis of an unbalance split-plot design, revisiting the mobile computing field

study experiment introduced in Sect. 19.7. Recall, while the planned experiment was nicely balanced,

it was discovered prior to analysis of the data that one of the subjects traversed one of the paths in the

reverse direction, making the corresponding observation inappropriate to use in the analysis. As such,

one of the 72 planned observations (given in Table 19.11, p. 719) is listed as missing. In Sects. 19.7.1

and 19.7.2, an approximate analysis of the split-plot design was provided by estimating the missing

value and treating it as observed, using standard formulas for analysis of the balanced design via the

analysis of variance approach, but adjusting degrees of freedom appropriately. With one observation

lost, the data are no longer balanced, making the data analysis conceptually and computationally more

difficult. However, the R function lmer handles this situation nicely, as we shall illustrate.

The R program and output for analysis of the 71-observation split-plot design via the restricted

maximum likelihood approach is shown in Tables 19.30 and 19.31. The mixed model for the analysis,

provided in Eq. (19.7.18), p. 718, was fit in Table 19.30 using the lmer function of the lme4 (and

lmerTest) package. The three variance components are estimated by restricted maximum likelihood.

In this case, the three estimates are all positive, as shown in selected output from the summary com-

mand. Given these variance component estimates, the fixed effects are then estimated by generalized

least squares.

The anova function then provides Type III F-tests for each fixed effect—Type III in the sense that

the tests are based on estimates of effects and corresponding variability obtained by fitting the full model.

By default, Satterthwaite’s approximation is used to compute the denominator degrees of freedom for

each F test, analogous to Satterthwaite’s approximation for a balanced design. Regarding the two

treatment factors, only the effects of visual presentation format (B) are significant, with p = 0.01660.

Concerning the nuisance factors path and order, these involved both within- and between-whole-plot

comparisons before the lost observation caused design imbalance. For each of these factors, tests are

provided for each of three pseudofactor components, including for example tests for P2, P3 and P2 P3

for path. At the top of Table 19.31, a second call of the lmer and anova functions fits a model using

factors rather than pseudo-factors for order and path, providing a consolidated F-test for each of these

nuisance factors. It is not surprising that path has significant effects, and these are attributable to the

three distinct paths used as distinguished by P3.

At the bottom of Table 19.31, the lsmeans function has generated the pairwise comparisons for

each of factors A and B, including individual t-tests and individual 95% confidence intervals for each

pairwise comparison. These results are similar to those obtained in Sect. 19.7.2, where the approach

used was to estimate the missing value and analyze the balanced design, though there Tukey’s method

was used. Based on the individual 95% confidence intervals provided here, level 2 of B—the birds’

eye view egocentric visual presentation format—has a significantly smaller RMSE from the intended

path than do the other two visual presentation formats. It is interesting that the denominator degrees

of freedom is not constant for the factor B pairwise comparisons, due to the imbalance created by

the lost observation. This indicates that the pairwise comparisons do not all utilize the same variance

estimator, though presumably nearly so. As a consequence, the Bonferroni method should perhaps be

used if multiple comparisons for B are of interest.
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Table 19.30 R program and output for the mobile computing field study experiment

> MCFS71.data = read.table("data/MCFS71.txt", header=T)
> head(MCFS71.data, 3)

Subj Day Order O2 O3 Path P2 P3 A B y
1 1 1 1 0 0 1 0 0 1 1 49.321
2 1 1 2 0 1 2 0 1 1 2 24.386
3 1 1 3 0 2 3 0 2 1 3 37.680

> MCFS71.data = within(MCFS71.data, {fSubj = factor(Subj);
+ fDay = factor(Day); fOrder = factor(Order); fO2 = factor(O2);
+ fO3 = factor(O3); fPath = factor(Path); fP2 = factor(P2);
+ fP3 = factor(P3); fA = factor(A); fB = factor(B) })

> # ReML
> library(lmerTest)
> model1 = lmer(y ˜ fO2 + fP2 + fA + fO3 + fO2:fO3 + fP3 + fP2:fP3
+ + fB + fA:fB + (1|fSubj) + (1|fSubj:fDay),
+ data=MCFS71.data)
> summary(model1)

...
Random effects:
Groups Name Variance Std.Dev.
fSubj:fDay (Intercept) 28.2 5.31
fSubj (Intercept) 64.0 8.00
Residual 93.0 9.64

...

> anova(model1)

Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
fO2 23 23 1 8.5 0.25 0.63172
fP2 174 174 1 8.5 1.87 0.20643
fA 17 17 1 8.5 0.19 0.67688
fO3 8 4 2 34.6 0.04 0.95807
fP3 1976 988 2 34.6 10.63 0.00025
fB 860 430 2 34.6 4.62 0.01660
fO2:fO3 69 35 2 34.6 0.37 0.69270
fP2:fP3 26 13 2 34.6 0.14 0.87176
fA:fB 146 73 2 34.6 0.79 0.46336

One could also generate pairwise comparisons for the AB combinations by using A:B as the effect

in an lsmeans statement, as follows.
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Table 19.31 R program and output, continued, for the mobile computing field study experiment

> # Consolidating tests for Order and Path
> model2 = lmer(y ˜ fOrder + fPath + fA + fB + fA:fB + (1|fSubj)
+ + (1|fSubj:fDay), data=MCFS71.data)
> anova(model2)

Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom

Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
fOrder 98 20 5 31.1 0.21 0.9555
fPath 2184 437 5 31.1 4.70 0.0026
fA 17 17 1 8.5 0.19 0.6769
fB 860 430 2 34.6 4.62 0.0166
fA:fB 146 73 2 34.6 0.79 0.4634

> # Multiple comparisons
> library(lsmeans)
> lsmA = lsmeans(model1, ˜ fA)
> summary(contrast(lsmA, method="pairwise", adjust="none"),
+ infer=c(T,T), level=0.95)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 -1.3631 3.1606 8.98 -8.5149 5.7887 -0.431 0.6764

> lsmB = lsmeans(model1, ˜ fB)
> summary(contrast(lsmB, method="pairwise", adjust="none"),
+ infer=c(T,T), level=0.95)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 8.1957 2.8360 35.39 2.4406 13.95082 2.890 0.0065
1 - 3 1.6903 2.7837 35.02 -3.9608 7.34143 0.607 0.5476
2 - 3 -6.5054 2.8360 35.39 -12.2605 -0.75034 -2.294 0.0278

lsmAB = lsmeans(model1, ˜ fA:fB)
summary(contrast(lsmAB, method="pairwise", adjust="bon"),

infer=c(T,T), level=0.95)

However, only the Bonferroni method of multiple comparisons would be applicable, since these com-

parisons involve a mix of with-and between-day comparisons, even before an observation was lost,

so there would not be a common variance estimator for all of these pairwise comparisons. Also, the

corresponding variance estimators would generally be composite variance estimators, in which case

Satterthwaite’s approximation would be used.

Exercises

1. Drug experiment

An experiment designed as a split-plot design was described by W.M. Wooding in the Journal of

Quality Technology in 1973. The experiment concerned the evaluation of eight drugs (factor A at

a = 8 levels) for the treatment of arthritis. A second factor was the dose of the drug (factor B at

b = 2 levels), and the third factor was the length of time (factor C at c = 2 levels) that a mea-

surement was taken after injection by a substance known to cause an inflammatory reaction. The
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Table 19.32 Fluid (milliliters) in pleural cavity for the drug experiment

Block I

Whole Dose Time Drug A

Plot B C 1 2 3 4 5 6 7 8

1 1 1 5.7 8.6 6.9 6.6 6.7 7.4 5.7 6.7

2 1 2 8.4 9.6 9.3 11.1 12.5 8.7 9.3 9.5

3 2 1 5.1 7.2 6.8 6.4 6.6 8.7 6.7 7.0

4 2 2 7.3 8.7 7.9 6.9 8.9 9.5 8.3 11.3

Block II

Whole Dose Time Drug A

Plot B C 1 2 3 4 5 6 7 8

5 1 1 5.8 6.8 7.0 8.5 7.8 7.3 6.4 8.5

6 1 2 9.1 10.8 6.9 12.2 9.9 10.4 10.6 10.5

7 2 1 5.4 7.9 8.0 6.4 8.4 7.1 6.4 7.2

8 2 2 5.3 10.4 8.2 8.1 10.9 9.8 8.4 14.6

Source Wooding (1973). Reprinted with Permission from Journal of Quality Technology c© 1973 ASQ, www.asq.org

experimental units used in the study were n = 64 rats. The response was the amount of fluid (in

milliliters) measured in the pleural cavity of an animal after having been administered a particular

treatment combination.

In many pharmacological studies, time of day has an effect on the response due to changing labo-

ratory conditions, etc. Consequently, the experiment was divided into blocks, whole plots and split

plots. The blocks were of size 32, each set of 32 observations being measured on a single day. Each

treatment combination was measured once per day. Each day was then subdivided into 4 whole

plots of size 8, where the eight measurements within a whole plot were taken fairly close together

in time.

Since the effect of the drug (A) was of primary importance, and since the effects of B and C were of

interest only in the form of an interaction with A, the main effects of B and C and the BC interaction

were confounded with the whole plots. The data are shown in Table 19.32, and the experimenter

used the logarithms of the data in his analysis. Notice that the design for A on the split plots is

a randomized block design, and the design for the BC combinations on the whole plots is also a

randomized block design.

(a) Write out a model for this experiment.

(b) Calculate an analysis of variance table using the logarithms of the data. Distinguish between

the effects measured on the whole plots and those measured on the split plots. Identify the

whole-plot error and split-plot error.

(c) Test any hypotheses of interest and state your conclusions clearly.

(d) Examine interaction plots of any important interactions. Calculate a set of 95% confidence

intervals for the differences between pairs of drugs. State your conclusions.

2. Fishing line experiment

The fishing line experiment was run by C. Reynolds, B. Grunden, and K. Taylor in 1996 in order to

compare the strengths of two brands of fishing line exposed to two different levels of stress. Two

different reels of fishing line were purchased for each of the two brands, and sections of line were

cut from each reel. Thus the reels were automatically assigned to the levels of factor A (Brand), and

constituted the four whole plots. There were no blocks in this experiment. The split plots constituted

sixteen sections of line, four cut from each of the four reels (that is, 16 split plots in total, 4 per

whole plot). The split plots were randomly assigned to two different stress levels (stressed, “S”;

www.asq.org
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Table 19.33 Strength of line for the fishing line experiment

Whole plot (Reel) A (Brand) Level of B (weight)

1 1 N (6.70) S (6.40) S (7.20) N (7.00)

2 2 S (8.10) S (8.90) N (8.00) N (6.10)

3 2 S (8.00) S (8.00) N (8.75) N (8.50)

4 1 N (8.50) S (9.50) N (9.70) S (9.40)

nonstressed, “N”) so that each stress level was assigned two split plots per whole plot.

The stress was induced by hanging a brick from the assigned section of line for 14 hours. Although

this did not precisely mimic the stress induced during fishing, it was still expected to give some

information about the strength of the lines under stress.

The strength test was accomplished by hanging a bucket on the end of the line, which was suspended

from a beam. The bucket was gradually filled with water through a small hole in the lid until the

line broke. The data are the resulting weights of water to the nearest 0.01 lb and are shown in

Table 19.33.

(a) Write down a model for this experiment.

(b) Construct an analysis of variance table and test the hypotheses that you think are of interest.

State your conclusions.

(c) If you were to repeat this experiment, suggest ways in which you would try to improve it.

3. Cigarette experiment

The cigarette experiment was run by J. Edwards, H. Hwang, S. Jamison, J. Kindelberger, and

J. Steinbugl in 1996 in order to determine the factors that affect the length of time that a cigarette

will burn. There were three factors of interest:

• “Tar” (factor A) at two levels, “regular” and “ultra-light,”

• “Brand” (factor B) at two levels, “name brand” and “generic brand” (coded 1 and 2),

• “Age” (factor C) at three levels, “fresh,” “24 hour air exposure,” “48 hour air exposure.”

The cigarettes were to be burned in whole plots of size six. This was to help with the difficulty of

recording burning times and to help keep the amount of smoke in the room at a reasonable level.

Table 19.34 Burning times for the cigarette experiment

Whole plot (Time) A (Tar) Levels of BC (Burning times in seconds)

1 1 22 (301) 11 (326) 23 (260) 13 (290) 12 (312) 21 (292)

2 2 11 (329) 12 (331) 13 (285) 21 (306) 22 (258) 23 (276)

3 2 22 (290) 11 (380) 12 (335) 13 (309) 23 (243) 21 (334)

4 2 11 (321) 21 (337) 23 (275) 12 (316) 13 (307) 22 (250)

5 2 22 (308) 11 (345) 21 (307) 23 (288) 13 (321) 12 (330)

6 1 11 (344) 23 (283) 21 (281) 22 (261) 13 (307) 12 (292)

7 1 21 (274) 13 (310) 12 (304) 22 (279) 23 (277) 11 (330)

8 1 13 (302) 12 (325) 22 (301) 11 (338) 23 (270) 21 (297)

9 2 12 (323) 13 (334) 23 (265) 11 (326) 22 (269) 21 (297)

10 1 23 (309) 13 (314) 22 (259) 11 (344) 21 (310) 12 (322)
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There were ten whole plots, and these were assigned at random to the tar levels so that each tar level

was assigned five whole plots.

The six split plots (time slots) in each whole plot were assigned at random to the six brand/age

treatment combinations. Marks were made across the seam of each cigarette at a given distance

apart. Each cigarette was lit at the beginning of its allotted time slot, and the time taken to burn

between the two marks was recorded. The data are shown in Table 19.34.

(a) Write down a model for this experiment.

(b) Construct an analysis of variance table and test the hypotheses that you think are of interest.

State your conclusions.

(c) Use Tukey’s method to examine the pairwise differences in the effects on burning time of the

six BC treatment combinations (averaged over tar levels).

(d) Examine the linear and quadratic trends of burning time due to different ages, for each brand

separately.

(e) State your conclusions about the experiment, including your choice of overall significance levels

and overall confidence levels.

4. Injection molding experiment, continued

The injection molding experiment, introduced in Exercise 10 of Chap. 15, was run in order to

examine the effect of six factors on the shrinkage of a part produced by injection molding. The six

factors were injection velocity (factor A), cooling time (factor B), barrel zone temperature (factor

C), mold temperature (factor D), hold pressure (factor E), and back pressure (factor F). Each factor

had two levels coded 0 and 1. The treatment combinations, which are shown in Table 15.56, p. 555,

were not completely randomized. The levels of factor D were time-consuming to change, so for the

first four observations D was held at its low level and the combinations of the other factors were

randomly ordered. For the last four observations, D was held at its high level and the combinations of

the other factors were randomly ordered. Thus we can think of this design as having two whole plots

assigned to the two levels of D, and having four split plots nested within each whole plot assigned

at random to combinations of levels of A, B, C , E , and F . Table 19.35 contains the corresponding

split plot design and mean lengths. Let σ2
W and σ2

S denote the variances of the random whole-plot

and split-plot effects, respectively.

(a) Which fixed effects can be estimated? Compute their estimates.

(b) Which variance components can be estimated? Compute their estimates.

(c) Is it possible to analyze this experiment in a sensible way? If so, present your results.

Table 19.35 Mean lengths for the injection molding experiment

Whole plot Split plot A B C D E F Mean length

1 1 0 0 0 0 0 0 2

2 0 1 1 0 0 1 46

3 1 0 1 0 1 0 108

4 1 1 0 0 1 1 128

2 1 0 0 0 1 1 1 73

2 0 1 1 1 1 0 105

3 1 0 1 1 0 1 53

4 1 1 0 1 0 0 58

http://dx.doi.org/10.1007/978-3-319-52250-0_15
http://dx.doi.org/10.1007/978-3-319-52250-0_15
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Table 19.36 Split-plot design and times (in seconds) for the UAV experiment: situation awareness comprehension

B (Similarity) 1 2

C (Complexity) 1 2 3 4 1 2 3 4

A (Cue) W (Subject)

1 1 20 21 27 32 23 21 30 28

2 24 19 33 35 24 23 32 30

3 19 22 28 33 21 20 34 31

4 30 27 37 30 26 24 31 33

5 25 24 35 38 28 27 33 30

6 22 20 40 41 26 25 29 37

7 28 23 34 36 28 26 37 34

8 21 26 33 34 24 28 34 40

2 1 8 9 11 9 7 7 8 8

2 10 8 13 13 12 8 18 10

3 11 9 15 14 9 10 15 18

4 8 9 12 18 8 12 8 9

5 7 10 17 13 12 12 12 17

6 9 7 13 12 10 7 12 10

7 11 12 10 11 13 8 10 8

8 10 11 15 13 7 13 9 8

Source Mahadevan (2009). Copyright c© 2009 Sriram Mahadevan. Reprinted with permission

5. UAV experiment, continued

The UAV experiment, introduced in Sect. 19.6, was run using a 22 × 4 split-plot design with 16

subjects (W ) as whole plots, with two levels of cue condition (A) assigned to whole-plots, and with

2 × 4 combinations of levels of task similarity (B) and task complexity (C) assigned to split plots.

Another response variable measured by the experimenter was the time taken to perform situation

awareness comprehension tasks in the primary task, yielding the data shown in Table 19.36. Using

model (19.6.16), p. 715, conduct the following analyses.

(a) Construct an analysis of variance table. For each main effect and interaction in the treatment

factors, determining which effects are significant at the 1% level.

(b) Construct a 95% confidence interval for the main effect of cue, and interpret the results.

(c) If the three-factor interaction is significant, then compare the effect of cue at each combination

of the other two factors. Otherwise, if the factor cue interacts significantly with either of the

other treatment factors, then compare the effect of cue at each level of each factor with which

cue interacts significantly. Use individual 99% confidence intervals.

6. UAV switch experiment, continued

The UAV switch experiment, introduced in Sect. 19.8.3, was run using a 2×2 split-plot design with

16 subjects as whole plots, with two levels of alert type (A) assigned to whole-plots, and with two

levels of complexity (B) assigned to split plots. Main effects and interactions for A and B were all

significant, but the primary interest is in comparing the effects of the levels of A. Use the approach

analogous to the first call of PROC GLM in Table 19.19 to do the following.

(a) Construct a 95% confidence interval for the main effect of alert type, and interpret the results.

(b) For each level of complexity, estimate the difference in effects of the two levels of alert type.

Determine the variance of each of the two corresponding pairwise comparison estimators,
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Table 19.37 Alert detection times (in seconds) for UAV switch experiment

A (Alert type) B (Complexity) W (Subject)

1 2 3 4 5 6 7 8

1 1 5 6 4 6 5 5 5 6

2 10 10 6 8 6 6 6 6

2 1 6 5 4 5 5 4 6 6

2 5 6 4 5 5 4 6 5

Source Mahadevan (2009). Copyright c© 2009 Sriram Mahadevan. Reprinted with permission

compute the corresponding estimated standard errors, and use Satterthwaite’s approximation

to compute the approximate number of degrees of freedom associated with each estimated

standard error.

(c) Using the results of part (b), construct individual 99% confidence intervals for the difference in

effects of the two levels of alert type for each level of complexity. Interpret the results.

7. UAV switch experiment, continued

The UAV switch experiment, introduced in Sect. 19.8.3, was run using a 2 × 2 split-plot design

with 16 subjects as whole plots, with two levels of alert type (A) assigned to whole-plots, and

with two levels of complexity (B) assigned to split plots. Another response variable measured by

the experimenter was the alert detection time (in seconds), yielding the data shown in Table 19.37.

Using model (19.8.20), p. 734, conduct the following analyses.

(a) Construct an analysis of variance table. For each main effect and interaction in the treatment

factors, determining which effects are significant at the 1% level.

(b) Construct a 95% confidence interval for the main effect of alert type, and interpret the results.

(c) For each level of complexity, compare the effects of the two levels of alert type, using individual

99% confidence intervals.

8. Mobile Computing Field Study, continued

The Mobile Computing Field Study, introduced in Sect. 19.7, was run using a 2×3 split-plot design

with 12 subjects as blocks, 24 days as whole plots, three runs per day as split plots, two display types

(A) assigned to whole-plots, three visual presentation formats (B) assigned to split-plots, six runs

per subject, and utilizing six paths. Another response variable measured by the experimenter was the

time (in minutes) to navigate the path, yielding the data shown in Table 19.38. Using model (19.7.18),

p. 718, conduct the following analyses, estimating the missing value and utilizing it in the analysis.

(a) Estimate the missing value.

(b) Construct an analysis of variance table analogous to Table 19.12. For each main effect and

interaction in the treatment factors, determining which effects are significant at the 1% level.

(c) Compare the visual presentation formats using simultaneous 99% confidence intervals and

Tukey’s method. Interpret the results.
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Table 19.38 Mobile computing field study: time (in minutes) for each subject (Subj), day, run order, and path-treatment

combination (PAB), with one observation missing

Subj Day 1 Day 2

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

PAB Time PAB Time PAB Time PAB Time PAB Time PAB Time

1 111 15.633 212 11.717 313 13.550 421 11.900 522 11.817 623 16.517

2 213 13.767 311 13.867 112 11.233 523 10.533 621 11.966 422 10.633

3 312 11.150 113 13.167 211 12.633 622 9.367 423 10.350 521 9.750

4 121 11.867 222 8.600 323 8.700 411 10.400 512 9.117 613 10.067

5 223 10.183 321 11.600 122 8.350 513 16.667 611 9.783 412 7.600

6 322 7.650 123 9.667 221 12.417 612 11.400 413 14.900 511 10.350

7 421 9.233 522 8.700 623 12.083 111 10.700 212 7.833 313 9.050

8 523 11.130 621 8.717 422 7.967 213 8.867 311 8.917 112 6.667

9 622 12.133 423 12.800 521 12.433 312 11.767 113 12.367 211 12.983

10 411 18.150 512 10.483 613 13.370 121 14.100 222 10.217 323 11.583

11 513 10.883 611 15.117 412 10.833 223 16.783 321 15.333 122 12.483

12 612 9.567 413 16.450 511 11.217 322 . 123 10.567 221 10.517

Source Wesler (2001). Copyright c© 2001 Mary Mc. Wesler. Research was performed under U.S. Army Research

Laboratory, Federated Laboratory Research Consortium (DAAL01-96-0003) directed by Mr. Bernie Corona. Reprinted

with permission

9. Mobile Computing Field Study, continued

The Mobile Computing Field Study was introduced in Sect. 19.7, and data on an additional response

variable, time, was provided in Exercise 8. Using model (19.7.18), p. 718, conduct the following

analyses of the response variable time, using only the 71 observations available—namely, without

estimating and using the missing value. If using SAS software, you may adapt the program in

Table 19.21; if using R, you may adapt the program in Tables 19.30 and 19.31.

(a) Provide the resulting variance component estimates.

(b) Test for significance of each treatment factor main effect and interaction. Report the observed

significance level of each test, and interpret the results.

(c) Using an appropriate method of multiple comparisons, construct simultaneous 99% confidence

intervals for pairwise comparison of the visual presentation formats (B). Interpret the results.
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20.1 Introduction

All of the experiments described in the previous chapters are physical experiments where the exper-

imenter can work directly with the treatments and experimental material. The experimenter makes

an assignment of experimental units to the levels of the treatment factors, possibly including blocks,

and then measures the corresponding responses. Since it is not possible to control every single vari-

able that influences the scientific process under consideration, all measurements necessarily include

random variability. Statisticians have developed numerous methods to mitigate the effects of uncon-

trolled variation on the study conclusions. For example, Chap. 1 introduced replication, blocking, and

randomization. These standard techniques of physical experiments allow an experimenter to increase

precision and decrease bias.

In some situations, however, it is economically, ethically, or temporally not possible to run a sta-

tistically appropriate physical experiment. Instead, the following scenario might be feasible. Suppose

that

(i) the physical process can be described by a mathematical model (for example, a system of differ-

ential equations),

(ii) computer code (called a simulator) can be written to compute the response from the mathematical

model, and

(iii) computational methods exist for working with this model (for example, solving differential equa-

tions) within a reasonable timeframe.

In this scenario, a researcher can conduct a computer experiment by running the computer code, which

serves as a proxy for the physical process, to compute a “response” at any combination of values of the

treatment factors, which are now called input combinations, or input points, or sometimes shortened

to inputs. We use x to represent an input combination.

Example 20.1.1 A Real Experiment—Prosthetic Elbow Experiment

Many biomedical engineers use computer experiments to help with the engineering design of prosthetic

devices. For example, Hayeck (2009) studied the effects of four implant position variables on the

functioning of a total elbow replacement prosthetic device. One of the responses of interest was a

measure of principal compressive strain in the bone.

© Springer International Publishing AG 2017
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The input variables were the tip displacement (x1), the rotation of the implant axis about the lateral

axis at the tip (x2), the rotation of the implant axis about the anterior axis at the tip (x3), and the rotation

about the implant axis (x4). The variable x1 was measured in millimeters, while x2, x3, and x4 were

measured in degrees. To conduct an experiment, one would need to observe the response y at various

combinations x = (x1, . . . , x4) of the input variables. It would be ethically questionable to carry out

this experiment on patients, since some input combinations of interest may prove harmful. However, as

described by Hayeck (2009), the influence of these four variables on the functioning of the prosthetic

device could be described by a mathematical model and could be implemented in computer code, and

so a computer experiment could be conducted. �

A key difference between computer experiments and physical experiments is that many computer

experiments are “deterministic”. In other words, if an experimenter runs the computer code twice at the

same input combination x, the same response y will be observed both times. A deterministic computer

code has no random variability, and may exhibit an unknown, and/or highly complex, functional

relationship, y = f (x). The lack of variability eliminates any benefit of replication and, further, since

all the input variables to the code are known and can be controlled, randomization and blocking are

likewise unnecessary.

Some deterministic computer codes are very computationally intensive—perhaps requiring hours

or days for a computer to solve the underlying mathematical model to produce each response value—so

time constraints limit the number of runs or observations that can be taken. Given outputs y1, y2, . . . , yn

from a limited number of runs of the computer code (taken at input combinations x1, x2, . . . , xn ,

respectively), a goal of a computer experiment is to fit a model that can generate good response

predictions relatively rapidly throughout the set of possible input combinations. The set of possible

input combinations is called the input space or design space. If the fitted model, f̂ (x) say, provides a

good approximation to the computer code function f (x) throughout the design space, and if f̂ (x) can

be computed quickly as compared to running the cumbersome computer code, then the fitted model

f̂ (x) can be used to investigate the behavior of the computer function f (x) over the input space. The

fitted model is called an emulator since it “emulates” the output of the computer code.

In the prosthetic elbow experiment in Example 20.1.1, it would be possible to use the fitted model

f̂ (x) to find a region of inputs x that yield relatively low estimates f̂ (x) of principal compressive

strains in the bone, and finding this good region with respect to f̂ (x) may be the end of the study. That

said, having pinned down this good region of inputs x with respect to f̂ (x), but knowing that f̂ (x)

merely approximates the computer code function f (x), one might make some additional runs of the

computer code using input combinations x in or around this good region. With this additional data,

a refitted model f̂ (x) should better approximate the computer code function f (x) in the previously

identified good region of inputs, allowing one to re-examine the effects of the inputs in this region.

Better yet, since the computer code function y = f (x) is only a proxy for the true physical situation,

having pinned down a good region of inputs with respect to either f (x) or f̂ (x), it may then be feasible,

both morally and practically, to run a physical experiment with variable settings x in this good region

to study the effects of the input variables on principal compressive strains in the bone directly. This

would be done using methods of physical experiments presented in earlier chapters.

For computer experiments, statisticians have developed highly flexible statistical models to emulate

simulator output. These are typically smooth “interpolators”, in the sense that they provide a fitted model

f̂ (x) which is relatively smooth (no sudden jumps) and, since the observed data are deterministic, f̂ (x)

passes through, or interpolates, the n observed data points (xi , yi ); in other words, f̂ (xi ) = f (xi ) for

the n observed input combinations x1, . . . , xn .



20.2 Models for Computer Experiments 767
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20.2 Models for Computer Experiments

Since the precise functional relationship y = f (x) between the inputs and the response in a determin-

istic computer experiment is usually unknown a priori, and is potentially highly non-linear, we require

the model for the outputs to be very flexible as well as to interpolate the data. While the complete

treatment of the technical details behind the statistical models of computer experiment data is beyond

the scope of this book, the intuition behind them is quite appealing and is explained in the following

example.

Example 20.2.1 One Predictor

Suppose n = 7 runs of a computer code yield the following data points, written as the pairs (xi , yi ),

i = 1, . . . , 7: (0.06, 0.33), (0.18,−0.47), (0.35, 0.23), (0.52,−0.12), (0.69, 0.06), (0.74, 0.01),

(0.95, 0.01). These seven points are plotted in Fig. 20.1 as dark circles. While the relationship

y = f (x) intrinsic in the computer code would be unknown to us, for sake of illustration, let it

be y = e−4x cos(6πx). The solid curve in Fig. 20.1 represents this true but unknown relationship

between x and y, and we want to estimate it based on the seven data points. Suppose we could use the

seven data points to somehow obtain a fitted model (emulator), ŷ = f̂ (x), which we could compute for

any value of x in the input space. Then to “estimate” this unknown relationship y = f (x), we could

use the fitted model to make predictions f̂ (x) at a grid of x values, such as x = 0, 0.01, 0.02, . . ., 1.

Plotting these points (x, f̂ (x)) would approximate the unknown solid curve.

To fit a model with the desired characteristics, consider how we might predict y at any unobserved

input point x . We want the fitted model to be an interpolator—namely, for any of the observed points

(x, y), we want the model prediction ŷ = f̂ (x) to match the observed value y = f (x) of the computer

code. We also want the fitted model to be relatively smooth. Consider obtaining a prediction ŷa at, say,

the unobserved input point xa = 0.36. In the absence of knowing the nature of the true relationship, the

model will “look around” in the x space and it will notice that xa = 0.36 is very close to the observed

input point x3 = 0.35, and is between x3 and x4 = 0.52. Since xa is very close to x3, ya should be

very close to the observed value y3 if the response is smooth and without “spikes”. Hence, the model

will estimate ya by a value ŷa that is close to y3 = 0.23, and perhaps a little smaller to fall between y3

and y4 = −0.12.

Consider now calculating ŷ at a different input point xa = 0.45. The two input points closest to

xa = 0.45 for which the computer code was observed are again x3 = 0.35 and x4 = 0.52. Since xa is

approximately halfway between x4 and x3, the model could assign roughly the average of y3 and y4
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as a value for ŷ(xa). Or, since xa is not too close to either x3 or x4, ȳ might be a reasonable prediction

of ya . Consider this latter notion further.

To formulate a simple predictor, we might consider ȳ and the deviations yi − ȳ, i = 1, 2, . . . , n.

For example, to make a prediction for a particular input xa , suppose we use

ŷ(xa) = ȳ +

n
∑

i=1

wi (yi − ȳ),

where
∑n

i=1 wi (yi − ȳ) represents a weighted average of the deviations from the mean. The weight wi

should depend on the relative distance between xa and xi , with more weight associated with the inputs

xi that are closer to xa . If only one input point, say x p, is very close to xa , this could result in wp ≈ 1

with the rest of the weights negligible, in which case one would obtain ŷa ≈ ȳ + (yp − ȳ) = yp.

For an input xa sufficiently far away from all of the xi , all weights wi could be very small, in which

case one would obtain ŷ(xa) ≈ ȳ + 0 = ȳ. The model described in Sect. 20.3 has features similar to

these. �

20.3 Gaussian Stochastic Process Model

The model most commonly employed in the analysis of computer experiments is called the Gaussian

Stochastic Process model (GaSP). The model specifies the deterministic computer code function y =

f (x) as the realization of a “Gaussian stochastic process”. Although the code is deterministic, this

statistical model provides a probabilistic framework for the response at unobserved input combinations

while modeling the unknown output surface as being relatively smooth and responses at nearby inputs

as being highly correlated. The GaSP model takes the form

Y (x) = β0 + Z(x), (20.3.1)

which is similar to a regression model in Chap. 8 but with a different type of error variable. Here, Y (x)

denotes the response at input combination x = (x1, x2, . . . , xd), and β0 is an unknown constant. Z(x) is

assumed to be a Gaussian stochastic process, which means that, for any choice of ℓ input combinations,

x1, x2, . . . , xℓ, the random variables Z(x1), Z(x2), . . . , Z(xℓ) have a multivariate normal distribution

(so, in particular, they are generally not independent). The assumptions on the model are as follows:

(i) Z(x) has mean zero and constant variance σ2 for any input combination x, so Z(x) ∼ N (0,σ2)

and

Y (x) ∼ N (β0,σ
2).

(ii) For any two inputs xi and x j , the correlation between the responses Y (xi ) and Y (x j ) is denoted

by R(xi − x j |ξ), where R(xi − x j |ξ) is a function of the distance between the inputs xi and x j

(in d-dimensional space), and depends on a set of unknown parameters which, for simplicity, we

write as ξ.

Thus,

Cov(Y (xi ), Y (x j )) = Cov(Z(xi ), Z(x j )) = σ2 R(xi − x j |ξ). (20.3.2)

http://dx.doi.org/10.1007/978-3-319-52250-0_8
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Quantifying the correlation between Y (xi ) and Y (x j ) by taking into account the distance between xi

and x j is a non-trivial problem. One possible structure that one might use is the “Gaussian correlation

function”, which is given by

R(xi − x j |ξ) =

d
∏

k=1

e−θk (xik−x jk)
2

(20.3.3)

= e−[θ1(xi1−x j1)
2+θ2(xi2−x j2)

2+···+θd (xid−x jd )2],

where all θk > 0, and where ξ is the set of parameters (θ1, θ2, . . . , θd) that need to be estimated

from the data. This correlation structure yields a relatively smooth model. Replacing the exponent 2

in (xi1 − x j1)
2 by some positive number p smaller than 2, would result in a less smooth model.

Consider the case of one predictor (d = 1). Then the notation simplifies, and the correlation

function (20.3.3) reduces to R(xi − x j |θ) = e−θ(xi −x j )
2
. For any fixed value of θ > 0, the correlation

e−θ(xi −x j )
2

starts to approach zero as the absolute value |xi − x j | of the distance between xi and x j

gets very large, indicating that Y (xi ) and Y (x j ) are essentially independent so need not be similar. On

the other hand, as the distance between xi and x j gets very small, the correlation starts to approach 1,

indicating that Y (xi ) and Y (x j ) are strongly correlated and so should be similar. Taken to the extreme,

if xi = x j , the correlation between Y (xi ) and Y (x j ) is 1, so Y (xi ) = Y (x j ), i.e. two responses at the

same input yield the same value, as desired. Exercise 1 asks the reader to investigate the effect of θ

and the absolute distance |xi − x j | on the size of the correlation between two responses while using

the Gaussian correlation function. Exercises 2–4 show some alternatives to the Gaussian correlation

function which are sometimes used in practice.

Under model (20.3.1) and assumption (i), the mean response is simply a constant, β0. While β0

could be replaced with a more complicated regression model as in Chap. 8 or 16, doing so typically

does not improve the predictive performance of the model for reasonably smooth surfaces (For further

reading, see Sacks et al. 1989). Using appropriate methods of prediction, the correlation structure of the

Gaussian stochastic process model with constant mean apparently provides adequate model flexibility

for reasonably smooth surfaces such as that of Fig. 20.1.

The parameters (β0,σ
2, θ1, . . . , θd) in (20.3.1)–(20.3.3) are unknown so need to be estimated.

There are a few different ways to estimate these, but we shall use the most common one—maximum

likelihood estimation, since such estimators have excellent statistical properties. An in-depth discus-

sion of maximum likelihood estimation is beyond the scope of this book, but maximum likelihood

estimates can be computed using appropriate statistical software, and we will rely on software for the

computations (as in Sects. 20.6 and 20.7).

For the interested reader, here is the idea of maximum likelihood estimation. Under model (20.3.1),

the response variables Y (x1), . . . , Y (xn) follow a multivariate normal distribution which depends on

the values of the parameters β0,σ
2, θ1, . . . , θd . For given values of these parameters, the probability

density function (pdf) is a function of the possible data (output) points y(x1), . . . , y(xn). One is more

likely to observe data values where the pdf is larger, and most likely to get data where the pdf is at

or near its maximum. Conversely, if we have the data y = (y(x1), . . . , y(xn)) but the parameters

are unknown, it seems reasonable to estimate the parameters by values that would correspond to the

observed data being as likely as possible. If we estimate the parameters by values that maximize the

likelihood of the observed data, these are maximum likelihood estimates, and this is maximum likelihood

estimation.

Once estimates of the model parameters have been obtained, the next step is to construct a

predictor Ŷ (xa) of a response Y (xa) at any new unobserved input point xa (cf. Chap. 8). The

http://dx.doi.org/10.1007/978-3-319-52250-0_8
http://dx.doi.org/10.1007/978-3-319-52250-0_16
http://dx.doi.org/10.1007/978-3-319-52250-0_8
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predictor should be easily computable but sufficiently sophisticated to utilize the observed data

y = (y(x1), y(x2), . . . , y(xn)). The predictor Ŷ (xa) = β̂0, for example, would be too simplistic.

If the correlation parameters θk were known, we could compute and use the best linear unbiased

predictor—namely, the unbiased predictor that minimizes the mean squared error of prediction. Since

the correlation parameters θk are unknown, what we can do is compute their maximum likelihood

estimates, then use what would be the best linear unbiased predictor if the estimated correlations θk

were the true values. The resulting predictor is called the empirical best linear unbiased predictor

(eBLUP).

It can be shown that the eBLUP of Y (xa) is Ŷ (xa) = E[Y (xa)| y], which is the mean of Y (xa)

conditional on the observed data y at the observed input combinations x1, . . . , xn . For model (20.3.1),

the formula for the eBLUP of Y (xa) is most easily written in terms of vectors and matrices. Readers

who do not have an algebra background can jump to (20.3.6) and leave it to computer software to do

the needed calculations. The formula for the eBLUP is

Ŷ (xa) = β̂0 + r̂
′
R̂

−1
( y − 1β̂0), (20.3.4)

where r̂ is an n×1 vector whose i th element r̂i = R(xa −xi |ξ̂) is the estimated correlation between the

response Y (xa) at a new input combination xa and the i th previous response Y (xi ), R̂ is a n ×n matrix

whose i j th element R̂i j = R(xi −x j |ξ̂) is the estimated correlation between observed responses Y (xi )

and Y (x j ), 1 is n × 1 vector of 1’s, and β̂0 = (1′ R̂
−1

1)−11′ R̂
−1

y is the generalized least squares

estimate of β0.

Under model (20.3.1), the uncertainty about the predicted value can be estimated via the estimated

variance of the eBLUP given by

ŝ2(xa) = σ̂2

[

1 − r̂
′
R̂

−1
r̂ +

(1 − 1′ R̂
−1

1)2

1′ R̂
−1

1

]

. (20.3.5)

It can be shown algebraically that s2(x) = 0 for any x for which the response Y (x) was already

observed, i.e. the model will interpolate the data.

For each possible unobserved input combination xa , the 100(1 − α)% prediction interval can be

calculated as

Ŷ (xa) ± zα/2ŝ(xa) . (20.3.6)

There are two key observations to be made about the predictor Ŷ (xa), whose form is shown

in (20.3.4). First, the predicted value at a new input site xa is the sum of two parts. The first part

is the estimated overall mean β̂0. The second part is a weighted average of the differences y(xi ) − β̂0

between each observed response y(xi ) and the estimated overall mean β̂0. In general, the largest weight

that would be calculated in (20.3.4) is associated with the term y(xi ) − β̂0 corresponding to the xi

that is closest to xa ; the second largest weight is associated with the term corresponding to xi that is

second closest to xa , etc. So, similar to Example 20.2.1, the quality of the prediction at xa is a function

of the distances between xa and the n points xi for which we have already observed the response. If

we have not observed any responses in the vicinity of an input combination xa , then our prediction

Ŷ (xa) will default to a value close to β̂0 and may be a poor estimate of Y (xa). On the other hand, if

we have collected quite a few observations in a particular region of the input space, we can expect to

predict the unknown surface quite well in that region.
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Fig. 20.2 True unknown,

observed, and predicted

relationships between x

and y for Example 20.3.1
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(b) n = 10

The second important observation is that the predictor Ŷ (xa) shown in (20.3.4) is an interpolating

predictor. In other words, suppose that xa is one of the inputs for which we have observed the response,

say xa = x p. Then our predictor will return the observed value y(x p); that is,

Ŷ (x p) = y(x p) .

This behavior from our predictor is desirable because of the deterministic nature of the computer code.

If we know that we have observed a response without an error and that we will observe the same

response every time we run the computer code for the same input xi , then we would like our predictor

to predict the same value for the response.

Example 20.3.1 One Predictor, continued

As in Example 20.2.1, suppose the true but unknown input-output relationship is described by a

dampened cosine curve, y = f (x) = e−4x cos(6πx), for 0 ≤ x ≤ 1, as shown in Fig. 20.1. This

relationship is shown again as the solid line in Fig. 20.2. Suppose we try to estimate the unknown

relationship based on the seven observations (xi , yi ) that were considered in Example 20.2.1—namely,

(0.06, 0.33), (0.18,−0.47), (0.35, 0.23), (0.52,−0.12), (0.69, 0.06), (0.74, 0.01), (0.95, 0.01). These

seven data points are shown as the solid dots in Fig. 20.2(a). Using software (see Sects. 20.6 and 20.7)

to fit the GaSP model from (20.3.1) with the Gaussian correlation function (20.3.3) and d = 1, we

obtain the maximum likelihood estimates σ̂ = 0.0582, β̂0 = 0.0047, and θ̂ = 271.95. Using (20.3.4)–

(20.3.6), the predictions and 95% prediction intervals can then be calculated for x = 0.01, 0.02, . . . , 1.

The three dashed lines in Fig. 20.2(a) show the predicted curve (the darker middle curve) and the

prediction intervals. We can see that our model does a particularly poor job of predicting the true

relationship for x values roughly between 0.8 and 0.9. Since there are no observations in this area, the

prediction tends to regress to (i.e. predict values closer to) the estimated mean β̂0 = 0.0047.

Figure 20.2(b) shows the same information as Fig. 20.2(a), but having fit the model using a set of n =

10 different observations. The maximum likelihood estimates are now σ̂ = 0.0942, β̂0 = 0.0551, and

θ̂ = 196.17. Figure 20.2(b) indicates a dramatic improvement in the model’s prediction performance.

Thus, we see that good design of the computer experiment can be crucial to good prediction. �
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20.4 Design

For a computer experiment involving n runs and d input variables, a design consists of the n input

combinations x1, . . . , xn to be run, where xi = (xi1, xi2, . . . , xid), i = 1, . . . , n. It is customary to

collect these input combinations into an n × d array or “matrix” X , where the kth row of X shows the

kth input combination, and we refer to such an array as an n × d design X , or an n × d design matrix

X .

The interpretation of the magnitude of the parameters θk in (20.3.3) is related to the scale of the

input xk . More importantly, assessing the sensitivity of the response to the changes in inputs xk and

x j by comparing the magnitudes of θk and θ j associated with those inputs xk and x j can be deceiving

if those inputs are defined on vastly different scales. To avoid the potential pitfalls it is common to

transform the range of each input variable to become [0,1]. This is done by subtracting the minimum

and then dividing by maximum−minimum. For example, if x1 has an original range of possible values

3.5 to 9.6, we subtract 3.5 from every value of x1 and divide by (9.6 − 3.5) = 6.1. From now on, we

will assume that this transformation has been done and that every input variable now has values in the

range [0,1].

20.4.1 Space-Filling and Non-collapsing Designs

The design of a computer experiment—namely, the choice of input combinations x1, . . . , xn for the

computer code—is guided by the deterministic nature of a computer experiment and by the particular

characteristics of the predictor discussed in Sect. 20.3. We expect to predict the unknown surface well

in the regions of input space where we have observed some nearby responses. Therefore, we would like

our initial design to explore the input space “evenly”, so we would like our design to be space-filling.

Designs that are not space-filling will neglect one or more regions of the input space, and we can

anticipate poor prediction of the response in such regions.

For example, consider a computer experiment involving d = 2 input variables and input combina-

tions xi = (xi1, xi2), with 0 < xik < 1 for i = 1, . . . , n; k = 1, 2, listed as the rows of the design

X . Such input combinations correspond to points in a unit square, where a response can be observed.

Consider the two 20-run experimental designs X1 and X2 whose design points (xi1, xi2) are plotted

in Fig. 20.3. Although we have not yet quantified the space-filling idea, the design X1 seems to do

a much better job of exploring the two-dimensional input space than X2. In particular, X2 does not

contain any points (xi1, xi2) such that xi2 > xi1 + 0.4 leaving the upper left region of the input space

unexplored. Hence, based on our previous discussion, the predictor based on X1 should do a better job

of predicting the unknown surface in the upper left region of the input space than the predictor based

on X2.

As previously noted, multiple runs of the computer code at the same input combination x =

(x1, xi , . . . , xd) will yield the same output y(x) due to the deterministic nature of the computer code,

so replicating input points is wasteful. Moreover, when one or more input variables has no effect on the

response, it is beneficial to avoid replicating any input combination for any subset of the input variables

(as explained below). One way to avoid this replication is to ensure that, for each column (i.e. input

variable) of such a design X , the n input values are distinct. Such a design is called a noncollapsing

design. To illustrate this notion, consider the following two design matrices, each for four runs (rows)

with two inputs (columns):
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Fig. 20.3 Two potential

20-run designs for a

computer experiment with
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Fig. 20.4 A collapsing

(X3) and a noncollapsing

(X4) design
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X3 =

⎡

⎢

⎢

⎣

0.2 0.2

0.2 0.8

0.8 0.2

0.8 0.8

⎤

⎥

⎥

⎦

and X4 =

⎡

⎢

⎢

⎣

0.2 0.8

0.4 0.2

0.6 0.6

0.8 0.4

⎤

⎥

⎥

⎦

.

These designs are depicted in Fig. 20.4. We can see that X3 is a collapsing design since both of its

columns contain replicated values, i.e. if we collapse the design points onto either the x1- or x2-

axis, we obtain only two distinct values from the four distinct points. X4 is a noncollapsing design

since neither x1 nor x2 values are replicated. Without any further considerations, one might wonder

what possible problem a collapsing design could cause. Suppose the true, but unknown, response

function is given by y(x1, x2) = exp(−2x2) cos(3πx2). We see that the response does not depend

on the input x1; a fact not known to a researcher before the experiment. Based on the designs X3

and X4, the set of four corresponding observed values are given by y3 = (0.21, 0.06, 0.21, 0.06)

and y4 = (0.06, 0.21,−0.24,−0.36), respectively. The design X3 did not contain any replicated

input combinations—no two rows were the same. Still, due to replication of values of x2 and the

inactivity of x1, we ended up with undesirable replicated responses. One might argue that half of our

computational resources were wasted, since two of the four runs of the computer code did not add any

new information, except perhaps to notice that x1 may not affect the response. To prevent potential

computational wastefulness, and in the light of the fact that we have other tools to identify inactive

inputs, we prefer the design X4.
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Fig. 20.5 Latin hypercube designs

There are several strategies for constructing designs for computer experiments that are noncollapsing

and/or space-filling. The most commonly used approach is that of Latin Hypercube designs, which are

inherently noncollapsing and many are also space-filling. We illustrate these designs below.

20.4.2 Construction of Latin Hypercube Designs

To construct an n × d Latin Hypercube design (LHD), we start by dividing the range [0, 1] of each

input variable into n equal-length “bins”, with divisions at

0, 1/n, 2/n, . . . , (n − 1)/n, 1 .

These bins have midpoints at (2k − 1)/2n for k = 1, 2, . . . , n and, for simplicity, we can use the

midpoints to label the bins. For example, in each of Fig. 20.5(a)–(c), we have n = 5 input points, and

so the bin mid-points for each of x1 and x2 are at

2 − 1

10
= 0.1,

4 − 1

10
= 0.3,

6 − 1

10
= 0.5,

8 − 1

10
= 0.7,

10 − 1

10
= 0.9 . (20.4.7)

In total, there are 52 two-dimensional cells which can be labeled by the pairs of midpoints of the

(x1, x2) bins. Similarly, in general, dividing the ranges of each of d input variables x1, . . . , xd into n

bins leads to nd possible d-dimensional cells; these are called hypercubes and can be labeled using the

sets of bin midpoints for the d input variables.

Next, we want to choose n of these nd cells (hypercubes) to contain a design point in such a way

that there is only one design point in each bin for each individual input variable. The design is then

non-collapsing. For example, if the 5 input points in each of the designs depicted in Figs. 20.5(a)–(c)

are projected onto each axis, it can be seen that they rest on the midpoints (20.4.7) of the 5 bins for

both x1 and x2. One way of achieving such a choice is as follows.

(a) Start with an array X with n rows and d columns where each column contains the integers

1, 2, . . . , n.

(b) For each column separately, randomly order the integers.

(c) Replace each integer k by the corresponding bin midpoint (2k − 1)/2n.
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(d) The i th row of of the randomly ordered X then determines the i th input combination for the

experiment.

Example 20.4.1 5× 2 Latin hypercube designs

Suppose that a design is required with n = 5 input points for a computer experiment where the simulator

has d = 2 input variables. Following the above procedure, each of the d columns of X starts with the

values 1, 2, 3, 4, 5 in order. Each column is randomly ordered and the integers k are replaced by the

bin midpoints (2k − 1)/2n = 0.1, 0.3, 0.5, 0.7, 0.9 to give the final design. Three possible designs are

X1 =

⎡

⎢

⎢

⎢

⎢

⎣

0.1 0.1

0.3 0.3

0.5 0.5

0.7 0.7

0.9 0.9

⎤

⎥

⎥

⎥

⎥

⎦

, X2 =

⎡

⎢

⎢

⎢

⎢

⎣

0.3 0.5

0.5 0.1

0.9 0.7

0.1 0.9

0.7 0.3

⎤

⎥

⎥

⎥

⎥

⎦

, and X3 =

⎡

⎢

⎢

⎢

⎢

⎣

0.5 0.1

0.3 0.5

0.1 0.9

0.9 0.3

0.7 0.7

⎤

⎥

⎥

⎥

⎥

⎦

,

where each row gives the coordinates of an input combination xi = (xi1, xi2). Designs X1, X2, and X3

are the three designs depicted in Fig. 20.5a–c. Since all these designs are LHDs, they are noncollapsing.

By visual inspection, we notice that the design X1 is the least space-filling and does the poorest job

of exploring the input space. Although this design does a really good job of exploring the space along

the main diagonal, that is all that it does well. Since no points are placed away from the main diagonal,

there is no exploration of the input space towards the upper left and lower right corners of the space. If

we use this design to run our experiment, we can expect very poor predictions the further we get away

from the main diagonal. Even though X1 is an LHD, it is clearly not space-filling, so is a poor design

for a computer experiment. Both X2 and X3 do better at space filling, and which is the better of these

two designs is less clear (although a preference will be expressed for X3 in Example 20.4.2). �

To seek a design which is both noncollapsing and space-filling, experimenters often look for a Latin

hypercube design that best satisfies some space-filling property. There is a vast literature describing

many attempts to define what we mean by a “best” design with respect to space-fillingness. One of

the most common approaches is to choose a design which maximizes the distance between the two

closest points in the design. A common measure of distance is the familiar Euclidean distance between

xi = (xi1, . . . , xid) and x j = (x j1, . . . , x jd); that is,

√

√

√

√

d
∑

ℓ=1

(xiℓ − x jℓ)2 . (20.4.8)

Suppose that we have two n × d designs X1 and X2. For each design, we can determine the minimum

distance between pairs of input points. The design with the larger value of this minimum distance

is considered preferable, since choosing a design in this way forces the design points to be far away

from each other and so tends to be more space-filling. Among all possible designs, any design that

maximizes this minimum interpoint distance is called a maximin design.

Example 20.4.2 5× 2 Latin hypercube designs, continued

One could compare the designs X1, X2, and X3 of Fig. 20.5 based on the maximin criterion. The

corresponding interpoint distances (rounded to two decimal places) are shown in Table 20.1. Notice

that the smallest interpoint distance is 0.28 for both X1 and X2, compared with the minimum interpoint

distance of 0.45 for X3. Hence, among these three Latin hypercube designs, X3 is the maximin design.
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Table 20.1 Interpoint distances for the designs of Fig. 20.5

X1 X2 X3

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

x2 0.28 0.45 0.45

x3 0.57 0.28 0.63 0.72 0.89 0.45

x4 0.85 0.57 0.28 0.45 0.89 0.82 0.45 0.63 1.00

x5 1.13 0.85 0.57 0.28 0.45 0.28 0.45 0.85 0.63 0.45 0.63 0.45

If we now look at X1 in Fig. 20.5(b) again, we can see that the two points nearest the x1 axis are close

together in the two-dimensional space, whereas all the points lie further apart in X3 in Fig. 20.5(c),

leading to a slightly better coverage of the design space. �

Exercises 7 and 8 show alternative measures of space-fillingness (“minimax” and “average reciprocal

distance”). There are other measures, too, in the literature. But, in this chapter, we will concentrate

on the most common measure of “maximin”. (For further types of designs, see Santner et al. 2003,

Chaps. 5 and 6).

In practice, to construct a space-filling, noncollapsing design, one would use the aid of a computer.

For example, given the number of runs n and inputs d, one could use the computer to generate

lots (several hundred) Latin hypercube designs X , by using many random orderings of the columns,

compute the minimum interpoint distance for each design, and keep the design with the largest minimum

interpoint distance. Although this may not result in the maximin design, it should result in one that is

close to maximin and which has good space-filling properties. Sections 20.6.1 and 20.7.1 show how to

generate maximin LHDs using the SAS and R software, respectively.

As a final note, design points do not necessarily need to be placed at the midpoint of the cell. One

can place a design point in a randomly chosen location in the cell by adding a random number between

−(2n)−1 and +(2n)−1 to every xi j in X .

20.5 A Real Experiment—Neuron Experiment

One of the authors (Danel Draguljić) was involved in a study aimed at modeling the performance

of neurons. The study, which is described by Rumbell and coauthors in Journal of Computational

Neuroscience in 2016, aimed to improve the fits of conductance-based models to in vitro whole cell

recordings from pyramidal neurons of layer 3 of the prefrontal cortex from young and aged rhesus

monkeys. The neuron’s performance was measured by its firing rate (response, Y ) which was modeled

with either 4 or 8 ion channels resulting in 10 or 23 explanatory variables, respectively, to be considered

in the model.

Table 20.2 shows the data from a simplified model for the firing rates of a neuron at +380 pA

current injection of a young monkey. The simplified model contained two input variables; x1 was the

maximal conductance of the transient sodium, denoted gNaF, and x2 was the maximal conductance of

the delayed-rectifier potassium, denoted gKDR. Both of these variables affect the neuron firing rate.

Both maximal conductances had original ranges between 0.05 and 0.5 mS/cm2, but the gNaF and gKDR

values in Table 20.2 have been scaled to the [0, 1] range, as throughout this chapter. The design chosen

for the input variables was a 30 × 2 Latin hypercube design and is shown in Fig. 20.6(a).

Columns 1 and 2 of Table 20.2 show the first 15 values of the input variables, and columns 4 and

5 show the next 15 values. For a given value of gNaF and gKDR the computer simulator was run for 2

http://dx.doi.org/10.1007/978-3-319-52250-0_5
http://dx.doi.org/10.1007/978-3-319-52250-0_6


20.5 A Real Experiment—Neuron Experiment 777

Table 20.2 The data for the neuron experiment

gNaF gKDR yi gNaF gKDR yi

0.38594 0.21207 33 0.53994 0.83528 41

0.04667 0.45947 0 0.13236 0.93565 1

1.00000 0.44733 46 0.90811 0.58219 46

0.95468 0.33514 44 0.88221 0.09805 39

0.53335 0.79813 41 0.39918 0.55403 36

0.59167 0.60427 41 0.22713 0.67680 34

0.18570 0.37995 31 0.82599 0.00000 13

0.49928 0.24442 36 0.69149 0.06387 36

0.74609 0.39496 42 0.79710 0.01235 19

0.07269 1.00000 0 0.31326 0.12559 30

0.27908 0.27845 32 0.62431 0.63717 41

0.34985 0.51466 35 0.97649 0.86049 48

0.64658 0.89122 43 0.46554 0.76087 39

0.20972 0.71452 34 0.11439 0.31166 34

0.00000 0.95918 0 0.77811 0.15813 39
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Fig. 20.6 The design and the data for the neuron experiment

seconds and the number of spikes, yi , was recorded. These observed firing rates are shown in columns

3 and 6 of Table 20.2 and displayed in Fig. 20.6(b). We can observe that relatively low firing rates occur

for large values of gKDR and small values of gNaF. For example, if we are trying to maximize neuron’s

firing rate, it seems that our best chance lies with values in the upper ranges of both variables.

We would like to use our data to construct an estimator ŷ of Y = f (gNaF, gKDR). The estimator

ŷ would then enable us to identify the regions in the (gNaF, gKDR) space that are associated with

either low or high neuron activity. After fitting the GaSP model (20.3.1) with Gaussian correlation

function (20.3.3), we obtain the maximum likelihood estimates σ̂ = 15.87, θ̂1 = θ̂NaF = 5.03, and
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Fig. 20.7 Observed values

and predicted surface for

the neuron experiment

θ̂2 = θ̂KDR = 50.22, giving β̂0 = 27.61. Using the predictor in (20.3.4), we calculated the values

of Ŷ at a dense grid of input points over a [0, 1] × [0, 1] square. The predicted outputs are shown

as the blue points in Fig. 20.7, together with the original data from the simulator (red points). The

predicted maximum firing rate is 49.11 spikes per 2 seconds and it occurs at the point (gNaF, gKDR) =

(0.86, 0.86). The predicted minimum firing rate is −7.52 spikes per 2 seconds and it occurs at the

point (gNaF, gKDR) = (0, 0.49). We know that firing rate cannot be negative, but there is no intrinsic

mechanism in the GaSP model to prevent it from making negative predictions. At this point, we could

run the simulator at (gNaF, gKDR) = (0, 0.49) and obtain y(0, 0.49), then refit our model using all

30 + 1 observations, and look for the minimum again. Alternatively, if we had been concerned with

avoiding negative predictions, we could have considered transforming our data, say to ln(y), to fit our

model and then exponentiate the predicted values.

In this example, suppose we take two input points x1 and x2 such that x1 = (x11, x12) and x2 =

(x11 + h, x12 + h) for some h > 0. Then, the estimated correlation between Y (x1) and Y (x2) is given

by

R̂(x1 − x2|θ̂1, θ̂2) = e−5.03h2−50.22h2

= e−5.03h2

e−50.22h2

= R̂1(h)R̂2(h).

R̂1(h) and R̂2(h) are shown in Fig. 20.8. Since R̂(x1 − x2|θ̂1, θ̂2) is the product of R̂1(h) and R̂2(h),

Fig. 20.8 indicates that, for all h larger than 0.1, R̂(x1 − x2|θ̂1, θ̂2) ≈ 0 because R̂2(h) ≈ 0. In other

words, suppose that two points are more than 0.1 mS/cm2 apart in the gKDR space then, even if they are

very close in the gNaF space, the observations at those points are essentially treated as uncorrelated.

Here, and in general, we conclude that changes in an input variable xk associated with a large value

of θk will tend to have little impact on the size of the correlation. In other words, as seen by the dotted

line in Fig. 20.8, if θk is large, the two design points have to be extremely close to each other for their

corresponding observations to have sizable correlation.

20.6 Using SAS Software

In this section, we illustrate use of the SAS software for creating Latin hypercube designs (LHDs) and

for analyzing data obtained from computer experiments.
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Fig. 20.8 Correlation as a

function of distance h

between two input points
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20.6.1 Maximin Latin Hypercube Designs

This section shows how to use SAS software to get an LHD that is approximately maximin. The idea

behind constructing a maximin LHD (Mm LHD) is described in Sect. 20.4.2. First, we construct an

n ×d LHD. Second, for the newly constructed LHD we calculate all
(

n
2

)

interpoint Euclidean distances

and then find the smallest one, i.e. we identify the distance between two closest points. And third,

we iterate this process many times and, among many created LHDs, we identify the one with largest

minimum interpoint distance. It is worth noting that the “best” design obtained after running the SAS

code from this section contains the maximum minimum interpoint distance among the number of

designs examined by the code. Another run of the same code with the same inputs might produce a

design with even larger maximum minimum interpoint distance.

The SAS programs shown here are in the form of SAS “macros”. A macro is a piece of SAS

code that can be stored separately and is extremely useful when SAS software has to repeat the same

calculations many times, as it does in the search for the best LHD. Table 20.3 shows a SAS macro.

A macro begins and ends with SAS statements %macro and %mend, respectively. The macro in

Table 20.3 is called createLHD and it has two inputs n and d, which will be provided when the

macro is “called” (implemented). The body of a macro contains SAS statements that can be run many

times by calling the macro which eliminates copying and pasting the statements themselves. Before

being able to use a macro, we have to run the whole macro. Once this is done, the SAS software has

this macro available for use. To then execute the SAS statements within the macro createLHD, we

run for example %createLHD(n = 20, d = 2)where, here, values 20 and 2 have been selected

for n and d. These values can be changed to suit the user’s needs.

Within this macro, the % symbol indicates to the SAS software that this is a segment of the program;

here we have two (nested) loops starting at %do and ending at %end. The & symbol in front of the

variables n, d, i and j indicates that, within the macro, the variables have been assigned specific

values (the last two change as we proceed around the loops). Writing macros is beyond the scope of

this book, but we note that SAS code that is inside of a macro can be taken out and be used with some

necessary clean-up, such as removing the % and & symbols.

The SAS code to find an approximately maximin LHD is shown in the form of three macros in

Tables 20.3, 20.4, and 20.5, respectively. The macro createLHD, shown in Table 20.3, constructs an

LHD with n rows and d columns, where d is the number of inputs to the computer simulator and

n is the required number of outputs. The LHD is constructed by filling each of the d columns with

(2k − 1)/2n for k = 1, 2, . . . , n and then the rows of each column are randomly rearranged using the

ranuni(0) command described in Sect. 3.8.1. To then construct, say, a 20 × 2 LHD, one simply

http://dx.doi.org/10.1007/978-3-319-52250-0_3
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Table 20.3 A SAS program for construction of an LHD

%macro createLHD(n=, d=);

%do i = 1 %to &d;

data temp&i;

%do j = 1 %to &n;

x&i = (2*&j - 1)/(2*&n) + (1/&n)*ranuni(-1) - 1/(2*&n);

ranno&i = ranuni(0);

output;

%end;

run;

proc sort data = temp&i; by ranno&i; run;

data temp&i; set temp&i; drop ranno&i; run;

%end;

data lhd; merge temp1 - temp&d; run;

proc print data = Lhd; run;

%mend createLHD;

runs %createLHD(n = 20, d = 2) line. A 20 × 2 LHD will then be created, printed out to the

SAS Results V iewer window, and stored in the SAS data set called Lhd.

The macro shown in Table 20.4 is mipd. This macro calculates minimum interpoint distance for

a user-provided LHD. For example, if we created an LHD using createLHD macro, we can then

calculate this LHD’s minimum interpoint distance by running %mipd(x = Lhd, d = 2) where

input x is the SAS data set that contains the LHD and d is the number of columns in this LHD. The

minimum interpoint distance will be printed to the Results V iewer window and it will be saved in

the SAS data set Mindist.

In order to create a maximin LHD, we do not have to call the createLHD and mipd macros

explicitly. Macro MmLHD shown in Table 20.5 does all the work for us. In addition to other SAS

statements, MmLHD calls macros createLHD and mipd with the appropriate inputs for each. Even

though we do not call createLHD and mipd directly, we do have to run them before we run and

call MmLHD. The macro MmLHD requires three inputs itself: nrow and ncol define the size of the

LHD (n and d) and the integer iter tells the SAS software how many LHDs we want the SAS

software to create from which to choose the one with largest minimum interpoint distance. If we run

%MmLHD(nrow = 30, ncol = 3, iter = 100) the SAS software will create one hundred

30 × 3 LHDs and it will find the one with the largest minimum interpoint distance. This design with

largest minimum interpoint distance is stored in the SAS data set Best. To see the design Best’s

smallest interpoint distance, we can run %mipd(x = Best, d = 3).

All designs created by MmLHD have input points placed at random within the selected LHD

cells. If we want points placed at the midpoints of the selected cells, we have to remove +

(1/&n)*ranuni(-1) - 1/(2*&n) from the fifth line in the macro createLHD.

After creating the approximate maximin LHD, the simulator can be run with input combinations x

defined by the n rows of the design stored in Best.
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Table 20.4 A SAS program for calculation of minimum interpoint distance

%macro mipd(x=, d=);

proc distance data = &x out = dist method = Euclid nostd;

var interval(x1 - x&d); run;

data dist;

set dist;

array var _numeric_;

do over var;

if var = 0 then var = .;

end;

run;

proc means nolabels data = dist min noprint;

output out = colmins; run;

data colmins;

set colmins;

where _STAT_ = "MIN";

drop _TYPE_ _FREQ_ _STAT_;

run;

proc transpose data = colmins out = colminslong; run;

proc means nolabels data = colminslong min;

var COL1;

output out = Mindist min = minimum; run;

%mend mipd;

20.6.2 Fitting the GaSP Model

To use the SAS software, we view GaSP model as a mixed model where all observations are taken

on the same subject and are therefore correlated. This approach allows us to fit the GaSP model using

PROC MIXED (cf. Sect. 17.10).

Table 20.6 shows a SAS program for the analysis of the neuron computer experiment data of

Table 20.2, p. 777. The goal of the experiment was to quantify the effect of gNaF and gKDR on a

neuron’s firing rate.

The 30 sets of data values are read in line by line via the first set of DATA statements in Table 20.6.

In the second set of DATA statements a 1012× 3 data set PREDS is constructed, whose first two

columns contain the values of gNaF and gKDR for which we would like to predict the firing rate once the

model is fitted. These values consist of a 2-dimensional grid with “mesh size” of 0.01. The mesh size

defines the spacing on the grid, so a grid with mesh size 0.01 has points (0, 0), (0, 0.01), (0, 0.02), . . .,

(1, 0.99), (1, 1). The third column in PREDS is y and it has all values set to missing. The third DATA

statement constructs the new data set FORANALYSIS by appending PREDS to the original data, so

that the data set FORANALYSIS has 30 + 1012 rows of data. The GaSP model (20.3.1) is fitted with

PROC MIXED. When fitting the model, the SAS software will use only the observations whose y value

is available. If the value for y is missing, the SAS software will use the fitted model to calculate ŷ for

the observations with missing y values.

There are several options inPROC MIXED that require some clarification. By default, SAS software

will choose the restricted maximum likelihood as the method of estimation (see Sect. 19.8.3). The

METHOD = ML option instructs the SAS software to use maximum likelihood estimation (p. 769). By

leaving the right side of the MODEL equation empty, we instruct the SAS software to fit an intercept

only model, i.e. estimate only β0. If we assumed a richer mean structure, say E[Y ] = β0 +β1gNaF, the

http://dx.doi.org/10.1007/978-3-319-52250-0_17
http://dx.doi.org/10.1007/978-3-319-52250-0_19
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Table 20.5 A SAS program for construction of maximin LHD

%macro MmLHD(nrow=, ncol=, iter=);

%createLHD(n = &nrow, d = &ncol)

%let design = lhd;

%mipd(x = &design, d = &ncol)

data Best; set &design; run; quit;

data _null_;

set mindist;

if _N_ = 1 then call symput("mipd", minimum);

else stop;

run; quit;

%do k = 2 %to &iter;

%createLHD(n = &nrow, d = &ncol)

%mipd(x = &design, d = &ncol)

data _null_;

set mindist;

if _N_ = 1 then call symput("mipdnew", minimum);

else stop;

run; quit;

%if &mipdnew > &mipd %then %do;

%let mipd = &mipdnew;

data Best; set &design; run; quit;

%end;

%end;

proc datasets library = work noprint;

delete temp1 - temp&ncol mindist colmins colminslong dist lhd;

run; quit;

proc print data = Best noobs; run;

%mend MmLHD;

statement would have been MODEL = g_NaF. The option OUTP = PREDICTIONS will calculate

predictions and save them in a data set called PREDICTIONS.

The REPEATED statement is used to specify the covariance structure. The SP(EXPA) choice in

the TYPE option specifies the “anisotropic exponential spatial” covariance structure which has the

structure of (20.3.2) with R(xi − x j |ξ) being the Power exponential correlation function introduced in

Exercise 2. The Gaussian correlation function from (20.3.3) is a special case of the Power exponential

correlation function where pk = 2 for k = 1, 2, . . . , d, and will be specified below. The SP(EXPA)

statement is followed by the list of the input variables (gNaF gK DR). ThenSUBJECT = INTERCEPT

identifies all data as coming from one subject and forces the SAS software to model the covariance

between any two observations, so that no covariance is set to zero.

The PARMS statement specifies the initial values for the covariance parameters. We can request a

grid of values for each parameter to initiate the optimization algorithm which then searches for the

parameter values that maximize the likelihood function. For the Power exponential correlation function,

the SAS software expects 2d + 1 initial values (θ1, . . . , θd , p1, . . . , pd , and σ2). In this example, the

covariance parameters to be estimated are θ1(= θNaF), θ2(= θKDR), p1, p2, and σ2. To select the

Gaussian correlation function, we need to set p1 and p2 equal to 2. Following the PARMS statement

are the initial values. We must specify the values in the order in which they appear in the SAS output

Covariance Parameter Estimates table (see Fig. 20.9). The first set of initial values is a set for θ1 and,

here, we provided a grid of 10 initial values, {1, 2, . . . , 10}. For θ2 we provided a grid of 41 initial
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Table 20.6 A SAS program for analysis of the neuron experiment

DATA NEURON;

INPUT g_NaF g_KDR y;

LINES;

0.38594 0.21207 33

0.04667 0.45947 0

: : : : :

0.77811 0.15813 39

;

* Create a grid of values for prediction and append to the data set;

DATA PREDS;

DO i = 0 TO 100;

DO j = 0 TO 100;

g_NaF = i/100; g_KDR = j/100; y = .;

OUTPUT;

END;

END;

KEEP g_NaF g_KDR y;

DATA FORANALYSIS; SET NEURON PREDS;

PROC MIXED METHOD = ML;

MODEL y = / OUTP = PREDICTIONS;

REPEATED / TYPE = SP(EXPA)(g_NaF g_KDR) SUBJECT = INTERCEPT;

PARMS (1 TO 10 BY 1) (48 TO 52 BY 0.1) (2) (2) (60) / HOLD = 3, 4

LOWERB = 1, 45, 2, 2, . UPPERB = 10, 55, 2, 2, .;

ESTIMATE ’INTERCEPT’ INTERCEPT 1;

DATA FORPLOT; SET PREDICTIONS; IF Y = .;

PROC G3D; PLOT g_NaF*g_KDR = Pred; RUN;

values, {48, 48.1, 48.2, . . . 52}. Next, single starting values of 2, 2, and 60 were provided for p1, p2, and

σ2, respectively. The HOLD=3,4 option tells the SAS software to keep values for the third and fourth

parameter fixed, in this case p1 and p2, thereby insuring that we are using the Gaussian correlation

function. The LOWERB and UPPERB options set the lower and upper bounds for each parameter. If a

bound is missing, then the values for that parameter are unconstrained in that direction. In Table 20.6,

the SAS software will run its optimization algorithm for 10 × 41 × 13 different starting sets of values

with lower bounds 1 and 45, and upper bounds 10 and 55, for θ1 and θ2, respectively.

Choosing the starting values is somewhat of a trial and error process. We should choose a relatively

coarse grid of starting values that covers the space for each parameter and let the SAS software

provide the estimates based on this coarse grid. This initial coarse search will hopefully prevent the

algorithm from returning a “local maximum” (e.g. the top of a small hill but missing the top of the

nearby mountain). Once these initial estimates are provided, we can construct a fine grid around these

estimates to run the search again in this region to obtain the final estimates.

By default the SAS software will not show β̂0 in its output window. The ESTIMATE statement

requires it to do so. The partial output from PROC MIXED displaying the parameter estimates for the

GaSP model is shown in Fig. 20.9. It shows the maximum likelihood estimates of θ1 and θ2, the fixed

p1 and p2, and the maximum likelihood estimate of σ2 (labeled “Residual”).

The predictions for the data in PREDS are calculated and stored in data set PREDICTIONS. The

last two lines in Table 20.6 are used to make a plot of the predicted response surface plot similar to the
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Fig. 20.9 GaSP model

estimates—the neuron

experiment

one in Fig. 20.7. The DATA statement creates a data set to be plotted by keeping only the predictions.

The PROC G3D creates the 3D plot (the actual plot is not shown here).

20.7 Using R Software

In this section, we illustrate use of the R software for creating Latin hypercube designs (LHDs) and

for analyzing data obtained from computer experiments.

20.7.1 Maximin Latin Hypercube Designs

This section shows how to use R to get an LHD that is approximately maximin (denoted Mm LHD).

The idea behind constructing an Mm LHD is described in Sects. 20.4.2 and 20.6.1. While it would have

been fairly straight-forward to write our own R code similar to the SAS code shown in Sect. 20.6.1 to

construct an approximate Mm LHD, we can use R’s package lhs for this purpose. To construct an

appropriate Mm LHD, we use lhs’s function maximinLHS which has three inputs. These are n, the

planned number of outputs of the computer simulator, k, the number of inputs to the computer simulator,

and dup, an integer tuning parameter that determines the number of candidate points considered by

maximinLHS while constructing an Mm LHD. Larger values of dup lead to more points considered

but also increase the time needed to construct a design. dup = 5 is suggested as a reasonable choice.

For example, to construct an approximate 30 × 3 Mm LHD named Best, we run the R command

Best <- maximinLHS(30, 3, 5). After creating the approximate Mm LHD, the simulator

can be run with input combinations x defined by the n = 30 rows of the design stored in Best.

Currently, maximinLHS does not support construction of designs whose points are at the midpoint

of the cells, so the points in Best will be randomly placed within the selected cells.
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Table 20.7 An R program and selected output for analysis of the neuron experiment

> neuron <- read.table("data/neuron.txt", header = T)

> head(neuron, 3)

g_NaF g_KDR y

[1,] 0.38594 0.21207 33

[2,] 0.04667 0.45947 0

[3,] 1.00000 0.44733 46

> # install.packages("mlegp")

> library(mlegp)

> gasp <- mlegp(neuron[, 1:2], neuron[, 3])

> summary(gasp)

Total observations = 30

Dimensions = 2

mu = 27.6111

sig2: 251.9121

Correlation parameters:

beta a

1 5.027256 2

2 50.233487 2

Log likelihood = -104.4487

> predictedX <- expand.grid(g_NaF = seq(0, 1, 0.01),

+ g_KDR = seq(0, 1, 0.01))

> yhats <- predict(gasp, predictedX)

> # install.packages("rgl")

> library(rgl)

> plot3d(neuron[, 1], neuron[, 2], neuron[, 3],

+ col = "red", size = 3, type = "s",

+ xlab = "g NaF (mS/cmˆ2)", ylab = "g KDR (mS/cmˆ2)",

+ zlab = "Firing rate (spikes per 2 s)")

> plot3d(predictedX[, 1], predictedX[, 2], yhats, col = "blue",

> size = 0.5, type = "s", add = TRUE)

20.7.2 Fitting the GaSP Model

In this section, we illustrate the analysis of computer experiment data with R software, using the neuron

experiment data in Table 20.2, p. 777. The goal of the experiment was to quantify the effect of gNaF

and gKDR on a neuron’s firing rate.

Table 20.7 contains the R program and selected output illustrating the fitting of the GaSP model

to the neuron experiment data. The first lines of Table 20.7 read the data from the file neuron.txt

and print out the first three rows of the data. The model is then fit using the mlegp function from the

R package mlegp, which computes maximum likelihood estimates (mle) for Gaussian (stochastic)

processes (gp). To calculate the maximum likelihood estimates of the GaSP parameters, the mlegp

function requires two inputs. The first one is the design matrix X defined here by the first two columns

of neuron data. The second one is the vector of the observed responses y given here in the third

column of the neuron data set. The mlegp function has the capability to fit noisy data, data with
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multiple responses, etc. For more information on the mlegp function see R’s help file by typing

?mlegp. The model details are stored in gasp.

The maximum likelihood parameter estimates can be viewed by invoking the summary command.

In the resulting output, β̂0 ≈ 27.61 is labeled as mu, and σ̂2 ≈ 251.91 is labeled as sig2. The

correlation parameters are given in a d × 2 array where the first and second columns correspond to θ̂k

and p̂k for k = 1, 2, . . . , d but are labeled beta and a, respectively. θ̂1 ≈ 5.03 and θ̂2 ≈ 50.23. Since

we fitted a Gaussian correlation function, p1 = p2 = 2.

Having fitted the model, we would like to construct the estimated response surface by predicting

the response at a dense grid over the [0, 1] × [0, 1] experimental region. The function expand.grid

takes two sequences {0, 0.01, 0.02, . . . , 1} of length 101 as inputs and creates a “data frame” whose

1012 rows represent all combinations of the members of the two sequences (e.g. all combinations

of two sequences {.3, .6} would be (.3, .3), (.3, .6), (.6, .3), (.6, .6)). The resulting grid is stored in

predictedX. To make the predictions yhats, we use R’spredict function, first specifyinggasp

as the object that holds the estimated parameters and then specifying predictedX as the object that

holds the new prediction sites. Depending upon the computer being used, calculating the yhats could

take some time. The plot3d function from the R graphics library package rgl is used to produce

the plot shown in Fig. 20.7, p. 778.

Exercises

1. Gaussian correlation function

The Gaussian correlation function R(xi − x j |ξ) introduced in Sect. 20.3, p. 768, quantifies the

correlation between outputs at two points xi and x j based on the distance between them. For parts

(a) and (b) below, consider the case of d = 1 input variable.

(a) To investigate the effect of the value of parameter θ on the correlation between outputs at

two points, calculate the twenty five correlations R(xi − x j |θ) for θ ∈ {0.5, 2, 5, 20, 100}

and |xi − x j | ∈ {0.1, 0.2, 0.4, 0.6, 0.7}, where |xi − x j | is the absolute value of the distance

between xi and x j .

(b) Construct a plot with |xi −x j | on the x-axis and R(xi −x j |θ) on the y-axis, plot R(xi −x j |θ) for

each value of θ on the same plot, and comment on the relationship between θ and R(xi −x j |θ).

2. Power exponential correlation function

The Gaussian correlation function (20.3.3) is a special case of a Power exponential correlation

function. The latter is given by

R(xi − x j |ξ) =

d
∏

k=1

exp(−θk |xik − x jk |
pk )

where ξ represents the parameters (θ1, . . . , θd , p1, . . . , pd), with all θk ≥ 0, and 0 < pk ≤ 2.

(a) Suppose there is d = 1 input variable. To investigate the effect of θ on the correlation between

outputs at two points xi and x j for the Power exponential correlation function, calculate the nine
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correlations R(xi − x j |θ) for θ ∈ {0.5, 5, 100} and |xi − x j | ∈ {0.1, 0.4, 0.7}, for each value of

p ∈ {0.5, 1, 1.5, 2}.

(b) Construct four plots, one for each value of p, with |xi − x j | on the x-axis and R(xi − x j |θ) on the

y-axis. Plot R(xi − x j |θ) for each value of θ on the same plot, and comment on the relationship

between θ and R(xi − x j |θ) for each value of p.

3. Cubic correlation function

The cubic correlation function is given by

R(xi − x j |ξ) =

d
∏

k=1

R(xik − x jk |ξ)

where

R(xik − x jk |ξ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 − 6
(

xik−x jk

θk

)2
+ 6

(

|xik−x jk |

θk

)3
if |xik − x jk | ≤ θk

2

2

[

1 −
(

|xik−x jk |

θk

)3
]

if θk

2
< |xik − x jk | ≤ θk

0 if θk < |xik − x jk |

,

where ξ represents the parameters (θ1, θ2 . . . , θd), and θk > 0. Repeat Exercise 1 with the cubic

correlation function and d = 1.

4. Bohman correlation function

The Bohman correlation function is given by

R(xi − x j |ξ) =

d
∏

k=1

R(xik − x jk |ξ)

where R(xik − x jk |ξ) is given by

{

1 −
xik−x jk

θk
cos

(

π(xik−x jk)

θk

)

+ 1
π

sin
(

π(xik−x jk )

θk

)

if |xik − x jk | < θk

0 if θk ≤ |xik − x jk |
,

and ξ represents the parameters (θ1, θ2 . . . , θd), and θk > 0. Repeat Exercise 1 with the Bohman

correlation function and d = 1.

5. Euclidean interpoint distance

For two points xi = (xi1, xi2, . . . , xid) and x j = (x j1, x j2, . . . , x jd) in a d-dimensional space,

the Euclidean distance between xi and x j is defined by (20.4.8), p. 775. For the questions below

assume that the range of each input variable is [0, 1].

(a) What is the largest possible distance between two points in (i) a 1-dimensional space?

(ii) a 2-dimensional space? (iii) a d-dimensional space?

(b) What is the smallest possible distance between two points in a d-dimensional space? Why would

it be undesirable to have two input points with this minimum distance between them in a computer

experiment?



788 20 Computer Experiments

6. Maximin Latin hypercube designs

Consider the three LHDs shown below. Note that the location of the points is not in the center of

each cell but is randomly chosen.

X1 =

⎡

⎢

⎢

⎣

0.66 0.65

0.23 0.38

0.78 0.21

0.38 0.98

⎤

⎥

⎥

⎦

, X2 =

⎡

⎢

⎢

⎣

0.50 0.68

0.24 0.39

0.89 0.19

0.35 0.92

⎤

⎥

⎥

⎦

, and X3 =

⎡

⎢

⎢

⎣

0.98 0.10

0.39 0.54

0.18 0.76

0.57 0.39

⎤

⎥

⎥

⎦

We can think of maximin designs in the following way. Suppose we need to place n grocery

stores (design points, corresponding to rows in X) in a particular county, where the county is the

experimental region, taken as a rectangle determined by the ranges of the input variables xi and

then scaled to [0, 1]2. We would like to choose the store locations in a way that prevents any

two stores from being close together. In other words, we are maximizing the minimum distance

between the stores and are constructing a maximin design.

(a) For each design, calculate all
(

4
2

)

Euclidean interpoint distances (20.4.8), p. 775, i.e. calculate

the distances between each pair of proposed store locations.

(b) For each design, identify the two closest points and their distance.

(c) Between X1, X2, and X3 identify the design that maximizes the minimum interpoint distance;

i.e. identify the maximin design.

7. Minimax designs

Referring back to the intuitive explanation of the maximin designs in Exercise 6, consider now the

distance between each customer and the location of the stores in a county. A reasonable placement

of the stores could be such that no customer is too far from the closest store. In other words,

we are minimizing the maximum distance of each customer to the closest store. When we are

minimizing the maximum distance of any point in the experimental region (input space) from the

closest design point, we are constructing a minimax design.

Minimax designs are notoriously difficult to construct. When building a maximin design we have

to calculate only the
(

n
2

)

distances among the design points but, when constructing a minimax

design, we have to consider infinitely many distances (since there are infinitely many points in the

experimental region).

Consider the three LHDs from Exercise 6 (i.e. the potential grocery store locations) and suppose

that we are interested in the points in the experimental region (i.e. the customer locations) given

by

C =

⎡

⎢

⎢

⎢

⎢

⎣

0.59 0.10

0.89 0.55

0.14 0.35

0.38 0.90

0.72 0.63

⎤

⎥

⎥

⎥

⎥

⎦

.

(a) For each of five points (customer locations) in C, determine the closest of the four design

points in X1 by calculating four appropriate Euclidean distances (20.4.8), p. 775. Identify a

point (customer) in C with the largest distance to its closest point in X1.

(b) Repeat part (a) for X2 and X3.

(c) Identify which of the three designs is minimax for this scenario.
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8. Minimum average reciprocal distance designs

An alternative measure of space-fillingness is that of minimum average reciprocal distance. If

design points are spaced out, then the distance between any pair of points will not be small, and

so their reciprocal distance will not be large. Thus an alternative to constructing a maximin design

is to construct a design with smallest possible average reciprocal distance between pairs of design

points. The Euclidean distances between the points are calculated as in (20.4.8), p. 775, and the

average of their reciprocals is the measure of goodness of the design.

(a) Of the three designs X1, X2, X3 in Exercise 6, which has the minimum average reciprocal

distance? Does this coincide with the maximin design?

(b) Of the three designs X1, X2, X3 in Example 20.4.2, p. 775, which has the minimum average

reciprocal distance? Does this coincide with the maximin design?

9. Prediction

Suppose that a computer simulator with one input variable was run at 3 input points and the GaSP

model with Gaussian correlation function (20.3.3) was fitted to the data:

x y

0.20 −0.3635

0.50 −0.1353

0.80 −0.0330

leading to parameter estimates β̂0 = −0.2104, σ̂2 = 0.0264, and θ̂ = 4.9003. Based on this

information, we would like to predict Y at xa = 0.20 using the predictor in (20.3.4), p. 770.

(a) Calculate R̂ (defined below (20.3.4)).

(b) Calculate r̂ (defined below (20.3.4)).

(c) Calculate Ŷ (xa) in (20.3.4) at xa = 0.20. Is this the answer you expected? Explain.

(d) Calculate the estimated variance ŝ2(xa) (20.3.5) of your prediction. Is this the answer you

expected? Explain.

(e) Repeat parts (b), (c), and (d) for xa = 0.49 and xa = 0.65.

10. Tool coating experiment

D. Draguljić, S. Nekkanty, T. J. Santner, A. M. Dean, and R. Shivpuri, in Quality Engineering

in 2015, described a computer experiment used to develop multilayer coatings which are used to

protect tools, drills, cutting blades, bearings, etc. The experiment consisted of modeling the effect

of the number of coating layers and the thicknesses of those layers on the normalized measures

of maximum normal radial stress, Y1, and the maximum shear stress, Y2. The two responses were

modeled independently. Large values of either stress would lead to coating failures (either peeling

of of the coating or occurrence of cracks in the coating). Here we will focus on coatings with only

two layers. Therefore we have input variables x1 and x2 (both in µm), the thicknesses of the top

and the bottom layer, respectively. The data for this experiment are given in Table 20.8. Note that

x1 and x2, as shown in Table 20.8, are scaled from their original (0, 6) µm scale to (0, 1) µm scale.

(a) Estimate θ1 and θ2 from the GaSP model that relates x1 and x2 to y1 using the data from

Table 20.8.
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Table 20.8 Data for the

tool coating experiment
x1 x2 y1 y2

0.6250 0.0833 0.87771 0.13567

0.8750 0.1250 0.84920 0.12590

0.2083 0.2083 0.53123 0.13394

0.0417 0.4583 0.26112 0.15829

0.3750 0.0833 0.75124 0.13708

0.0417 0.8333 2.56179 0.15464

0.1667 0.5417 1.09043 0.22275

0.3750 0.5000 1.75458 0.19860

0.6250 0.3750 1.40447 0.12491

0.4167 0.2917 1.19420 0.13259

(b) For this experiment the total thickness of the coating was required to be between 1/3 and 1,

i.e. 1/3 ≤ x1 + x2 ≤ 1 while the thickness of any individual layer needed to be a multiple

of 1/24. Construct a grid with mesh size of 1/24 that satisfies this constraint and predict the

values of Y1 for this grid.

(c) Based on your predictions, what pair of coating thicknesses (x1, x2) seems to minimize Y1?

(d) Repeat parts (a)–(c) for Y2.

(e) Based on your predictions for Y1 and Y2, what single pair of coating thicknesses (x1, x2) would

you suggest to try to minimize both Y1 and Y2 simultaneously (as well as you can)? It may

help to make a plot of the predicted values of Y1 and Y2.

11. Borehole function

A borehole is a narrow tunnel drilled in the ground. Boreholes serve numerous purposes, including

extraction of water or gases, mineral exploration, temperature measurement, etc. The borehole

function (see Surjanovic and Bingham 2013) models water flow through a borehole and is given by

y =
2πTu(Hu − Hl)

a
(

1 + + 2LTu

ar2
w Kw

+ Tu

Tl

) (20.7.9)

where a = ln(r/rw). The output y measures the water flow rate in m3/year. There are eight inputs

to the borehole function. Their names and ranges are given in Table 20.9.

(a) Construct an 80 × 8 maximin LHD, X , where each element of X is in [0, 1]. Let the elements

xi1 in the first column of X represent the scaled values of the first variable rw for which we

will “observe” (calculate) y from the simulator, the elements xi2 in the second column of X

represent the scaled values of the second variable r , and so on for all 8 columns.

(b) To be able to calculate the simulator data y(xi ) using (20.7.9), where xi is the i th row (input

combination) of X , we need to transform the value of each input variable in X (which has range

[0, 1]) to the variables and matching ranges given in Table 20.9. This will allow the appropriate

values to be entered into (20.7.9). For transforming x1 to rw with range in Table 20.9, the scaling

is done via

r [0.05,0.15]
w = (0.15 − 0.05)x

[0,1]
1 + 0.05 .
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Table 20.9 Input variables for the borehole function

Variable Variable name Range

rw Radius of the borehole (m) [0.05, 0.15]

r Radius of influence (m) [100, 50000]

Tu Transmissivity of the upper aquifer (m2/yr) [63070, 115600]

Hu Potentiometric head of the upper aquifer (m) [990, 1110]

Tℓ Transmissivity of the lower aquifer (m2/yr) [63.1, 116]

Hℓ Potentiometric head of the lower aquifer (m) [700, 820]

L Length of the borehole (m) [1120, 1680]

Kw Hydraulic conductivity of the borehole (m/yr) [9855, 12045]

The superscripts represent the ranges for the input variable x1 and transformed variable rw.

The scaling for other variables is done in a similar fashion. Scale each value in each row xi

of X to the appropriate range. Calculate the output y(xi ), i = 1, 2, . . . , 80 using (20.7.9).

(c) One of the simple ways to assess how sensitive Y is to the changes in a particular input xk

is to plot y versus the xik’s and examine the plot for any obvious patterns. Construct eight

scatterplots, one for each input variable x1–x8, and identify the variables that seem to influence

the response the most.

(d) Using X and y(xi ), fit the GaSP model. What are the maximum likelihood estimates of the

parameters? Do the values of θ̂k , k = 1, 2, . . . , 8, support your conclusion from part (c)?

(e) Construct a grid of mesh size roughly equal to 0.5 (i.e. xik ∈ {0, 0.5, 1}) and predict the outputs

y(xi ) over the grid. Based on your predictions, what are the values of x1, . . . , x8 that result

in the predicted maximal water flow? How about the minimal water flow? Using the ranges

in Table 20.9, again, scale these values to show the values of the original variables that result

in predicted maximal and minimal water flow.
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Table A.1 Random numbers∗ (Section 1)

2 6 1 8 0 1 4 0 5 3 9 3 7 9 5 6 2 9 9 8 4 0 3 8 9 3 7 2 6 2 2 4 6 8 0 2

4 5 5 0 0 2 0 2 2 8 0 3 9 4 2 0 8 4 2 8 2 3 6 6 8 6 2 5 9 2 2 0 8 9 0 8

4 0 1 7 4 0 3 4 2 5 3 1 1 1 0 6 2 4 5 5 6 8 0 8 9 2 9 4 6 7 8 9 0 4 2 2

5 8 8 9 9 7 2 3 9 8 8 5 8 6 1 3 7 2 1 7 4 6 7 4 8 0 2 9 7 6 2 8 2 9 6 7

8 7 8 4 4 2 2 4 6 1 7 4 9 3 4 0 3 4 7 4 2 1 3 3 7 8 8 1 6 0 6 0 5 1 0 4

1 5 8 5 4 8 3 2 2 9 1 5 1 9 5 5 2 1 9 8 3 5 9 2 2 8 7 1 9 7 8 3 0 5 1 8

4 1 9 1 4 3 9 9 7 1 6 9 9 3 8 0 0 7 0 8 2 4 4 5 4 2 3 0 7 3 5 1 9 9 9 3

4 6 8 3 8 5 2 4 8 1 1 9 7 9 9 8 9 3 0 6 3 4 4 3 8 2 1 3 7 3 7 0 4 1 1 6

3 5 2 1 8 2 3 0 1 5 3 3 8 6 6 5 6 9 4 4 9 2 1 4 2 5 7 4 3 5 6 0 4 6 4 7

8 8 1 5 7 7 4 1 7 4 0 1 9 1 4 6 9 2 2 1 7 6 2 9 3 4 2 3 3 7 4 5 0 7 4 2

7 6 1 5 3 9 2 9 4 2 7 5 9 0 4 5 0 8 6 6 3 3 6 3 1 9 8 1 0 3 5 2 9 0 6 2

6 4 8 0 1 1 3 0 3 8 9 7 8 1 5 2 1 0 1 8 5 0 0 0 0 3 5 8 9 2 4 8 0 6 1 1

5 9 6 3 8 2 8 1 8 4 5 4 3 8 2 6 3 0 1 1 3 2 7 1 0 4 2 6 1 1 2 0 7 2 2 8

8 2 1 1 0 2 1 6 5 6 5 6 6 2 2 1 9 2 4 6 8 4 9 0 2 5 5 5 6 2 8 2 3 9 7 7

4 7 2 0 2 6 1 4 9 4 4 3 5 6 4 8 0 0 8 8 9 8 1 2 1 9 6 4 7 3 6 5 3 4 8 8

6 8 1 8 9 4 1 3 2 8 0 2 4 7 1 1 1 9 1 5 3 0 0 7 6 1 7 7 3 0 6 8 5 8 8 8

1 3 3 7 7 8 8 0 8 5 0 4 0 9 7 7 0 7 8 5 1 4 7 2 0 5 7 5 7 2 0 5 0 0 6 9

8 3 0 7 6 0 7 0 1 4 1 9 5 3 6 4 1 0 8 0 8 6 7 3 4 2 6 6 3 7 3 9 9 7 6 7

3 6 6 7 8 2 1 3 5 5 1 9 7 2 6 6 2 9 8 6 2 6 4 9 0 7 5 5 4 1 3 9 7 4 2 2

3 2 1 9 9 8 1 4 9 5 5 6 6 8 0 4 3 8 4 2 2 5 4 3 8 4 8 3 6 4 3 0 6 9 6 8

6 4 2 7 3 8 2 8 1 9 1 1 7 6 5 2 1 2 1 3 5 9 6 1 4 2 7 0 5 5 9 0 2 0 2 9

0 6 6 6 6 3 8 5 1 5 1 6 4 0 3 8 0 7 6 0 2 8 7 0 1 0 5 5 8 1 9 0 9 9 5 5

0 5 6 2 0 4 9 7 9 7 9 1 2 5 8 6 1 9 7 7 9 5 5 4 4 2 7 6 1 8 5 7 5 1 4 4

0 3 3 2 4 1 1 0 8 7 8 3 6 7 1 9 8 5 0 5 8 1 8 6 0 7 7 7 5 8 0 5 4 0 7 2

4 0 3 9 0 3 0 7 4 8 7 0 8 7 3 7 2 4 6 7 4 2 3 4 6 1 9 4 3 3 3 0 7 2 0 3

9 9 1 0 2 7 6 7 7 0 5 9 5 8 6 8 4 1 9 1 7 0 4 4 8 9 4 8 2 9 3 7 9 4 0 9

8 3 6 5 0 9 5 2 2 8 2 4 9 8 8 6 2 7 3 8 3 5 4 6 5 8 4 5 7 7 6 1 8 1 6 9

7 2 2 1 6 9 0 4 1 5 5 2 0 5 0 6 6 5 0 2 3 6 9 4 0 8 1 8 9 9 5 8 9 6 9 9

8 5 4 0 4 4 7 3 4 1 8 7 0 3 3 4 0 8 9 6 2 6 5 1 5 4 6 0 7 9 5 0 9 0 9 5

4 2 5 2 0 1 0 4 3 1 5 9 2 1 5 3 2 7 5 0 8 2 9 5 9 3 1 6 7 1 9 6 4 8 9 0

9 1 5 3 7 8 0 8 2 1 5 7 9 0 7 3 7 9 0 3 7 1 8 9 7 3 2 1 8 2 4 3 2 2 8 1

9 3 4 2 8 8 8 7 1 6 6 2 9 7 1 6 9 7 6 6 6 6 8 7 5 6 1 7 6 4 6 7 6 9 9 4

1 1 3 5 0 4 5 6 4 4 9 4 7 0 0 7 5 1 8 3 9 6 5 7 2 7 5 0 9 7 9 2 6 6 8 2

9 6 1 5 8 8 7 0 2 5 1 2 5 5 0 9 9 5 3 1 2 0 9 5 0 3 3 7 4 5 7 3 0 1 6 9

9 4 0 5 8 9 6 5 5 4 9 6 5 6 8 5 1 4 2 5 2 0 9 8 6 7 0 4 2 1 3 7 8 3 3 9

9 5 7 8 3 2 0 0 4 5 1 0 4 0 7 4 2 7 1 7 8 4 6 7 0 9 6 5 2 9 8 9 6 7 9 1
∗Random numbers were generated using the SAS statements “retain seed 1613126064;” and

“rn=floor(10*ranuni(seed));”
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Table A.1 Random numbers (Section 2)

7 7 2 3 5 7 9 9 3 9 1 6 5 2 9 5 7 7 6 7 8 2 4 3 5 6 1 8 6 3 8 4 7 9 3 3

4 3 2 5 2 9 9 7 0 0 6 1 5 5 7 5 0 0 7 9 8 0 9 1 1 7 9 1 3 8 4 8 1 7 9 2

3 0 7 5 0 5 5 2 5 0 7 0 2 5 8 1 5 9 5 5 4 6 5 5 5 7 5 0 4 6 6 7 8 5 5 9

4 6 6 3 5 0 4 8 7 9 0 7 2 9 9 7 2 9 2 4 8 2 5 9 4 8 0 1 2 8 3 4 6 9 9 4

6 1 7 3 0 3 4 6 8 1 0 1 3 1 8 5 7 7 9 2 3 4 2 9 0 3 8 4 0 2 7 5 7 2 1 9

5 9 3 5 8 5 2 4 3 2 0 9 8 1 4 3 9 5 8 6 2 8 2 2 7 4 6 0 4 0 7 9 1 4 4 0

0 0 1 6 4 2 3 3 9 0 0 4 1 6 0 4 5 8 6 0 0 7 7 2 6 6 2 5 6 7 3 6 8 5 8 5

1 4 9 2 7 3 0 4 2 5 5 5 7 7 4 2 7 6 4 8 4 9 7 6 8 1 9 1 9 5 3 9 7 2 3 5

6 5 0 0 8 4 1 7 0 7 1 7 0 9 6 7 7 7 6 4 6 4 3 8 0 4 9 1 2 1 4 3 5 9 8 2

2 9 1 6 9 6 1 9 9 8 6 0 2 5 5 9 6 8 9 7 7 9 6 5 7 0 4 8 3 2 1 5 2 2 0 7

3 8 0 2 0 4 6 7 6 8 2 0 1 7 2 5 4 1 8 3 8 7 8 1 8 7 5 4 9 6 8 6 6 0 5 7

6 0 1 7 8 9 2 6 8 9 4 5 6 3 7 1 1 4 7 6 3 8 5 3 9 7 2 5 3 4 3 2 1 8 0 7

0 3 4 8 4 0 0 4 6 7 7 0 3 5 2 9 9 8 0 9 1 5 6 4 8 3 6 7 6 9 6 7 9 6 6 5

0 2 1 2 2 2 2 6 9 5 5 7 7 0 5 7 8 4 2 2 7 6 8 6 6 0 2 8 2 2 5 0 2 1 1 0

6 5 7 2 6 9 6 4 5 2 3 3 8 0 3 3 3 9 5 7 6 4 2 2 5 1 0 3 6 3 6 5 0 2 9 2

4 9 6 7 5 6 4 8 5 5 2 5 6 4 1 1 2 5 3 9 8 4 0 2 3 5 1 1 0 4 1 1 6 4 5 0

8 3 7 4 4 4 6 2 8 1 9 6 5 5 8 4 3 8 0 2 9 7 6 1 1 1 9 0 3 8 6 2 4 6 7 5

4 8 8 0 7 5 7 3 9 3 4 8 3 4 9 5 6 3 0 7 0 5 2 7 0 9 6 0 7 5 1 5 0 0 9 9

7 0 4 6 5 8 6 1 5 3 1 4 9 5 5 9 8 6 5 5 9 6 6 6 4 7 5 5 2 1 9 5 4 8 0 1

1 0 2 1 7 8 9 8 8 8 0 9 8 2 7 8 8 1 6 3 6 0 0 4 4 3 9 1 8 6 9 3 9 9 5 1

6 9 3 2 5 2 0 7 8 8 9 5 5 8 6 0 5 0 5 4 5 6 9 1 4 6 1 8 5 8 1 5 9 3 4 6

2 5 2 6 1 1 4 4 1 0 8 1 7 8 6 3 1 5 2 8 1 0 0 5 0 1 0 0 7 0 2 0 5 7 5 1

2 8 0 2 7 3 1 1 7 6 0 8 0 8 0 4 4 7 2 0 2 1 5 1 1 0 8 9 0 1 3 2 5 2 3 8

4 5 3 7 0 2 0 2 9 0 1 1 6 5 7 1 4 1 6 2 0 7 0 0 6 0 4 0 5 0 0 1 3 2 0 3

3 2 7 0 9 7 3 1 7 4 3 4 1 0 9 3 6 7 3 7 7 5 6 3 0 3 6 0 6 5 2 0 3 4 1 3

7 8 6 1 4 1 8 6 1 4 0 9 2 6 3 3 7 5 5 1 8 8 5 2 0 8 7 9 1 3 8 6 1 7 1 5

1 9 4 9 1 0 6 4 3 1 1 5 9 9 3 9 6 4 0 2 2 8 9 2 0 4 6 7 7 5 0 6 1 6 5 4

8 7 5 9 8 8 5 1 6 7 1 4 6 9 9 6 6 5 3 0 3 7 5 2 3 3 4 6 6 3 1 4 5 3 9 8

3 7 0 2 2 5 0 8 3 7 5 4 1 2 3 8 4 4 0 5 6 5 9 6 2 7 5 8 3 0 9 9 7 7 1 6

0 6 0 6 2 7 8 2 2 0 1 0 4 4 9 1 4 6 2 5 6 5 7 8 4 4 4 5 0 9 0 7 4 7 1 3

5 3 6 1 2 2 3 6 6 5 5 7 6 8 9 9 3 4 7 9 5 9 7 7 1 2 0 9 6 6 2 9 3 4 3 0

4 1 3 6 1 4 3 7 0 6 8 3 2 6 3 3 4 3 2 1 5 2 4 5 3 2 0 7 5 7 9 5 1 9 0 2

7 2 2 2 0 9 8 7 5 9 7 4 0 9 1 3 4 6 4 1 1 9 3 9 1 1 6 2 1 5 3 0 4 0 0 7

6 6 1 0 1 9 1 2 4 7 1 0 9 3 9 0 4 3 8 6 5 5 4 7 4 3 0 3 5 4 6 2 7 9 7 9

6 3 1 8 3 7 0 2 7 7 6 2 4 6 8 0 1 5 1 0 2 2 1 4 2 3 1 2 6 3 9 5 0 3 0 3

7 5 1 0 8 1 6 0 0 2 4 0 0 8 9 6 5 1 2 5 3 1 4 1 5 8 6 7 8 2 6 3 2 8 8 0
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Table A.1 Random numbers (Section 3)

0 5 9 5 4 6 0 1 9 8 6 7 8 9 1 1 3 1 2 1 9 6 0 8 1 7 3 1 9 3 7 3 4 6 1 8

1 7 6 4 8 4 1 3 5 9 4 2 0 5 4 8 1 5 2 9 7 4 4 2 9 9 8 8 7 2 6 4 5 5 3 8

0 5 2 7 9 9 2 8 3 2 9 3 6 2 4 8 3 6 7 8 0 6 3 3 9 9 8 0 2 5 9 9 4 3 8 2

4 9 0 3 2 0 1 3 5 3 4 0 9 1 7 7 7 1 8 6 1 1 8 6 0 9 2 7 6 3 1 4 0 2 9 3

9 7 8 4 0 6 6 9 3 0 7 8 0 3 5 3 0 5 5 4 8 9 0 3 6 6 9 2 7 5 9 1 3 4 2 3

5 0 3 6 6 4 2 2 9 2 9 8 5 6 1 1 8 1 1 0 8 6 1 5 3 9 1 3 3 6 3 1 5 3 9 9

9 7 8 5 8 9 1 7 1 3 4 7 2 5 0 2 1 9 1 1 5 5 8 8 1 1 6 7 0 2 9 2 8 9 2 6

3 0 8 7 6 1 1 9 0 6 8 0 5 3 8 0 6 3 2 5 0 9 9 6 0 4 5 4 7 4 1 8 3 8 3 5

3 9 3 6 1 9 6 5 0 6 0 6 5 2 3 6 6 8 2 5 6 6 2 3 0 2 3 8 6 1 0 0 1 0 8 7

8 9 4 2 1 8 5 3 0 4 3 5 2 5 5 8 6 4 4 1 0 1 7 1 2 9 4 3 2 4 2 9 8 2 2 2

0 8 7 9 4 5 0 0 8 2 6 0 9 3 9 4 9 9 5 0 4 4 7 4 4 3 2 7 6 9 4 5 7 5 3 9

8 6 4 4 0 9 9 0 2 6 9 8 5 6 5 7 3 2 9 3 4 6 5 0 6 8 8 2 7 7 9 2 7 7 6 9

4 9 2 7 6 8 7 7 5 3 9 3 7 5 0 1 1 1 4 0 5 9 1 9 0 2 5 4 6 8 3 1 8 1 0 4

8 4 3 6 7 2 6 3 3 0 2 7 1 1 0 8 0 1 8 7 5 0 4 7 2 9 5 6 4 0 1 5 9 7 5 2

9 6 1 1 9 5 0 0 8 7 4 0 2 8 6 1 4 9 3 4 2 4 5 8 3 5 4 0 6 0 3 9 5 4 7 5

1 5 3 9 8 5 6 2 1 6 9 1 2 0 5 5 0 0 7 8 4 8 6 9 5 9 0 5 9 6 2 1 6 7 4 5

5 3 2 7 2 5 2 5 7 8 1 8 4 1 0 8 6 7 4 3 0 9 0 7 3 9 7 3 6 3 8 2 3 6 5 7

0 6 6 2 5 1 2 3 7 3 8 5 4 9 1 1 7 2 8 5 2 3 3 1 7 4 9 3 1 7 8 7 0 9 0 8

8 4 9 8 7 2 4 1 7 8 5 4 3 7 5 9 7 0 9 7 0 0 0 9 2 5 8 3 6 2 6 8 9 1 7 5

6 0 5 2 0 4 9 5 9 7 4 7 6 8 7 5 3 1 1 8 5 2 7 7 7 0 4 1 2 2 4 5 5 7 4 1

1 3 9 6 8 7 5 4 8 1 6 5 1 8 8 9 4 2 1 9 1 4 3 9 0 2 0 5 4 5 0 0 8 8 8 5

6 6 5 4 3 4 4 1 5 0 2 1 0 1 4 4 1 5 3 6 3 4 5 0 8 4 5 7 1 6 3 3 8 9 8 0

7 4 7 9 6 5 3 4 8 7 9 6 6 0 2 0 6 4 7 3 6 5 5 7 1 7 3 1 2 2 0 8 8 8 9 7

0 7 0 6 7 1 9 7 8 6 6 4 6 7 9 9 6 7 5 5 1 9 2 6 5 8 4 7 3 9 8 7 5 1 3 7

3 6 7 2 0 7 1 5 0 3 5 6 9 8 5 2 9 2 2 2 5 5 9 1 6 1 4 9 7 4 5 4 6 5 2 6

1 3 3 3 6 4 1 3 0 5 8 3 1 7 1 0 7 7 5 9 1 4 0 4 4 5 8 3 2 6 9 8 9 8 3 7

7 5 0 4 6 2 8 3 7 8 5 8 7 5 2 7 8 3 0 3 4 8 0 0 2 2 4 8 9 0 3 0 3 6 0 5

6 6 1 8 3 1 9 4 2 2 0 3 6 4 0 7 7 5 5 5 3 7 3 0 1 7 2 1 9 8 6 1 3 2 5 6

5 7 1 4 9 1 7 4 2 3 4 3 5 4 6 9 8 5 2 9 1 0 3 6 1 2 9 2 9 5 0 9 2 8 6 3

7 3 3 8 9 1 9 1 5 7 5 2 9 9 3 2 6 8 1 6 1 8 5 1 5 8 1 4 3 7 3 1 0 5 0 3

8 6 0 0 2 4 3 7 2 8 5 3 6 5 5 0 9 8 8 6 0 9 7 0 8 3 5 7 5 5 8 5 1 4 7 6

6 9 3 4 1 1 8 5 0 2 7 7 6 5 9 8 5 0 4 5 0 2 3 8 8 9 1 6 6 1 8 3 3 7 4 3

4 9 6 4 5 9 2 6 7 1 1 3 8 0 3 3 2 0 9 5 1 1 5 3 2 9 6 7 2 1 7 2 4 2 8 0

0 4 1 5 8 3 5 8 2 6 0 6 5 6 3 8 0 4 2 9 1 1 1 9 5 7 1 2 4 6 7 7 9 0 8 8

8 2 0 6 7 6 6 0 9 5 2 1 5 6 3 4 7 3 6 8 5 8 9 7 3 9 2 6 6 6 6 4 0 8 4 0

2 3 5 3 4 2 2 5 9 3 6 2 8 3 3 6 1 6 9 6 5 7 9 9 7 3 8 9 2 9 3 0 9 2 2 9
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Table A.1 Random numbers (Section 4)

0 1 6 1 4 2 5 5 5 2 0 3 3 3 7 4 1 1 7 9 4 8 2 6 7 1 3 9 6 6 7 0 9 9 7 4

9 7 8 8 9 4 9 1 1 3 9 3 6 1 8 0 7 9 2 0 4 5 8 5 8 3 6 9 9 7 9 9 8 9 0 8

6 7 8 4 4 1 7 5 1 0 1 0 9 7 7 0 0 3 5 0 1 5 0 9 3 0 9 1 0 6 1 2 0 5 8 8

6 2 0 0 0 1 3 5 9 5 2 3 2 7 3 0 6 4 7 5 1 3 2 3 1 8 0 0 1 5 2 7 0 3 7 9

9 4 8 2 8 5 9 7 5 4 3 5 6 9 6 8 6 6 2 7 9 1 1 7 0 3 9 2 3 2 5 7 6 4 8 4

9 2 7 9 6 4 4 4 6 5 4 2 1 8 1 6 0 4 2 3 7 9 5 5 2 0 4 1 7 6 2 3 9 5 5 4

0 5 1 4 5 4 0 8 7 5 4 3 7 3 6 4 7 7 3 2 7 1 2 7 8 7 5 5 9 8 1 5 2 1 5 4

2 9 3 2 2 4 7 6 3 3 4 4 8 3 1 2 9 5 6 7 8 0 6 2 3 5 0 0 4 4 6 9 7 4 9 8

9 2 1 1 8 0 7 4 1 7 0 7 4 2 9 7 5 8 8 7 9 9 6 1 0 7 7 1 8 4 7 9 6 0 1 6

1 9 8 7 8 8 9 9 7 1 3 6 6 5 9 3 9 2 0 2 9 7 5 0 2 9 0 3 6 5 3 4 3 0 7 4

5 6 8 8 3 3 0 5 7 5 8 3 9 8 1 3 2 7 5 5 6 7 7 1 9 4 8 8 7 5 1 2 2 5 8 3

5 3 0 0 9 5 2 4 5 0 5 0 4 1 9 6 7 6 2 7 3 6 0 6 4 2 6 7 7 9 5 8 7 1 4 7

9 1 6 2 4 5 7 8 3 9 5 9 5 3 7 0 8 5 6 1 2 0 1 7 3 2 2 9 3 0 5 8 8 6 6 9

2 9 8 1 2 2 3 0 0 8 4 2 2 1 1 8 5 2 2 9 3 5 6 1 3 6 4 1 2 1 1 2 2 9 7 9

7 3 4 3 6 6 9 7 0 6 2 0 9 4 5 8 9 8 4 7 1 4 6 8 6 9 9 7 3 4 4 3 5 2 2 9

4 5 6 6 1 4 2 6 8 9 8 6 3 2 7 9 4 1 3 0 3 1 8 6 7 2 8 7 0 8 5 0 7 8 1 7

2 5 4 9 5 3 2 8 0 9 9 6 1 8 8 7 6 9 5 2 0 1 4 2 9 2 2 8 4 0 7 8 5 9 0 8

7 2 4 6 6 5 3 7 4 5 4 5 6 8 0 8 3 0 6 5 9 5 3 3 9 0 2 8 4 7 2 3 2 2 7 5

0 9 7 2 1 2 3 0 7 2 4 1 2 3 9 9 5 9 6 8 8 5 1 4 7 5 1 6 2 7 2 4 7 6 0 4

6 7 2 8 8 1 3 2 4 6 4 2 7 5 0 1 9 1 3 7 1 5 4 5 4 4 8 1 9 5 2 7 7 8 3 4

2 8 1 9 0 0 7 6 9 3 2 2 1 7 4 3 3 6 5 4 5 6 7 7 1 1 2 3 1 3 9 3 3 4 1 1

6 1 5 0 0 9 6 8 7 3 9 6 5 7 4 8 7 6 8 1 3 6 9 5 7 3 7 3 3 1 0 8 9 5 2 3

7 2 2 9 4 0 8 6 3 9 5 1 8 7 0 9 6 8 1 7 9 2 0 0 8 0 3 4 4 2 7 0 0 2 0 4

2 6 3 3 4 6 9 2 2 2 5 4 0 7 5 8 1 0 0 8 3 6 3 8 4 2 7 7 0 1 5 5 8 0 5 4

9 7 0 2 1 2 1 8 5 8 7 3 3 3 8 0 3 9 7 1 6 6 9 9 8 7 3 6 6 4 1 4 0 8 9 5

4 7 4 2 1 2 8 2 8 4 1 0 4 0 7 0 7 9 8 3 9 1 2 0 4 2 8 7 4 9 9 4 2 0 8 4

1 8 0 8 9 8 1 2 3 8 8 0 7 5 0 6 5 9 5 5 0 7 2 2 3 4 0 5 4 5 5 5 2 6 9 5

1 8 9 1 0 4 8 0 6 5 1 2 9 7 1 5 8 9 7 9 4 6 0 9 9 7 7 3 9 7 5 9 7 0 1 3

2 8 1 0 7 9 9 4 7 9 2 9 8 1 4 2 5 2 3 8 1 8 2 9 9 6 3 8 1 5 0 5 2 6 4 2

1 0 1 4 0 5 7 4 9 9 0 3 7 8 6 1 6 2 7 1 5 0 5 2 0 7 8 8 2 5 5 9 9 2 5 5

4 8 3 5 6 2 6 9 6 1 6 4 6 6 0 2 0 8 3 0 4 0 9 5 6 4 0 8 9 9 6 8 1 4 8 9

6 1 6 6 3 1 6 1 2 3 4 0 6 8 9 9 0 6 4 3 4 9 2 9 8 6 4 9 0 8 4 8 5 2 6 6

6 9 5 0 3 3 2 9 2 6 0 8 4 7 2 8 6 3 4 0 1 9 0 3 9 6 2 3 5 4 6 0 9 1 8 3

9 2 4 2 7 9 1 8 0 6 3 7 6 2 7 6 6 9 7 4 0 0 8 2 6 2 6 0 2 4 6 6 9 4 2 5

1 5 3 0 7 6 2 9 4 6 4 7 8 9 1 4 6 2 0 3 4 5 5 6 1 6 3 0 2 9 1 1 2 4 6 5

6 0 4 4 0 9 3 3 5 3 8 4 6 7 2 0 9 4 2 4 6 7 5 8 2 0 2 3 7 1 5 1 6 7 2 3
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Table A.1 Random numbers (Section 5)

1 7 8 6 2 0 9 8 4 3 3 2 2 3 4 1 4 9 0 6 2 8 0 2 2 0 3 3 0 6 4 0 9 9 9 6

8 5 7 4 5 1 6 9 6 7 1 9 2 4 5 3 6 0 2 1 9 9 4 5 5 5 4 0 1 4 5 1 4 3 9 8

3 6 3 6 1 3 4 2 7 9 5 9 5 0 0 8 5 2 3 9 2 4 5 2 8 6 7 2 7 4 9 7 7 0 9 8

9 3 4 6 8 2 2 7 9 6 9 8 3 0 7 8 8 8 0 3 9 2 2 9 1 4 3 2 5 1 4 1 7 3 8 7

3 5 5 7 7 5 3 4 1 6 0 4 7 2 8 0 0 3 7 8 3 2 9 8 0 2 1 6 5 5 0 6 9 7 3 1

6 6 5 6 9 9 2 1 2 4 6 3 4 6 1 2 5 4 6 6 2 4 5 8 8 2 2 0 5 6 8 6 8 0 1 8

4 9 0 5 3 2 3 8 5 2 2 0 2 4 5 1 1 3 0 3 4 5 2 2 6 6 1 3 3 6 7 3 5 3 2 6

1 7 7 7 1 5 6 7 8 0 6 0 4 4 4 4 1 0 9 8 4 4 5 8 3 9 4 9 0 8 2 0 3 3 9 5

2 4 7 0 4 2 5 8 4 5 6 2 2 8 5 9 6 5 3 3 1 4 8 9 5 3 6 4 2 9 1 5 0 4 8 6

2 4 7 0 3 7 6 4 7 3 9 0 9 5 8 7 5 7 8 8 9 4 2 9 3 2 0 3 9 0 7 3 3 6 3 5

0 3 7 6 8 4 3 1 9 8 5 0 3 1 9 4 5 3 7 0 8 1 7 2 6 0 0 7 0 6 1 1 6 8 8 0

1 6 3 9 3 6 6 8 2 2 1 1 2 7 6 5 8 3 6 9 5 0 9 0 1 4 1 1 3 8 7 7 5 5 1 8

9 3 6 0 5 9 1 1 0 7 4 4 2 3 0 5 0 2 3 1 3 2 6 1 0 3 7 1 5 3 9 6 2 4 3 7

7 2 3 4 9 8 5 3 1 7 4 3 9 6 8 0 7 1 8 0 9 7 4 0 7 2 8 3 3 3 5 1 0 9 9 6

2 6 0 3 3 8 8 7 9 9 1 5 3 7 5 1 5 7 2 9 6 8 1 2 5 2 2 9 7 1 1 2 6 1 4 8

2 2 4 3 3 6 3 9 2 2 5 0 5 0 0 5 8 9 8 0 2 2 0 2 4 6 1 7 3 2 5 9 6 4 9 4

9 8 3 6 0 1 2 8 6 3 6 0 9 6 2 9 7 6 3 1 8 9 6 5 9 5 2 2 8 8 3 7 1 5 9 7

9 5 0 0 9 0 0 0 3 4 9 8 9 4 4 5 2 6 8 9 0 6 6 7 1 7 7 1 8 2 5 5 7 7 9 9

5 1 7 3 3 9 4 3 6 4 1 2 7 8 3 0 4 9 6 4 1 1 6 6 6 5 2 5 1 1 7 6 7 8 9 4

1 9 2 0 2 7 1 3 2 6 6 6 7 6 0 8 6 1 6 2 0 7 8 6 2 7 1 2 4 2 1 3 2 7 2 8

5 0 3 8 8 8 8 4 6 0 1 9 8 5 6 4 2 4 2 3 3 8 8 2 9 4 2 3 2 5 5 1 1 3 2 8

7 9 6 4 3 9 1 0 6 4 2 7 9 3 0 7 5 3 5 1 9 3 6 7 2 6 1 7 1 4 9 6 9 1 5 7

3 5 4 9 7 8 0 1 9 9 4 6 3 2 5 1 4 0 3 9 0 7 5 3 6 7 4 9 9 9 2 6 5 5 9 3

8 8 1 8 5 3 4 8 7 3 9 9 0 9 3 9 5 0 5 9 2 0 2 3 4 6 3 9 2 2 6 4 2 3 7 0

8 3 4 6 5 8 7 8 8 9 3 2 9 5 9 3 5 3 5 2 8 8 2 4 9 7 1 4 6 7 8 9 0 2 4 0

4 2 9 3 3 5 1 1 5 8 1 6 3 8 7 0 0 7 6 9 8 6 3 2 3 3 2 8 7 5 6 8 5 7 6 7

5 0 2 2 4 4 0 6 3 3 6 0 5 4 0 9 8 2 2 9 4 9 8 9 7 3 7 6 7 3 5 7 6 5 7 8

2 3 0 0 9 4 8 5 9 8 0 7 4 0 8 2 8 8 2 5 1 0 5 5 3 0 7 6 2 9 4 0 2 6 3 1

1 0 8 9 7 0 0 4 6 4 8 9 5 8 3 8 2 3 0 2 7 7 6 8 6 0 0 0 4 2 7 8 8 2 2 7

9 8 5 7 3 0 3 3 6 4 1 4 6 5 4 8 5 2 4 7 6 2 7 2 0 1 1 6 1 4 0 4 9 1 6 6

7 9 7 3 8 9 4 4 7 9 9 4 4 3 1 5 5 2 2 9 4 9 6 1 2 9 3 5 5 5 1 8 0 3 0 6

9 6 7 8 7 6 5 8 4 0 9 7 3 4 6 4 9 3 6 4 4 5 2 7 7 0 8 5 3 4 5 4 0 6 2 3

4 8 8 2 1 4 7 3 6 1 3 6 6 6 6 8 1 0 9 9 0 0 1 7 5 5 0 1 9 8 3 3 2 3 5 3

5 9 4 6 7 7 6 7 3 4 2 5 4 8 1 7 3 4 7 4 9 0 1 4 3 8 0 1 2 3 2 0 0 7 4 7

2 1 6 6 6 6 8 9 3 2 4 9 1 7 3 6 2 1 9 6 6 5 7 9 9 3 4 9 5 3 1 0 1 3 5 2

8 2 9 9 2 1 0 7 5 1 1 2 9 7 8 1 0 5 4 2 7 5 7 6 7 0 7 8 5 3 5 3 5 7 5 5
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Table A.1 Random numbers (Section 6)

7 9 7 4 6 8 4 8 4 2 5 2 0 2 3 8 5 3 1 9 2 2 7 8 9 3 7 1 1 2 1 0 2 5 0 3

8 6 9 4 0 6 1 0 6 8 3 4 2 3 4 8 0 2 3 0 2 7 3 7 2 2 2 5 0 8 0 6 9 1 3 2

0 8 4 7 0 3 4 5 6 7 5 6 7 4 2 7 6 1 6 9 3 3 8 5 7 1 3 1 0 6 7 0 4 7 9 8

9 5 3 0 1 4 5 5 8 8 9 7 0 7 6 9 7 0 2 8 6 5 1 5 9 0 2 3 9 4 0 0 8 1 4 7

0 6 8 3 3 4 3 5 5 6 4 8 8 1 4 5 4 0 7 1 3 7 7 0 4 7 4 0 9 3 8 6 6 3 5 9

2 9 1 0 1 9 6 9 5 7 9 6 6 9 2 4 4 2 0 9 9 9 1 7 3 5 4 1 9 8 8 5 4 8 6 8

8 2 9 0 4 5 7 8 4 4 2 8 5 5 3 2 4 8 4 1 3 0 9 9 1 6 0 5 4 1 5 3 1 2 1 0

3 4 7 3 5 1 0 7 8 9 1 7 0 6 7 5 3 8 5 9 1 2 8 4 9 2 5 3 2 5 2 4 0 7 0 8

9 6 1 2 8 1 6 3 9 3 3 5 8 0 8 6 3 7 0 9 7 9 1 4 3 7 0 7 5 2 1 3 2 4 9 3

2 3 7 4 0 8 6 0 2 0 5 7 7 8 4 9 9 8 5 6 9 4 6 9 8 1 2 5 6 6 7 5 4 6 1 3

9 4 9 5 6 4 6 7 9 4 0 5 3 0 3 5 9 1 3 4 5 1 2 8 0 7 4 8 0 2 9 1 9 8 9 5

6 1 1 2 6 2 5 9 0 8 2 2 8 4 4 7 1 4 2 1 0 6 5 5 7 2 7 4 2 0 9 4 7 2 3 9

3 8 2 1 1 1 8 3 8 4 1 0 2 3 5 6 7 3 2 4 0 0 1 5 2 2 6 3 6 7 7 9 4 1 9 5

0 1 7 1 3 6 1 0 0 5 4 0 7 2 8 1 4 5 6 4 0 2 5 5 8 6 9 9 3 2 7 1 6 8 2 9

8 3 2 5 7 2 0 0 1 1 6 4 3 6 2 5 8 5 8 7 7 8 1 2 9 5 8 9 9 8 3 0 0 6 8 4

5 5 9 8 2 0 1 0 6 0 1 6 9 5 4 6 1 9 3 8 4 3 8 0 5 3 9 2 6 8 3 0 9 3 0 4

5 6 7 1 2 5 2 6 5 8 4 6 2 5 6 5 3 3 5 4 3 0 8 2 3 4 1 6 5 5 4 2 3 4 9 5

1 3 5 1 1 7 2 4 7 9 2 4 0 1 7 3 0 9 3 9 2 0 5 4 7 2 4 3 1 9 9 3 8 5 7 7

4 9 1 9 7 6 4 4 6 9 3 9 6 0 2 9 5 8 4 4 6 7 8 1 6 8 4 0 6 7 2 2 3 5 6 6

0 3 1 0 3 0 6 9 0 1 7 9 8 9 3 1 1 2 5 0 0 0 7 7 6 4 0 8 0 0 6 8 3 9 4 8

8 2 1 5 2 9 2 0 4 1 3 7 9 1 0 3 1 0 7 5 6 7 1 1 1 1 4 9 4 9 5 7 9 2 0 4

8 8 9 1 6 0 2 9 4 9 3 6 0 2 4 1 6 9 6 8 3 5 4 6 5 1 8 5 0 9 5 6 9 6 7 9

0 8 9 5 6 9 6 6 5 2 3 9 3 4 9 0 6 9 1 5 8 4 3 7 0 9 3 8 3 9 6 5 9 9 4 0

7 1 3 8 7 3 7 0 7 8 4 0 0 8 6 5 9 8 6 1 2 3 0 5 4 4 6 3 6 9 2 1 0 6 7 9

4 3 6 4 6 0 5 0 8 4 0 6 9 6 7 4 8 7 7 8 1 6 1 8 2 2 6 7 1 0 5 4 7 3 8 6

6 1 3 6 7 4 1 7 3 1 6 0 8 9 8 7 2 7 6 8 7 2 7 9 6 3 8 6 4 7 5 3 6 7 5 6

3 6 6 6 9 9 3 3 8 5 7 7 8 4 3 3 7 3 1 5 1 7 1 7 4 3 0 8 2 9 9 4 4 2 6 6

8 2 8 0 1 0 8 2 5 5 4 6 2 0 2 5 1 0 6 9 5 6 7 1 5 0 5 8 0 0 6 8 0 6 8 2

3 4 0 7 5 5 2 8 0 4 5 2 6 3 0 1 0 1 4 2 8 6 6 5 6 9 5 4 2 1 2 8 0 0 0 9

3 5 8 7 6 7 3 6 5 6 1 1 8 4 5 0 9 8 1 9 5 8 3 0 4 7 1 5 3 3 3 4 4 4 0 2

4 9 5 0 5 4 1 4 2 7 2 3 1 4 1 5 7 7 5 6 6 0 5 3 2 3 1 3 2 5 0 4 4 9 3 4

4 9 5 1 6 5 6 4 1 4 5 4 1 6 9 4 4 6 4 9 8 3 7 9 9 4 7 8 6 1 6 8 0 6 1 7

3 2 6 0 7 5 0 8 5 2 1 1 9 6 2 9 0 7 5 1 5 0 4 8 0 7 4 5 0 5 2 5 6 2 3 6

8 9 7 7 3 4 3 3 4 9 6 7 2 6 9 0 5 6 2 9 7 3 3 6 5 7 0 5 4 3 8 3 5 9 2 2

0 3 9 7 4 4 1 1 5 2 6 0 3 0 1 4 0 7 7 9 5 8 8 7 7 3 1 0 8 9 4 8 8 9 1 9

2 7 9 0 5 5 7 2 8 9 5 2 7 1 7 4 3 5 6 0 0 3 7 2 5 6 1 0 7 6 4 8 1 9 4 8
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Table A.2 Coefficients ci for orthogonal polynomial trend contrasts

v = 3

Trend c1 c2 c3

Linear −1 0 1

Quadratic 1 −2 1

v = 4

Trend c1 c2 c3 c4

Linear −3 −1 1 3

Quadratic 1 −1 −1 1

Cubic −1 3 −3 1

v = 5

Trend c1 c2 c3 c4 c5

Linear −2 −1 0 1 2

Quadratic 2 −1 −2 −1 2

Cubic −1 2 0 −2 1

Quartic 1 −4 6 −4 1

v = 6

Trend c1 c2 c3 c4 c5 c6

Linear −5 −3 −1 1 3 5

Quadratic 5 −1 −4 −4 −1 5

Cubic −5 7 4 −4 −7 5

Quartic 1 −3 2 2 −3 1

Quintic −1 5 −10 10 −5 1

v = 7

Trend c1 c2 c3 c4 c5 c6 c7

Linear −3 −2 −1 0 1 2 3

Quadratic 5 0 −3 −4 −3 0 5

Cubic −1 1 1 0 −1 −1 1

Quartic 3 −7 1 6 1 −7 3

Quintic −1 4 −5 0 5 −4 1

Sextic 1 −6 15 −20 15 −6 1
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Table A.3 Standard normal distribution:∗ upper α critical coefficients, zα , and upper-tail probabilities, α =

P(Z > zα)

α 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 0.00025 0.0001

zα 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 3.481 3.719

zα 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007

3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
∗Values were generated using the SAS statements “z_alpha = probit(1-alpha);” and “alpha = 1 - probnorm(z_alpha);”
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Table A.4 Student’s t-distribution:∗ upper α critical coefficients, tdf,α , where α = P(tdf > tdf,α)

df α

0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 0.0001

1 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6 3183

2 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60 70.70

3 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92 22.20

4 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610 13.03

5 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 9.678

6 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 8.025

7 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 7.063

8 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041 6.442

9 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 6.010

10 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 5.694

11 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 5.453

12 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318 5.263

13 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221 5.111

14 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140 4.985

15 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 4.880

16 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015 4.791

17 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 4.714

18 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 4.648

19 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 4.590

20 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 4.539

21 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 4.493

22 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 4.452

23 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.768 4.415

24 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 4.382

25 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 4.352

26 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 4.324

27 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 4.299

28 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 4.275

29 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 4.254

30 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 4.234

35 1.306 1.690 2.030 2.438 2.724 2.996 3.340 3.591 4.153

40 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 4.094

45 1.301 1.679 2.014 2.412 2.690 2.952 3.281 3.520 4.049

50 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496 4.014

55 1.297 1.673 2.004 2.396 2.668 2.925 3.245 3.476 3.986

60 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 3.962

70 1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435 3.926

80 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416 3.899

90 1.291 1.662 1.987 2.368 2.632 2.878 3.183 3.402 3.878

100 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390 3.862

110 1.289 1.659 1.982 2.361 2.621 2.865 3.166 3.381 3.848

120 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 3.837

∞ 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 3.719
∗Values tdf,α were generated using the SAS statements “t = tinv(1-alpha,df);” for df < ∞ and “t = probit(1-alpha)” for

df = ∞
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Table A.5 Chi-squared distribution:∗ upper α critical coefficients, χ2
df,α , where α = P(χ2

df > χ2
df,α)

df α

0.999 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.001

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 10.83

2 0.002 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 13.82

3 0.024 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.34 16.27

4 0.091 0.297 0.484 0.711 1.064 7.779 9.488 11.14 13.28 18.47

5 0.210 0.554 0.831 1.145 1.610 9.236 11.07 12.83 15.09 20.52

6 0.381 0.872 1.237 1.635 2.204 10.64 12.59 14.45 16.81 22.46

7 0.598 1.239 1.690 2.167 2.833 12.02 14.07 16.01 18.48 24.32

8 0.857 1.646 2.180 2.733 3.490 13.36 15.51 17.53 20.09 26.12

9 1.152 2.088 2.700 3.325 4.168 14.68 16.92 19.02 21.67 27.88

10 1.479 2.558 3.247 3.940 4.865 15.99 18.31 20.48 23.21 29.59

11 1.834 3.053 3.816 4.575 5.578 17.28 19.68 21.92 24.72 31.26

12 2.214 3.571 4.404 5.226 6.304 18.55 21.03 23.34 26.22 32.91

13 2.617 4.107 5.009 5.892 7.042 19.81 22.36 24.74 27.69 34.53

14 3.041 4.660 5.629 6.571 7.790 21.06 23.68 26.12 29.14 36.12

15 3.483 5.229 6.262 7.261 8.547 22.31 25.00 27.49 30.58 37.70

16 3.942 5.812 6.908 7.962 9.312 23.54 26.30 28.85 32.00 39.25

17 4.416 6.408 7.564 8.672 10.09 24.77 27.59 30.19 33.41 40.79

18 4.905 7.015 8.231 9.390 10.86 25.99 28.87 31.53 34.81 42.31

19 5.407 7.633 8.907 10.12 11.65 27.20 30.14 32.85 36.19 43.82

20 5.921 8.260 9.591 10.85 12.44 28.41 31.41 34.17 37.57 45.31

21 6.447 8.897 10.28 11.59 13.24 29.62 32.67 35.48 38.93 46.80

22 6.983 9.542 10.98 12.34 14.04 30.81 33.92 36.78 40.29 48.27

23 7.529 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64 49.73

24 8.085 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 51.18

25 8.649 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 52.62

26 9.222 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64 54.05

27 9.803 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96 55.48

28 10.39 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 56.89

29 10.99 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59 58.30

30 11.59 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 59.70

35 14.69 18.51 20.57 22.47 24.80 46.06 49.80 53.20 57.34 66.62

40 17.92 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 73.40

45 21.25 25.90 28.37 30.61 33.35 57.51 61.66 65.41 69.96 80.08

50 24.67 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 86.66

55 28.17 33.57 36.40 38.96 42.06 68.80 73.31 77.38 82.29 93.17

60 31.74 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 99.61

70 39.04 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.4 112.3

80 46.52 53.54 57.15 60.39 64.28 96.58 101.9 106.6 112.3 124.8

90 54.16 61.75 65.65 69.13 73.29 107.6 113.1 118.1 124.1 137.2

100 61.92 70.06 74.22 77.93 82.36 118.5 124.3 129.6 135.8 149.4

120 77.76 86.92 91.57 95.70 100.6 140.2 146.6 152.2 159.0 173.6
∗Values were generated using the SAS statement “chi2=cinv(1-alpha,df);”
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Table A.6 F-distribution:∗ upper α critical coefficients, Fν1,ν2,α , where α = P(Fν1,ν2 > Fν1,ν2,α)

ν2 α ν1

1 2 3 4 5 6 7 8 9

1 0.100 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9

0.050 161 200 216 225 230 234 237 239 241

0.010 4052 5000 5403 5625 5764 5859 5928 5981 6022

2 0.100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38

0.050 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4

0.010 98.5 99.0 99.2 99.3 99.3 99.3 99.4 99.4 99.4

0.001 999 999 999 999 999 999 999 999 999

3 0.100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24

0.050 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

0.010 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.4

0.001 167 149 141 137 135 133 132 131 130

4 0.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94

0.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

0.010 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7

0.001 74.1 61.3 56.2 53.4 51.7 50.5 49.7 49.0 48.5

5 0.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32

0.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

0.010 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2

0.001 47.2 37.1 33.2 31.1 29.8 28.8 28.2 27.7 27.2

6 0.100 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96

0.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

0.010 13.8 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98

0.001 35.5 27.0 23.7 21.9 20.8 20.0 19.5 19.0 18.7

7 0.100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72

0.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

0.010 12.3 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72

0.001 29.3 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3

8 0.100 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56

0.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

0.010 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91

0.001 25.4 18.5 15.8 14.4 13.5 12.9 12.4 12.1 11.8

9 0.100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44

0.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

0.010 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

0.001 22.9 16.4 13.9 12.6 11.7 11.1 10.7 10.4 10.1

10 0.100 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35

0.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

0.010 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

0.001 21.0 14.9 12.6 11.3 10.5 9.93 9.52 9.20 8.96

(continued)
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Table A.6 (F-distribution, continued)

ν2 α ν1

1 2 3 4 5 6 7 8 9

11 0.100 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27

0.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90

0.010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63

0.001 19.7 13.8 11.6 10.4 9.58 9.05 8.66 8.35 8.12

12 0.100 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21

0.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80

0.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39

0.001 18.6 13.0 10.8 9.63 8.89 8.38 8.00 7.71 7.48

13 0.100 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16

0.050 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71

0.010 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19

0.001 17.8 12.3 10.2 9.07 8.35 7.86 7.49 7.21 6.98

14 0.100 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12

0.050 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

0.010 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03

0.001 17.1 11.8 9.73 8.62 7.92 7.44 7.08 6.80 6.58

15 0.100 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09

0.050 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

0.010 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

0.001 16.6 11.3 9.34 8.25 7.57 7.09 6.74 6.47 6.26

16 0.100 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06

0.050 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54

0.010 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78

0.001 16.1 11.0 9.01 7.94 7.27 6.80 6.46 6.19 5.98

17 0.100 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03

0.050 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49

0.010 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68

0.001 15.7 10.7 8.73 7.68 7.02 6.56 6.22 5.96 5.75

18 0.100 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00

0.050 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

0.010 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60

0.001 15.4 10.4 8.49 7.46 6.81 6.35 6.02 5.76 5.56

19 0.100 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98

0.050 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42

0.010 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52

0.001 15.1 10.2 8.28 7.27 6.62 6.18 5.85 5.59 5.39

20 0.100 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96

0.050 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

0.010 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

0.001 14.8 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24

(continued)
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Table A.6 (F-distribution, continued)

ν2 α ν1

1 2 3 4 5 6 7 8 9

22 0.100 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93

0.050 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34

0.010 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35

0.001 14.4 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99

25 0.100 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89

0.050 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

0.010 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22

0.001 13.9 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71

30 0.100 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85

0.050 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

0.010 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

0.001 13.3 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39

35 0.100 2.85 2.46 2.25 2.11 2.02 1.95 1.90 1.85 1.82

0.050 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16

0.010 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96

0.001 12.9 8.47 6.79 5.88 5.30 4.89 4.59 4.36 4.18

40 0.100 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79

0.050 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

0.010 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89

0.001 12.6 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02

60 0.100 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74

0.050 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

0.010 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

0.001 12.0 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69

80 0.100 2.77 2.37 2.15 2.02 1.92 1.85 1.79 1.75 1.71

0.050 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00

0.010 6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64

0.001 11.7 7.54 5.97 5.12 4.58 4.20 3.92 3.70 3.53

100 0.100 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69

0.050 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97

0.010 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59

0.001 11.5 7.41 5.86 5.02 4.48 4.11 3.83 3.61 3.44

120 0.100 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68

0.050 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96

0.010 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56

0.001 11.4 7.32 5.78 4.95 4.42 4.04 3.77 3.55 3.38

1000 0.100 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64

0.050 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89

0.010 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43

0.001 10.9 6.96 5.46 4.65 4.14 3.78 3.51 3.30 3.13

(continued)
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Table A.6 (F-distribution, continued)

ν2 α ν1

10 12 15 20 25 30 40 60 120 1000

1 0.100 60.2 60.7 61.2 61.7 62.1 62.3 62.5 62.8 63.1 63.3

0.050 242 244 246 248 249 250 251 252 253 254

0.010 6056 6106 6157 6209 6240 6261 6287 6313 6339 6363

2 0.100 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49

0.050 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5

0.010 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.5

0.001 999 999 999 999 999 999 999 999 999 1000

3 0.100 5.23 5.22 5.20 5.18 5.17 5.17 5.16 5.15 5.14 5.13

0.050 8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.57 8.55 8.53

0.010 27.2 27.1 26.9 26.7 26.6 26.5 26.4 26.3 26.2 26.1

0.001 129 128 127 126 126 125 125 124 124 124

4 0.100 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76

0.050 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

0.010 14.6 14.4 14.2 14.0 13.9 13.8 13.8 13.7 13.6 13.5

0.001 48.1 47.4 46.8 46.1 45.7 45.4 45.1 44.8 44.4 44.1

5 0.100 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.11

0.050 4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.43 4.40 4.37

0.010 10.1 9.89 9.72 9.55 9.45 9.38 9.29 9.20 9.11 9.03

0.001 26.9 26.4 25.9 25.4 25.1 24.9 24.6 24.3 24.1 23.8

6 0.100 2.94 2.90 2.87 2.84 2.81 2.80 2.78 2.76 2.74 2.72

0.050 4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.74 3.70 3.67

0.010 7.87 7.72 7.56 7.40 7.30 7.23 7.14 7.06 6.97 6.89

0.001 18.4 18.0 17.6 17.1 16.9 16.7 16.4 16.2 16.0 15.8

7 0.100 2.70 2.67 2.63 2.59 2.57 2.56 2.54 2.51 2.49 2.47

0.050 3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.30 3.27 3.23

0.010 6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.82 5.74 5.66

0.001 14.1 13.7 13.3 12.9 12.7 12.5 12.3 12.1 11.9 11.7

8 0.100 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.30

0.050 3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.01 2.97 2.93

0.010 5.81 5.67 5.52 5.36 5.26 5.20 5.12 5.03 4.95 4.87

0.001 11.5 11.2 10.8 10.5 10.3 10.1 9.92 9.73 9.53 9.36

9 0.100 2.42 2.38 2.34 2.30 2.27 2.25 2.23 2.21 2.18 2.16

0.050 3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.79 2.75 2.71

0.010 5.26 5.11 4.96 4.81 4.71 4.65 4.57 4.48 4.40 4.32

0.001 9.89 9.57 9.24 8.90 8.69 8.55 8.37 8.19 8.00 7.84

10 0.100 2.32 2.28 2.24 2.20 2.17 2.16 2.13 2.11 2.08 2.06

0.050 2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.62 2.58 2.54

0.010 4.85 4.71 4.56 4.41 4.31 4.25 4.17 4.08 4.00 3.92

0.001 8.75 8.45 8.13 7.80 7.60 7.47 7.30 7.12 6.94 6.78

(continued)
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Table A.6 (F-distribution, continued)

ν2 α ν1

10 12 15 20 25 30 40 60 120 1000

11 0.100 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.98

0.050 2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.49 2.45 2.41

0.010 4.54 4.40 4.25 4.10 4.01 3.94 3.86 3.78 3.69 3.61

0.001 7.92 7.63 7.32 7.01 6.81 6.68 6.52 6.35 6.18 6.02

12 0.100 2.19 2.15 2.10 2.06 2.03 2.01 1.99 1.96 1.93 1.91

0.050 2.75 2.69 2.62 2.54 2.50 2.47 2.43 2.38 2.34 2.30

0.010 4.30 4.16 4.01 3.86 3.76 3.70 3.62 3.54 3.45 3.37

0.001 7.29 7.00 6.71 6.40 6.22 6.09 5.93 5.76 5.59 5.44

13 0.100 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85

0.050 2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.30 2.25 2.21

0.010 4.10 3.96 3.82 3.66 3.57 3.51 3.43 3.34 3.25 3.18

0.001 6.80 6.52 6.23 5.93 5.75 5.63 5.47 5.30 5.14 4.99

14 0.100 2.10 2.05 2.01 1.96 1.93 1.91 1.89 1.86 1.83 1.80

0.050 2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.22 2.18 2.14

0.010 3.94 3.80 3.66 3.51 3.41 3.35 3.27 3.18 3.09 3.02

0.001 6.40 6.13 5.85 5.56 5.38 5.25 5.10 4.94 4.77 4.62

15 0.100 2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.82 1.79 1.76

0.050 2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.16 2.11 2.07

0.010 3.80 3.67 3.52 3.37 3.28 3.21 3.13 3.05 2.96 2.88

0.001 6.08 5.81 5.54 5.25 5.07 4.95 4.80 4.64 4.47 4.33

16 0.100 2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.78 1.75 1.72

0.050 2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.11 2.06 2.02

0.010 3.69 3.55 3.41 3.26 3.16 3.10 3.02 2.93 2.84 2.76

0.001 5.81 5.55 5.27 4.99 4.82 4.70 4.54 4.39 4.23 4.08

17 0.100 2.00 1.96 1.91 1.86 1.83 1.81 1.78 1.75 1.72 1.69

0.050 2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.06 2.01 1.97

0.010 3.59 3.46 3.31 3.16 3.07 3.00 2.92 2.83 2.75 2.66

0.001 5.58 5.32 5.05 4.78 4.60 4.48 4.33 4.18 4.02 3.87

18 0.100 1.98 1.93 1.89 1.84 1.80 1.78 1.75 1.72 1.69 1.66

0.050 2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.02 1.97 1.92

0.010 3.51 3.37 3.23 3.08 2.98 2.92 2.84 2.75 2.66 2.58

0.001 5.39 5.13 4.87 4.59 4.42 4.30 4.15 4.00 3.84 3.69

19 0.100 1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.70 1.67 1.64

0.050 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

0.010 3.43 3.30 3.15 3.00 2.91 2.84 2.76 2.67 2.58 2.50

0.001 5.22 4.97 4.70 4.43 4.26 4.14 3.99 3.84 3.68 3.53

20 0.100 1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.68 1.64 1.61

0.050 2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.95 1.90 1.85

0.010 3.37 3.23 3.09 2.94 2.84 2.78 2.69 2.61 2.52 2.43

0.001 5.08 4.82 4.56 4.29 4.12 4.00 3.86 3.70 3.54 3.40

(continued)
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Table A.6 (F-distribution, continued)

ν2 α ν1

10 12 15 20 25 30 40 60 120 1000

22 0.100 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57

0.050 2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.89 1.84 1.79

0.010 3.26 3.12 2.98 2.83 2.73 2.67 2.58 2.50 2.40 2.32

0.001 4.83 4.58 4.33 4.06 3.89 3.78 3.63 3.48 3.32 3.17

25 0.100 1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.59 1.56 1.52

0.050 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.72

0.010 3.13 2.99 2.85 2.70 2.60 2.54 2.45 2.36 2.27 2.18

0.001 4.56 4.31 4.06 3.79 3.63 3.52 3.37 3.22 3.06 2.91

30 0.100 1.82 1.77 1.72 1.67 1.63 1.61 1.57 1.54 1.50 1.46

0.050 2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.74 1.68 1.63

0.010 2.98 2.84 2.70 2.55 2.45 2.39 2.30 2.21 2.11 2.02

0.001 4.24 4.00 3.75 3.49 3.33 3.22 3.07 2.92 2.76 2.61

35 0.100 1.79 1.74 1.69 1.63 1.60 1.57 1.53 1.50 1.46 1.42

0.050 2.11 2.04 1.96 1.88 1.82 1.79 1.74 1.68 1.62 1.57

0.010 2.88 2.74 2.60 2.44 2.35 2.28 2.19 2.10 2.00 1.90

0.001 4.03 3.79 3.55 3.29 3.13 3.02 2.87 2.72 2.56 2.40

40 0.100 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38

0.050 2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.64 1.58 1.52

0.010 2.80 2.66 2.52 2.37 2.27 2.20 2.11 2.02 1.92 1.82

0.001 3.87 3.64 3.40 3.14 2.98 2.87 2.73 2.57 2.41 2.25

60 0.100 1.71 1.66 1.60 1.54 1.50 1.48 1.44 1.40 1.35 1.30

0.050 1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.53 1.47 1.40

0.010 2.63 2.50 2.35 2.20 2.10 2.03 1.94 1.84 1.73 1.62

0.001 3.54 3.32 3.08 2.83 2.67 2.55 2.41 2.25 2.08 1.92

80 0.100 1.68 1.63 1.57 1.51 1.47 1.44 1.40 1.36 1.31 1.25

0.050 1.95 1.88 1.79 1.70 1.64 1.60 1.54 1.48 1.41 1.34

0.010 2.55 2.42 2.27 2.12 2.01 1.94 1.85 1.75 1.63 1.51

0.001 3.39 3.16 2.93 2.68 2.52 2.41 2.26 2.10 1.92 1.75

100 0.100 1.66 1.61 1.56 1.49 1.45 1.42 1.38 1.34 1.28 1.22

0.050 1.93 1.85 1.77 1.68 1.62 1.57 1.52 1.45 1.38 1.30

0.010 2.50 2.37 2.22 2.07 1.97 1.89 1.80 1.69 1.57 1.45

0.001 3.30 3.07 2.84 2.59 2.43 2.32 2.17 2.01 1.83 1.64

120 0.100 1.65 1.60 1.55 1.48 1.44 1.41 1.37 1.32 1.26 1.20

0.050 1.91 1.83 1.75 1.66 1.60 1.55 1.50 1.43 1.35 1.27

0.010 2.47 2.34 2.19 2.03 1.93 1.86 1.76 1.66 1.53 1.40

0.001 3.24 3.02 2.78 2.53 2.37 2.26 2.11 1.95 1.77 1.57

1000 0.100 1.61 1.55 1.49 1.43 1.38 1.35 1.30 1.25 1.18 1.08

0.050 1.84 1.76 1.68 1.58 1.52 1.47 1.41 1.33 1.24 1.11

0.010 2.34 2.20 2.06 1.90 1.79 1.72 1.61 1.50 1.35 1.16

0.001 2.99 2.77 2.54 2.30 2.14 2.02 1.87 1.69 1.49 1.22
∗Values Fν1,ν2,α were generated using the SAS statement “f= round(finv(1-alpha,df1,df2),0.01);”
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Table A.7 Power of the F-test: π(φ) = P(Fν1,ν2,φ > Fν1,ν2,α)

ν1 = 1, α = 0.05

φ

ν2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

5 0.211 0.301 0.405 0.515 0.623 0.721 0.805 0.870 0.919 0.952 0.973

6 0.223 0.320 0.430 0.546 0.657 0.755 0.836 0.897 0.939 0.966 0.982

7 0.232 0.333 0.449 0.568 0.681 0.779 0.856 0.913 0.951 0.974 0.987

8 0.239 0.344 0.463 0.585 0.698 0.795 0.871 0.924 0.959 0.979 0.990

9 0.245 0.352 0.474 0.598 0.712 0.808 0.881 0.932 0.964 0.982 0.992

10 0.249 0.359 0.483 0.608 0.722 0.817 0.889 0.938 0.968 0.985 0.993

12 0.256 0.370 0.496 0.623 0.738 0.831 0.900 0.946 0.973 0.988 0.995

15 0.263 0.380 0.510 0.639 0.753 0.844 0.910 0.953 0.977 0.990 0.996

20 0.270 0.391 0.524 0.654 0.767 0.857 0.919 0.959 0.981 0.992 0.997

30 0.278 0.402 0.537 0.668 0.781 0.868 0.928 0.964 0.984 0.994 0.998

60 0.285 0.413 0.551 0.683 0.795 0.879 0.936 0.969 0.987 0.995 0.998

120 0.289 0.418 0.557 0.690 0.801 0.884 0.939 0.971 0.988 0.995 0.998

1000 0.293 0.423 0.563 0.696 0.807 0.889 0.942 0.973 0.989 0.996 0.999

ν1 = 2, α = 0.05

φ

ν2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

5 0.196 0.283 0.386 0.499 0.611 0.714 0.802 0.870 0.920 0.954 0.975

6 0.211 0.307 0.421 0.543 0.660 0.764 0.847 0.907 0.948 0.973 0.987

7 0.223 0.327 0.449 0.576 0.696 0.798 0.876 0.930 0.963 0.983 0.992

8 0.233 0.343 0.470 0.602 0.723 0.822 0.896 0.944 0.973 0.988 0.995

9 0.241 0.356 0.487 0.622 0.743 0.840 0.910 0.954 0.979 0.991 0.997

10 0.248 0.366 0.502 0.638 0.759 0.854 0.920 0.961 0.983 0.993 0.998

12 0.258 0.383 0.523 0.662 0.783 0.874 0.934 0.969 0.987 0.995 0.998

15 0.270 0.400 0.546 0.687 0.805 0.892 0.947 0.977 0.991 0.997 0.999

20 0.282 0.418 0.569 0.711 0.827 0.908 0.957 0.982 0.994 0.998 0.999

30 0.294 0.437 0.592 0.735 0.847 0.923 0.966 0.987 0.996 0.999 1.000

60 0.308 0.457 0.615 0.758 0.866 0.935 0.973 0.990 0.997 0.999 1.000

120 0.314 0.467 0.627 0.769 0.875 0.941 0.976 0.992 0.998 0.999 1.000

1000 0.321 0.476 0.637 0.778 0.882 0.946 0.979 0.993 0.998 1.000 1.000

ν1 = 3, α = 0.05

φ

ν2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

5 0.191 0.279 0.384 0.499 0.614 0.719 0.808 0.876 0.925 0.958 0.978

6 0.209 0.308 0.426 0.552 0.674 0.779 0.861 0.919 0.956 0.978 0.990

7 0.224 0.332 0.460 0.593 0.717 0.819 0.894 0.944 0.973 0.988 0.995

8 0.236 0.352 0.487 0.625 0.750 0.848 0.916 0.959 0.982 0.993 0.997

9 0.246 0.368 0.509 0.651 0.775 0.869 0.932 0.968 0.987 0.995 0.998

10 0.255 0.382 0.528 0.671 0.794 0.885 0.943 0.975 0.990 0.997 0.999

12 0.269 0.404 0.556 0.703 0.822 0.907 0.957 0.983 0.994 0.998 1.000

15 0.284 0.428 0.586 0.734 0.849 0.926 0.968 0.988 0.996 0.999 1.000

20 0.300 0.453 0.617 0.764 0.874 0.942 0.978 0.993 0.998 1.000 1.000

30 0.318 0.479 0.648 0.794 0.897 0.956 0.985 0.995 0.999 1.000 1.000

60 0.338 0.507 0.680 0.822 0.917 0.968 0.990 0.997 0.999 1.000 1.000

120 0.348 0.522 0.696 0.835 0.926 0.972 0.992 0.998 1.000 1.000 1.000

1000 0.357 0.535 0.709 0.847 0.933 0.976 0.993 0.998 1.000 1.000 1.000

(continued)
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Table A.7 (Power, continued)

ν1 = 4, α = 0.05

φ

ν2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

5 0.190 0.278 0.385 0.502 0.619 0.726 0.814 0.882 0.930 0.961 0.980

6 0.209 0.311 0.433 0.562 0.686 0.791 0.872 0.928 0.962 0.982 0.992

7 0.226 0.338 0.471 0.609 0.735 0.836 0.908 0.953 0.978 0.991 0.997

8 0.240 0.361 0.503 0.646 0.771 0.867 0.931 0.968 0.987 0.995 0.998

9 0.252 0.381 0.529 0.675 0.799 0.890 0.946 0.977 0.991 0.997 0.999

10 0.262 0.398 0.551 0.699 0.821 0.906 0.957 0.983 0.994 0.998 1.000

12 0.279 0.424 0.586 0.736 0.852 0.929 0.970 0.990 0.997 0.999 1.000

15 0.298 0.454 0.622 0.771 0.881 0.948 0.981 0.994 0.998 1.000 1.000

20 0.319 0.485 0.659 0.806 0.907 0.963 0.988 0.997 0.999 1.000 1.000

30 0.342 0.519 0.697 0.840 0.930 0.975 0.993 0.998 1.000 1.000 1.000

60 0.368 0.555 0.735 0.870 0.949 0.984 0.996 0.999 1.000 1.000 1.000

120 0.382 0.574 0.754 0.885 0.957 0.987 0.997 1.000 1.000 1.000 1.000

1000 0.394 0.591 0.771 0.896 0.963 0.990 0.998 1.000 1.000 1.000 1.000

ν1 = 5, α = 0.05

φ

ν2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

5 0.189 0.278 0.387 0.506 0.624 0.731 0.820 0.887 0.934 0.964 0.981

6 0.210 0.314 0.438 0.571 0.696 0.801 0.880 0.934 0.967 0.985 0.994

7 0.228 0.344 0.481 0.622 0.749 0.849 0.918 0.960 0.982 0.993 0.998

8 0.244 0.370 0.517 0.663 0.789 0.882 0.941 0.974 0.990 0.997 0.999

9 0.257 0.392 0.546 0.696 0.819 0.905 0.956 0.983 0.994 0.998 1.000

10 0.269 0.411 0.571 0.722 0.842 0.922 0.967 0.988 0.996 0.999 1.000

12 0.289 0.442 0.610 0.762 0.875 0.944 0.979 0.993 0.998 1.000 1.000

15 0.311 0.477 0.652 0.802 0.905 0.962 0.988 0.997 0.999 1.000 1.000

20 0.336 0.514 0.694 0.839 0.931 0.976 0.993 0.999 1.000 1.000 1.000

30 0.365 0.555 0.738 0.874 0.952 0.986 0.997 0.999 1.000 1.000 1.000

60 0.397 0.598 0.781 0.906 0.969 0.992 0.999 1.000 1.000 1.000 1.000

120 0.414 0.621 0.802 0.920 0.975 0.994 0.999 1.000 1.000 1.000 1.000

1000 0.431 0.642 0.821 0.931 0.980 0.996 0.999 1.000 1.000 1.000 1.000

ν1 = 6, α = 0.05

φ

ν2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

5 0.189 0.279 0.388 0.509 0.628 0.736 0.824 0.891 0.936 0.966 0.983

6 0.211 0.317 0.443 0.578 0.704 0.809 0.887 0.939 0.970 0.986 0.994

7 0.231 0.349 0.490 0.633 0.760 0.859 0.925 0.965 0.985 0.994 0.998

8 0.248 0.378 0.528 0.677 0.802 0.893 0.949 0.978 0.992 0.997 0.999

9 0.262 0.402 0.560 0.712 0.834 0.916 0.964 0.986 0.996 0.999 1.000

10 0.276 0.423 0.588 0.741 0.858 0.933 0.973 0.991 0.997 0.999 1.000

12 0.298 0.458 0.631 0.784 0.892 0.955 0.984 0.996 0.999 1.000 1.000

15 0.323 0.497 0.677 0.826 0.922 0.972 0.992 0.998 1.000 1.000 1.000

20 0.352 0.540 0.724 0.865 0.947 0.984 0.996 0.999 1.000 1.000 1.000

30 0.385 0.587 0.772 0.901 0.967 0.992 0.998 1.000 1.000 1.000 1.000

60 0.424 0.637 0.819 0.931 0.981 0.996 0.999 1.000 1.000 1.000 1.000

120 0.445 0.663 0.842 0.944 0.986 0.997 1.000 1.000 1.000 1.000 1.000

1000 0.465 0.687 0.860 0.954 0.989 0.998 1.000 1.000 1.000 1.000 1.000

(continued)
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Table A.7 (Power, continued)

ν1 = 7, α = 0.05

φ

ν2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

5 0.189 0.280 0.390 0.511 0.631 0.739 0.828 0.894 0.939 0.967 0.984

6 0.212 0.319 0.448 0.584 0.710 0.815 0.892 0.943 0.972 0.988 0.995

7 0.233 0.354 0.497 0.642 0.769 0.867 0.931 0.968 0.987 0.995 0.998

8 0.251 0.384 0.538 0.688 0.813 0.901 0.954 0.982 0.993 0.998 0.999

9 0.267 0.410 0.573 0.726 0.846 0.925 0.969 0.989 0.997 0.999 1.000

10 0.281 0.434 0.602 0.756 0.871 0.942 0.978 0.993 0.998 1.000 1.000

12 0.305 0.472 0.649 0.801 0.906 0.963 0.988 0.997 0.999 1.000 1.000

15 0.333 0.515 0.699 0.845 0.935 0.978 0.994 0.999 1.000 1.000 1.000

20 0.366 0.562 0.750 0.886 0.959 0.989 0.998 1.000 1.000 1.000 1.000

30 0.405 0.615 0.801 0.921 0.977 0.995 0.999 1.000 1.000 1.000 1.000

60 0.450 0.672 0.850 0.950 0.988 0.998 1.000 1.000 1.000 1.000 1.000

120 0.475 0.701 0.873 0.962 0.992 0.999 1.000 1.000 1.000 1.000 1.000

1000 0.498 0.728 0.892 0.970 0.994 0.999 1.000 1.000 1.000 1.000 1.000

ν1 = 8, α = 0.05

φ

ν2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

5 0.189 0.280 0.391 0.513 0.634 0.742 0.830 0.896 0.941 0.968 0.984

6 0.213 0.321 0.452 0.589 0.716 0.821 0.897 0.946 0.974 0.989 0.996

7 0.234 0.358 0.503 0.649 0.777 0.873 0.936 0.971 0.988 0.996 0.999

8 0.254 0.390 0.546 0.698 0.822 0.908 0.959 0.984 0.994 0.998 1.000

9 0.271 0.418 0.583 0.737 0.856 0.932 0.973 0.991 0.997 0.999 1.000

10 0.286 0.443 0.614 0.769 0.882 0.949 0.981 0.994 0.999 1.000 1.000

12 0.312 0.484 0.664 0.816 0.916 0.969 0.991 0.998 1.000 1.000 1.000

15 0.343 0.530 0.717 0.861 0.945 0.983 0.996 0.999 1.000 1.000 1.000

20 0.379 0.583 0.772 0.902 0.968 0.992 0.999 1.000 1.000 1.000 1.000

30 0.423 0.640 0.825 0.936 0.983 0.997 1.000 1.000 1.000 1.000 1.000

60 0.474 0.703 0.876 0.963 0.993 0.999 1.000 1.000 1.000 1.000 1.000

120 0.502 0.735 0.898 0.973 0.995 0.999 1.000 1.000 1.000 1.000 1.000

1000 0.530 0.764 0.917 0.981 0.997 1.000 1.000 1.000 1.000 1.000 1.000

(continued)
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Table A.7 (Power, continued)

ν1 = 9, α = 0.05

φ

ν2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

5 0.189 0.281 0.393 0.515 0.637 0.745 0.833 0.898 0.942 0.969 0.985

6 0.214 0.323 0.455 0.593 0.721 0.825 0.900 0.948 0.976 0.990 0.996

7 0.236 0.361 0.508 0.656 0.783 0.878 0.939 0.973 0.989 0.996 0.999

8 0.256 0.395 0.553 0.706 0.830 0.914 0.962 0.986 0.995 0.999 1.000

9 0.274 0.424 0.592 0.747 0.864 0.938 0.976 0.992 0.998 0.999 1.000

10 0.290 0.450 0.625 0.780 0.890 0.954 0.984 0.995 0.999 1.000 1.000

12 0.318 0.494 0.678 0.828 0.925 0.973 0.992 0.998 1.000 1.000 1.000

15 0.352 0.544 0.733 0.874 0.953 0.986 0.997 0.999 1.000 1.000 1.000

20 0.391 0.601 0.790 0.915 0.974 0.994 0.999 1.000 1.000 1.000 1.000

30 0.439 0.663 0.846 0.948 0.988 0.998 1.000 1.000 1.000 1.000 1.000

60 0.496 0.730 0.896 0.973 0.995 0.999 1.000 1.000 1.000 1.000 1.000

120 0.529 0.765 0.919 0.982 0.997 1.000 1.000 1.000 1.000 1.000 1.000

1000 0.560 0.795 0.936 0.988 0.999 1.000 1.000 1.000 1.000 1.000 1.000

ν1 = 10, α = 0.05

φ

ν2 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

5 0.189 0.281 0.394 0.517 0.639 0.747 0.835 0.900 0.943 0.970 0.985

6 0.215 0.325 0.458 0.597 0.725 0.829 0.903 0.950 0.977 0.990 0.996

7 0.238 0.364 0.513 0.661 0.789 0.883 0.942 0.975 0.990 0.997 0.999

8 0.258 0.399 0.560 0.713 0.836 0.919 0.965 0.987 0.996 0.999 1.000

9 0.277 0.430 0.600 0.755 0.871 0.942 0.978 0.993 0.998 1.000 1.000

10 0.294 0.457 0.634 0.789 0.897 0.958 0.986 0.996 0.999 1.000 1.000

12 0.324 0.504 0.689 0.839 0.932 0.977 0.994 0.999 1.000 1.000 1.000

15 0.359 0.557 0.747 0.885 0.959 0.989 0.998 1.000 1.000 1.000 1.000

20 0.402 0.617 0.806 0.926 0.979 0.996 0.999 1.000 1.000 1.000 1.000

30 0.454 0.683 0.863 0.958 0.991 0.999 1.000 1.000 1.000 1.000 1.000

60 0.517 0.755 0.913 0.980 0.997 1.000 1.000 1.000 1.000 1.000 1.000

120 0.553 0.791 0.935 0.987 0.999 1.000 1.000 1.000 1.000 1.000 1.000

1000 0.588 0.823 0.951 0.992 0.999 1.000 1.000 1.000 1.000 1.000 1.000
∗Power was computed using the SAS statements “nc=v*phi**2;”,

“Falpha=finv(1-alpha,nu1,nu2);”, “power=1 - probf(Falpha,nu1,nu2,nc);”, and “power= round(power,.01);” for val-

ues of the parameters “v”, “phi”, “alpha”, “nu1=v-1” and “nu2”

“Falpha” is the upper-α critical value of the F-distribution with “nu1” and “nu2” degrees of freedom, and “nc” is the

noncentrality parameter for the corresponding noncentral F-distribution
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Table A.8 Tukey’s method:∗ upper α critical values, qv,df,α , of the studentized range distribution

df α v

2 3 4 5 6 7 8 9 10 12 14 16 18 20

2 0.01 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 33.4 34.8 36.0 37.0 37.9

0.05 6.08 8.33 9.80 10.9 11.7 12.4 13.0 13.5 14.0 14.7 15.4 15.9 16.4 16.8

0.10 4.13 5.73 6.77 7.54 8.14 8.63 9.05 9.41 9.72 10.3 10.7 11.1 11.4 11.7

3 0.01 8.26 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 17.5 18.2 18.8 19.3 19.8

0.05 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.95 10.3 10.7 11.0 11.2

0.10 3.33 4.47 5.20 5.74 6.16 6.51 6.81 7.06 7.29 7.67 7.98 8.25 8.48 8.68

4 0.01 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 12.8 13.3 13.7 14.1 14.4

0.05 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.21 8.52 8.79 9.03 9.23

0.10 3.01 3.98 4.59 5.03 5.39 5.68 5.93 6.14 6.33 6.65 6.91 7.13 7.33 7.50

5 0.01 5.70 6.98 7.81 8.42 8.91 9.32 9.67 9.97 10.2 10.7 11.1 11.4 11.7 11.9

0.05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.32 7.60 7.83 8.03 8.21

0.10 2.85 3.72 4.26 4.66 4.98 5.24 5.46 5.65 5.82 6.10 6.34 6.54 6.71 6.86

6 0.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.48 9.81 10.1 10.3 10.5

0.05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.79 7.03 7.24 7.43 7.59

0.10 2.75 3.56 4.07 4.44 4.73 4.97 5.17 5.34 5.50 5.76 5.98 6.16 6.32 6.47

7 0.01 4.95 5.92 6.55 7.02 7.39 7.70 7.98 8.21 8.43 8.80 9.11 9.38 9.62 9.84

0.05 3.34 4.16 4.68 5.06 5.36 5.61 5.81 5.99 6.15 6.42 6.65 6.84 7.00 7.15

0.10 2.68 3.45 3.93 4.28 4.55 4.78 4.97 5.14 5.28 5.53 5.74 5.91 6.06 6.20

8 0.01 4.74 5.64 6.21 6.63 6.97 7.24 7.48 7.69 7.88 8.20 8.46 8.70 8.90 9.08

0.05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.17 6.39 6.57 6.72 6.86

0.10 2.63 3.37 3.83 4.17 4.43 4.65 4.83 4.99 5.13 5.36 5.56 5.73 5.87 6.00

9 0.01 4.60 5.43 5.96 6.35 6.66 6.92 7.14 7.33 7.50 7.79 8.03 8.23 8.41 8.57

0.05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.98 6.19 6.36 6.51 6.64

0.10 2.59 3.32 3.76 4.08 4.34 4.54 4.72 4.87 5.01 5.23 5.42 5.58 5.72 5.85

10 0.01 4.48 5.27 5.77 6.14 6.43 6.67 6.88 7.05 7.21 7.48 7.71 7.90 8.07 8.22

0.05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.83 6.03 6.19 6.34 6.47

0.10 2.56 3.27 3.70 4.02 4.26 4.47 4.64 4.78 4.91 5.13 5.32 5.47 5.61 5.73

11 0.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.25 7.46 7.64 7.80 7.94

0.05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.71 5.90 6.06 6.20 6.33

0.10 2.54 3.23 3.66 3.96 4.20 4.40 4.57 4.71 4.84 5.05 5.23 5.38 5.51 5.63

(continued)
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Table A.8 (Tukey’s method, continued)

df α v

2 3 4 5 6 7 8 9 10 12 14 16 18 20

12 0.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.68 6.82 7.07 7.28 7.46 7.62 7.76

0.05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.26 5.39 5.61 5.80 5.95 6.08 6.20

0.10 2.52 3.20 3.62 3.92 4.16 4.35 4.51 4.65 4.78 4.99 5.16 5.31 5.44 5.55

14 0.01 4.21 4.89 5.32 5.63 5.88 6.09 6.26 6.41 6.55 6.77 6.97 7.13 7.27 7.40

0.05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.46 5.64 5.78 5.91 6.03

0.10 2.49 3.16 3.56 3.85 4.08 4.27 4.42 4.56 4.68 4.88 5.05 5.19 5.32 5.43

16 0.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.56 6.74 6.90 7.03 7.15

0.05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.35 5.52 5.66 5.79 5.90

0.10 2.47 3.12 3.52 3.80 4.03 4.21 4.36 4.49 4.61 4.80 4.97 5.11 5.23 5.33

18 0.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.41 6.58 6.73 6.85 6.97

0.05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.27 5.43 5.57 5.69 5.79

0.10 2.45 3.10 3.49 3.77 3.98 4.16 4.31 4.44 4.55 4.75 4.90 5.04 5.16 5.26

20 0.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.28 6.45 6.59 6.71 6.82

0.05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.20 5.36 5.49 5.61 5.71

0.10 2.44 3.08 3.46 3.74 3.95 4.12 4.27 4.40 4.51 4.70 4.85 4.99 5.10 5.20

24 0.01 3.96 4.55 4.91 5.17 5.37 5.54 5.68 5.81 5.92 6.11 6.26 6.39 6.51 6.61

0.05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.10 5.25 5.38 5.49 5.59

0.10 2.42 3.05 3.42 3.69 3.90 4.07 4.21 4.34 4.44 4.63 4.78 4.91 5.02 5.12

30 0.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.93 6.08 6.20 6.31 6.41

0.05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 5.00 5.15 5.27 5.38 5.47

0.10 2.40 3.02 3.39 3.65 3.85 4.02 4.16 4.28 4.38 4.56 4.71 4.83 4.94 5.03

40 0.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.76 5.90 6.02 6.12 6.21

0.05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.90 5.04 5.16 5.27 5.36

0.10 2.38 2.99 3.35 3.60 3.80 3.96 4.10 4.21 4.32 4.49 4.63 4.75 4.86 4.95

60 0.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.60 5.73 5.84 5.93 6.01

0.05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.81 4.94 5.06 5.15 5.24

0.10 2.36 2.96 3.31 3.56 3.75 3.91 4.04 4.16 4.25 4.42 4.56 4.67 4.78 4.86

120 0.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.44 5.56 5.66 5.75 5.83

0.05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.71 4.84 4.95 5.04 5.13

0.10 2.34 2.93 3.28 3.52 3.71 3.86 3.99 4.10 4.19 4.35 4.48 4.60 4.69 4.78

∞ 0.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.29 5.40 5.49 5.57 5.65

0.05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.62 4.74 4.85 4.93 5.01

0.10 2.33 2.90 3.24 3.48 3.66 3.81 3.93 4.04 4.13 4.28 4.41 4.52 4.61 4.69
∗Values qv,df,α were generated using the SAS statement “qT=probmc(‘range’,.,prob,df,v);”, where “prob” = 1 − α,

and “df=.” for df = ∞
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Table A.9 Dunnett’s one-sided method:∗ upper α critical coefficients wD1 = t
(0.5)

v−1,df,α

df α v − 1

2 3 4 5 6 7 8 9 10 12 14 16 18 20

2 0.01 8.88 10.0 10.9 11.5 12.0 12.5 12.8 13.2 13.5 14.0 14.4 14.7 15.1 15.3

0.05 3.80 4.34 4.71 5.00 5.24 5.43 5.60 5.75 5.88 6.11 6.29 6.45 6.59 6.72

0.10 2.54 2.92 3.19 3.40 3.57 3.71 3.83 3.94 4.03 4.19 4.32 4.44 4.54 4.62

3 0.01 5.48 6.04 6.44 6.74 6.99 7.20 7.38 7.53 7.67 7.91 8.11 8.28 8.43 8.56

0.05 2.94 3.28 3.52 3.70 3.85 3.97 4.08 4.17 4.25 4.39 4.51 4.61 4.70 4.78

0.10 2.13 2.41 2.61 2.75 2.87 2.97 3.06 3.13 3.20 3.31 3.41 3.49 3.56 3.62

4 0.01 4.41 4.80 5.07 5.28 5.45 5.59 5.71 5.82 5.92 6.08 6.22 6.34 6.44 6.53

0.05 2.61 2.88 3.08 3.22 3.34 3.44 3.52 3.59 3.66 3.77 3.86 3.94 4.01 4.07

0.10 1.96 2.20 2.37 2.50 2.60 2.68 2.75 2.82 2.87 2.97 3.05 3.11 3.17 3.22

5 0.01 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03 5.11 5.24 5.34 5.44 5.52 5.59

0.05 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30 3.36 3.45 3.53 3.60 3.66 3.71

0.10 1.87 2.09 2.24 2.36 2.45 2.53 2.59 2.65 2.70 2.78 2.86 2.92 2.97 3.02

6 0.01 3.61 3.88 4.06 4.21 4.32 4.42 4.51 4.58 4.64 4.76 4.85 4.93 5.00 5.06

0.05 2.34 2.56 2.71 2.83 2.92 3.00 3.06 3.12 3.17 3.26 3.33 3.40 3.45 3.50

0.10 1.82 2.02 2.17 2.27 2.36 2.43 2.49 2.54 2.59 2.67 2.74 2.79 2.84 2.89

7 0.01 3.42 3.66 3.83 3.96 4.06 4.15 4.22 4.29 4.35 4.45 4.53 4.60 4.67 4.72

0.05 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.00 3.05 3.13 3.20 3.26 3.31 3.36

0.10 1.78 1.98 2.11 2.22 2.30 2.37 2.42 2.47 2.52 2.59 2.66 2.71 2.76 2.80

8 0.01 3.29 3.51 3.66 3.78 3.88 3.96 4.03 4.09 4.14 4.23 4.31 4.38 4.43 4.49

0.05 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92 2.96 3.04 3.11 3.16 3.21 3.25

0.10 1.75 1.94 2.08 2.17 2.25 2.32 2.38 2.42 2.47 2.54 2.60 2.65 2.70 2.74

9 0.01 3.19 3.40 3.54 3.66 3.75 3.82 3.89 3.94 3.99 4.08 4.15 4.21 4.26 4.31

0.05 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86 2.90 2.97 3.04 3.09 3.14 3.18

0.10 1.73 1.92 2.05 2.14 2.22 2.28 2.34 2.39 2.43 2.50 2.56 2.61 2.65 2.69

10 0.01 3.11 3.31 3.45 3.56 3.64 3.72 3.78 3.83 3.88 3.96 4.03 4.08 4.14 4.18

0.05 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81 2.85 2.92 2.98 3.03 3.08 3.12

0.10 1.71 1.90 2.02 2.12 2.19 2.26 2.31 2.35 2.40 2.46 2.52 2.57 2.61 2.65

11 0.01 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74 3.79 3.86 3.93 3.99 4.03 4.08

0.05 2.13 2.31 2.43 2.53 2.60 2.67 2.72 2.77 2.81 2.88 2.94 2.99 3.03 3.07

0.10 1.70 1.88 2.01 2.10 2.17 2.23 2.29 2.33 2.37 2.44 2.49 2.54 2.58 2.62

(continued)
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Table A.9 (Dunnett’s one-sided method, continued)

df α v − 1

2 3 4 5 6 7 8 9 10 12 14 16 18 20

12 0.01 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67 3.71 3.79 3.85 3.91 3.95 3.99

0.05 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74 2.78 2.84 2.90 2.95 2.99 3.03

0.10 1.69 1.87 1.99 2.08 2.16 2.22 2.27 2.31 2.35 2.42 2.47 2.52 2.56 2.60

14 0.01 2.94 3.11 3.23 3.33 3.40 3.46 3.51 3.56 3.60 3.67 3.73 3.78 3.83 3.87

0.05 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69 2.73 2.79 2.85 2.89 2.93 2.97

0.10 1.67 1.85 1.97 2.06 2.13 2.19 2.24 2.28 2.32 2.38 2.44 2.48 2.52 2.56

16 0.01 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48 3.52 3.59 3.65 3.70 3.74 3.77

0.05 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65 2.69 2.75 2.81 2.85 2.89 2.93

0.10 1.66 1.83 1.95 2.04 2.11 2.17 2.22 2.26 2.30 2.36 2.41 2.46 2.50 2.53

18 0.01 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42 3.46 3.53 3.58 3.63 3.67 3.71

0.05 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62 2.66 2.72 2.78 2.82 2.86 2.89

0.10 1.65 1.82 1.94 2.02 2.09 2.15 2.20 2.24 2.28 2.34 2.39 2.44 2.48 2.51

20 0.01 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38 3.42 3.48 3.53 3.58 3.62 3.65

0.05 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60 2.64 2.70 2.75 2.80 2.83 2.87

0.10 1.64 1.81 1.93 2.01 2.08 2.14 2.19 2.23 2.26 2.33 2.38 2.42 2.46 2.49

24 0.01 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31 3.35 3.41 3.46 3.50 3.54 3.57

0.05 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57 2.60 2.66 2.72 2.76 2.80 2.83

0.10 1.63 1.80 1.91 2.00 2.06 2.12 2.17 2.21 2.24 2.30 2.35 2.40 2.43 2.47

30 0.01 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.25 3.28 3.34 3.39 3.43 3.46 3.50

0.05 1.99 2.15 2.25 2.34 2.40 2.45 2.50 2.54 2.57 2.63 2.68 2.72 2.76 2.79

0.10 1.62 1.79 1.90 1.98 2.05 2.10 2.15 2.19 2.22 2.28 2.33 2.37 2.41 2.44

40 0.01 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18 3.21 3.27 3.32 3.36 3.39 3.42

0.05 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51 2.54 2.60 2.65 2.69 2.72 2.75

0.10 1.61 1.77 1.88 1.96 2.03 2.08 2.13 2.17 2.20 2.26 2.31 2.35 2.39 2.42

60 0.01 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12 3.15 3.20 3.25 3.29 3.32 3.35

0.05 1.95 2.10 2.21 2.28 2.34 2.40 2.44 2.48 2.51 2.57 2.61 2.65 2.69 2.72

0.10 1.60 1.76 1.87 1.95 2.01 2.06 2.11 2.15 2.18 2.24 2.29 2.33 2.36 2.39

120 0.01 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06 3.09 3.14 3.18 3.22 3.25 3.28

0.05 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45 2.48 2.53 2.58 2.62 2.65 2.68

0.10 1.59 1.75 1.85 1.93 1.99 2.05 2.09 2.13 2.16 2.22 2.27 2.31 2.34 2.37

∞ 0.01 2.56 2.69 2.77 2.84 2.89 2.93 2.97 3.00 3.03 3.08 3.12 3.15 3.18 3.21

0.05 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42 2.45 2.50 2.55 2.58 2.62 2.64

0.10 1.58 1.73 1.84 1.92 1.98 2.03 2.07 2.11 2.14 2.20 2.24 2.28 2.32 2.35

∗Values wD1 = t
(0.5)

v−1,df,α were generated using the SAS statement

“wD1 = probmc(‘dunnett1’,.,prob,df,vm1);”, where “prob” = 1 − α, “vm1” = v − 1, t
(0.5)

v−1,df,α is the upper α critical

value for the maximum of a (v − 1)-variate t-distribution with common correlation ρ = 0.5 and degrees of freedom df,

and “df=.” for df = ∞
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Table A.10 Dunnett’s two-sided method:∗ upper α critical coefficients wD2 = |t |
(0.5)

v−1,df,α

df α v − 1

2 3 4 5 6 7 8 9 10 12 14 16 18 20

2 0.01 12.4 13.8 14.8 15.6 16.2 16.7 17.1 17.5 17.8 18.4 18.8 19.2 19.6 19.9

0.05 5.42 6.06 6.51 6.85 7.12 7.35 7.54 7.71 7.85 8.10 8.31 8.49 8.64 8.77

0.10 3.72 4.18 4.50 4.74 4.93 5.09 5.23 5.34 5.45 5.62 5.77 5.89 6.00 6.09

3 0.01 6.97 7.64 8.10 8.46 8.74 8.98 9.19 9.37 9.52 9.79 10.0 10.2 10.4 10.5

0.05 3.87 4.26 4.54 4.75 4.92 5.06 5.18 5.28 5.37 5.53 5.66 5.77 5.87 5.95

0.10 2.91 3.23 3.45 3.62 3.75 3.87 3.96 4.04 4.12 4.24 4.34 4.43 4.51 4.58

4 0.01 5.36 5.81 6.12 6.36 6.55 6.72 6.85 6.98 7.08 7.27 7.42 7.55 7.66 7.77

0.05 3.31 3.62 3.83 3.99 4.13 4.23 4.33 4.41 4.48 4.60 4.71 4.79 4.87 4.94

0.10 2.60 2.86 3.05 3.18 3.30 3.39 3.47 3.54 3.60 3.70 3.79 3.86 3.92 3.98

5 0.01 4.63 4.97 5.22 5.41 5.56 5.68 5.79 5.89 5.97 6.11 6.24 6.34 6.43 6.51

0.05 3.03 3.29 3.48 3.62 3.73 3.82 3.90 3.97 4.03 4.14 4.23 4.30 4.37 4.42

0.10 2.43 2.67 2.83 2.96 3.05 3.14 3.21 3.27 3.32 3.41 3.49 3.56 3.61 3.66

6 0.01 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28 5.35 5.47 5.57 5.66 5.74 5.80

0.05 2.86 3.10 3.26 3.39 3.49 3.57 3.64 3.71 3.76 3.86 3.94 4.00 4.06 4.11

0.10 2.33 2.55 2.70 2.81 2.91 2.98 3.05 3.10 3.15 3.24 3.31 3.37 3.42 3.47

7 0.01 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89 4.96 5.07 5.16 5.24 5.31 5.37

0.05 2.75 2.97 3.12 3.24 3.33 3.41 3.48 3.53 3.58 3.67 3.75 3.81 3.86 3.91

0.10 2.26 2.47 2.61 2.72 2.81 2.88 2.94 2.99 3.04 3.12 3.18 3.24 3.29 3.33

8 0.01 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62 4.68 4.78 4.86 4.93 5.00 5.05

0.05 2.67 2.88 3.02 3.13 3.22 3.29 3.35 3.41 3.46 3.54 3.61 3.67 3.72 3.76

0.10 2.22 2.41 2.55 2.65 2.73 2.80 2.86 2.91 2.96 3.03 3.10 3.15 3.20 3.24

9 0.01 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43 4.48 4.57 4.65 4.71 4.77 4.82

0.05 2.61 2.81 2.95 3.05 3.14 3.20 3.26 3.32 3.36 3.44 3.51 3.56 3.61 3.65

0.10 2.18 2.37 2.50 2.60 2.68 2.74 2.80 2.85 2.89 2.97 3.03 3.08 3.13 3.17

10 0.01 3.53 3.74 3.88 3.99 4.08 4.16 4.22 4.28 4.33 4.42 4.49 4.55 4.60 4.65

0.05 2.57 2.76 2.89 2.99 3.07 3.14 3.19 3.24 3.29 3.36 3.43 3.48 3.53 3.57

0.10 2.15 2.34 2.46 2.56 2.64 2.70 2.75 2.80 2.84 2.92 2.98 3.03 3.07 3.11

11 0.01 3.45 3.65 3.79 3.89 3.98 4.05 4.11 4.16 4.21 4.29 4.36 4.42 4.47 4.52

0.05 2.53 2.72 2.84 2.94 3.02 3.08 3.14 3.19 3.23 3.30 3.36 3.42 3.46 3.50

0.10 2.13 2.31 2.43 2.53 2.60 2.66 2.72 2.76 2.80 2.87 2.93 2.98 3.03 3.06

(continued)
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Table A.10 (Dunnett’s two-sided method, continued)

df α v − 1

2 3 4 5 6 7 8 9 10 12 14 16 18 20

12 0.01 3.39 3.58 3.71 3.81 3.89 3.96 4.02 4.07 4.12 4.19 4.26 4.32 4.37 4.41

0.05 2.50 2.68 2.81 2.90 2.98 3.04 3.09 3.14 3.18 3.25 3.31 3.36 3.41 3.45

0.10 2.11 2.29 2.41 2.50 2.57 2.64 2.69 2.73 2.77 2.84 2.90 2.95 2.99 3.03

14 0.01 3.29 3.47 3.59 3.69 3.76 3.83 3.88 3.93 3.97 4.05 4.11 4.16 4.20 4.25

0.05 2.46 2.63 2.75 2.84 2.91 2.97 3.02 3.07 3.11 3.18 3.23 3.28 3.32 3.36

0.10 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.68 2.72 2.79 2.84 2.89 2.93 2.97

16 0.01 3.22 3.39 3.51 3.60 3.67 3.73 3.78 3.83 3.87 3.94 4.00 4.05 4.09 4.13

0.05 2.42 2.59 2.71 2.80 2.87 2.92 2.97 3.02 3.06 3.12 3.18 3.22 3.26 3.30

0.10 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65 2.69 2.75 2.80 2.85 2.89 2.93

18 0.01 3.17 3.33 3.44 3.53 3.60 3.66 3.71 3.75 3.79 3.86 3.91 3.96 4.00 4.04

0.05 2.40 2.56 2.68 2.76 2.83 2.89 2.94 2.98 3.01 3.08 3.13 3.18 3.22 3.25

0.10 2.04 2.21 2.32 2.41 2.47 2.53 2.58 2.62 2.66 2.72 2.77 2.82 2.86 2.89

20 0.01 3.13 3.29 3.40 3.48 3.55 3.60 3.65 3.69 3.73 3.80 3.85 3.90 3.94 3.97

0.05 2.38 2.54 2.65 2.73 2.80 2.86 2.90 2.95 2.98 3.05 3.10 3.14 3.18 3.22

0.10 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60 2.64 2.70 2.75 2.79 2.83 2.87

24 0.01 3.07 3.22 3.32 3.40 3.47 3.52 3.57 3.61 3.64 3.70 3.76 3.80 3.84 3.87

0.05 2.35 2.51 2.61 2.70 2.76 2.81 2.86 2.90 2.94 3.00 3.05 3.09 3.13 3.16

0.10 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57 2.60 2.66 2.71 2.76 2.79 2.83

30 0.01 3.01 3.15 3.25 3.33 3.39 3.44 3.49 3.52 3.56 3.62 3.66 3.71 3.74 3.77

0.05 2.32 2.47 2.58 2.66 2.72 2.77 2.82 2.86 2.89 2.95 3.00 3.04 3.08 3.11

0.10 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54 2.57 2.63 2.68 2.72 2.76 2.79

40 0.01 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44 3.48 3.53 3.58 3.62 3.65 3.68

0.05 2.29 2.44 2.54 2.62 2.68 2.73 2.77 2.81 2.85 2.90 2.95 2.99 3.02 3.06

0.10 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51 2.54 2.60 2.65 2.69 2.72 2.75

60 0.01 2.90 3.03 3.12 3.19 3.25 3.29 3.33 3.37 3.40 3.45 3.49 3.53 3.56 3.59

0.05 2.27 2.41 2.51 2.58 2.64 2.69 2.73 2.77 2.80 2.86 2.90 2.94 2.97 3.00

0.10 1.95 2.10 2.21 2.28 2.34 2.40 2.44 2.48 2.51 2.57 2.61 2.65 2.69 2.72

120 0.01 2.85 2.97 3.06 3.12 3.18 3.22 3.26 3.29 3.32 3.37 3.41 3.45 3.48 3.50

0.05 2.24 2.38 2.47 2.55 2.60 2.65 2.69 2.73 2.76 2.81 2.86 2.89 2.93 2.95

0.10 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45 2.48 2.53 2.58 2.62 2.65 2.68

∞ 0.01 2.79 2.91 3.00 3.06 3.11 3.15 3.19 3.22 3.25 3.29 3.33 3.37 3.40 3.42

0.05 2.21 2.35 2.44 2.51 2.57 2.61 2.65 2.69 2.72 2.77 2.81 2.85 2.88 2.91

0.10 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42 2.45 2.50 2.55 2.58 2.62 2.64

∗Values wD2 = t
(0.5)

v−1,df,α generated using the SAS statement “wD2 = probmc(‘dunnett2’,.,prob, df,vm1);”, where

“prob” = 1 − α, “vm1” = v − 1, |t |
(0.5)

v−1,df,α is the upper α critical value for the maximum absolute value of a (v − 1)-

variate t-distribution with common correlation ρ = 0.5 and degrees of freedom df, and “df=.” for df = ∞
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Table A.11 Voss–Wang method: upper α critical coefficients wV = vm,d,α for m orthogonal contrasts and d sums of

squares pooled into each quasi mean squared error

even α odd α

m d 0.10 0.05 0.01 0.001 m d 0.10 0.05 0.01 0.001

2 1 12.4 25.0 126. 1384. 3 2 5.31 7.61 17.0 54.4

4 2 9.08 13.1 29.9 105. 5 3 6.35 8.27 14.7 32.0

6 3 8.57 11.2 19.9 50.0 7 4 6.82 8.56 13.8 26.8

8 4 8.37 10.5 16.6 33.2 9 5 7.18 8.73 13.3 24.7

10 5 8.39 10.3 16.0 29.5 11 6 7.42 8.89 13.0 21.4

12 6 8.37 10.1 14.7 24.1 13 7 7.64 8.95 12.4 20.4

14 7 8.43 9.89 14.0 22.5 15 8 7.76 9.04 12.4 19.2

16 8 8.45 9.88 13.5 21.8 17 9 7.85 9.10 12.4 19.1

18 9 8.51 9.77 13.5 19.9 19 10 7.98 9.10 12.2 17.8

20 10 8.50 9.70 12.9 19.0 21 11 8.03 9.17 12.1 16.8

22 11 8.53 9.78 12.9 18.2 23 12 8.12 9.19 11.9 17.2

24 12 8.55 9.76 12.7 18.6 25 13 8.15 9.28 11.9 17.2

26 13 8.60 9.80 12.5 18.2 27 14 8.22 9.33 11.8 16.5

28 14 8.61 9.78 12.6 18.3 29 15 8.27 9.36 11.8 16.7

30 15 8.63 9.78 12.4 17.5 31 16 8.32 9.38 11.8 16.3

32 16 8.70 9.76 12.4 16.9 33 17 8.35 9.38 11.8 15.9

34 17 8.66 9.70 12.2 16.5 35 18 8.38 9.35 11.7 15.8

36 18 8.69 9.71 12.1 16.3 37 19 8.41 9.40 11.6 15.6

38 19 8.70 9.67 12.0 16.5 39 20 8.43 9.37 11.6 16.0

40 20 8.71 9.69 12.0 16.5 41 21 8.45 9.36 11.5 15.5

42 21 8.72 9.64 12.0 15.8 43 22 8.48 9.39 11.6 15.5

44 22 8.73 9.68 12.0 15.7 45 23 8.52 9.40 11.6 15.2

46 23 8.76 9.69 11.9 15.7 47 24 8.53 9.42 11.5 15.1

48 24 8.75 9.65 11.8 15.8 49 25 8.55 9.44 11.5 15.1

50 25 8.76 9.68 11.8 15.7 51 26 8.57 9.42 11.5 15.0

52 26 8.78 9.66 11.8 15.6 53 27 8.60 9.45 11.5 15.0

54 27 8.80 9.69 11.8 15.5 55 28 8.61 9.46 11.4 15.0

56 28 8.82 9.70 11.8 15.7 57 29 8.64 9.51 11.5 15.1

58 29 8.81 9.71 11.7 15.3 59 30 8.63 9.49 11.4 15.0

60 30 8.83 9.70 11.7 15.3 61 31 8.66 9.49 11.4 15.1

62 31 8.84 9.68 11.7 15.9 63 32 8.67 9.50 11.4 15.4
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